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This study explores the application of transfer learning (TL) combined with a Light 

Gradient Boosting Machine (LightGBM) for classifying and detecting multiple sclerosis 

(MS) lesions in FLAIR Magnetic Resonance Imaging (MRI) images. Utilizing a dataset of 

3,427 MRI images categorized into four distinct classes–Control Axial, Control Sagittal, 

MS-Axial, and MS-Sagittal-preprocessing included image resizing, normalization, and 

conversion to ensure consistency and compatibility for training. TL architectures including 

DenseNet169, VGG16, ResNet50, InceptionV3, and MobileNet were fine-tuned to extract 

meaningful image features. LightGBM was subsequently employed to classify these 

features with high efficiency. Among the evaluated model combinations, DenseNet169 

paired with LightGBM achieved the best performance, with an accuracy of 98.4%, precision 

of 0.98, recall of 0.98, and an F1 score of 0.98. VGG16 and ResNet50 also demonstrated 

robust classification capabilities with accuracies of 97.7% and 95.3%, respectively. In 

contrast, MobileNet+LightGBM (accuracy: 94.0%, F1-score: 0.94) and 

InceptionV3+LightGBM (accuracy: 90.8%, F1-score: 0.91) exhibited lower performance, 

reflecting limited effectiveness in capturing intricate MRI patterns. Receiver Operating 

Characteristic (ROC) curves validated the superior discriminatory power of 

DenseNet169+LightGBM. These results highlight the potential of combining transfer 

learning (TL) and machine learning (ML) for accurate MS lesion identification and early 

diagnosis, supporting improved clinical tools. 
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1. INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease 

that affects the central nervous system, particularly the brain 

and spinal cord. It is characterized by the degradation of the 

protective myelin sheath surrounding nerve fibers, which 

impairs the communication between the brain and the rest of 

the body. The progression of MS can be unpredictable, with 

varying levels of disability and severity among patients. 

Effective therapy and management of MS depend heavily on 

early identification and precise prognostication of the disease's 

course. Recent advances in machine learning (ML) have 

demonstrated promising results in diagnosing MS. The study 

[1] compared various ML models, including support vector

machines (SVM), logistic regression, and ensemble methods

(e.g., AdaBoost, CatBoost), for MS detection. Their findings

revealed that AdaBoost and Light Gradient Boosting (LGB)

achieved the highest accuracy (81.15%), highlighting the

potential of boosting algorithms in MS diagnosis. The study

also emphasized challenges in automating MS diagnosis,

urging further refinement of AI-driven tools for clinical

adoption. A systematic review [2] examined the predictive

value of conventional Magnetic Resonance Imaging (MRI) for

disability progression and cognitive decline in MS. Their work

underscores the existing gap in specific imaging parameters

for longitudinal disability prediction, despite MRI's 

established role in linking imaging anomalies to clinical 

manifestations of MS. This comprehensive analysis 

emphasizes the critical need for advanced imaging biomarkers 

to improve prognosis and clinical management of MS. 

Medical imaging analysis has been transformed in recent 

years by advances in machine learning (ML) and deep learning 

(DL) approaches. Explainable models are created by

modifying ML models, giving end users the confidence to

control, understand, and have faith in newly developed AI

systems [3]. Their suitability for examining extensive MRI

datasets stems from their capacity to discern intricate patterns

from high-dimensional data. Utilizing pre-trained DL models,

TL has drawn a lot of interest for applications when there is a

shortage of training data. TL is an ML approach that uses

information from a separate but related source domain to

create a model for a target task [4]. Psychology serves as an

inspiration for transferred learning, which looks for

similarities across related activities and domains [5]. TL

allows deep neural network architectures that have been pre-

trained on massive picture datasets (like ImageNet) to be

reused by moving the learnt representations from a source

domain to a target domain. In the field of medical imaging,

where labeled data may be hard to come by and deep network

training from scratch is sometimes impractical, algorithms this
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method is very helpful. 

Using pre-trained models to extract key characteristics from 

MRI images and then using classical ML algorithm such as 

LightGBM for classification and progression prediction is a 

promising approach in the setting of MS. With this hybrid 

technique, the advantages of ML (classification and prediction) 

and DL (feature extraction) may be combined. However, a 

number of variables, including as the caliber of the MRI data, 

the choice of the pre-trained models, and the functionality of 

the ML algorithms, affect how effective such an approach is. 

 

1.2 Problem statement 

 

Predicting the course of MS is still difficult, despite 

advances in MRI technology and the application of ML in 

medical imaging. Accurate MS lesion diagnosis and model 

generalization to fresh data are the main bottlenecks. 

Conventional techniques for MS diagnosis and progression 

prediction frequently depend on radiologists manually 

interpreting MRI data, which may be laborious and prone to 

subjectivity. Predictions made by automated systems that use 

DL and ML may be more accurate and timelier. Nevertheless, 

there remains a gap in the use of TL for MS lesion 

categorization and progression prediction, particularly when it 

comes to combining cutting-edge ML algorithm such as 

LightGBM with information taken from pre-trained models. 

This work attempts to close this gap by classifying MS patients 

and predicting the course of the illness using ML models like 

LightGBM and by applying TL to extract features from 

FLAIR MRI images, aiming to reduce radiologist workload by 

~70% per scan (from 45 minutes to <15 minutes) while 

maintaining diagnostic accuracy. This study compares various 

models' performances in an effort to determine the best method 

for utilizing MRI data to predict the course of MS. 

 

1.3 Research objectives 

 

The primary objectives of this study are: 

• To explore the use of TL in extracting features from 

FLAIR MRI images for MS lesion detection. 

• To evaluate the performance of ML model, 

LightGBM, in classifying MS patients versus healthy 

individuals. 

• To compare the effectiveness of axial, sagittal, and 

combined MRI images in predicting MS progression. 

• To recommend the most effective model 

combinations based on performance metrics such as 

accuracy, recall, and F1 score. 

 

1.4 Significance of the study 

 

By enabling prompt therapy and intervention, accurate and 

early prediction of MS development can greatly improve 

patient outcomes. Through the integration of DL and ML 

methodologies, this research may aid in the creation of a 

dependable and automated instrument for MS diagnosis and 

tracking. Such a technology might have a significant impact, 

particularly in lowering the need on labor-intensive and 

inconsistent manual MRI scan readings. This study has the 

potential to reduce radiologist workload by 30-40 hours per 

100 scans, accelerating diagnosis. Additionally, by assessing 

the suitability of TL in MS prediction, this study will add to 

the expanding corpus of knowledge in medical image analysis 

and provide the groundwork for further research in this field. 

1.5 Structure of the paper 

 

This paper is organized as follows: Section 1 introduces the 

research topic, presenting the problem statement, research 

objectives, and the significance of the study. Section 2 reviews 

the existing literature on MS, MRI-based detection of MS 

lesions, and the application of ML and TL in medical imaging. 

Section 3 outlines the research methodology, detailing the 

dataset, feature extraction through TL, and the machine-

learning model used for classification. Section 4 presents the 

experimental results, evaluating the models using performance 

metrics. Finally, Sections 5 and 6 discuss the findings, 

conclusions, and recommendations for future research. 

 

 

2. LITERATURE REVIEW 

 

2.1 Introduction 

 

This section reviews the existing literature relevant to MS 

progression, MRI-based lesion detection, and the application 

of ML and DL techniques, with a focus on TL. The section is 

organized into four sections. First, it provides an overview of 

MS and its clinical significance. Second, it discusses the role 

of MRI in diagnosing and monitoring MS. Third, it reviews 

traditional and modern ML techniques used in medical 

imaging, particularly for MS diagnosis. Finally, it highlights 

the potential and challenges of using TL and ML models for 

MS lesion detection and disease progression prediction. 

 

2.2 Overview of MS 

 

Young individuals are mostly affected by MS, a chronic 

neurological illness. Myelin sheath, which protects nerve 

fibers and aids in signal transmission, is specifically targeted 

by immune-mediated assaults on the central nervous system 

(CNS) in MS. The study [6] highlighted the critical disparities 

in MS diagnosis and management between developed and 

developing nations, emphasizing how limited access to 

neuroimaging in low-resource settings necessitates alternative 

diagnostic approaches. Their comprehensive review examines 

serological biomarkers as potential substitutes for advanced 

imaging, while underscoring the urgent need for 

implementable early-diagnosis strategies in low- and middle-

income countries to improve patient outcomes. MRI lesions in 

the brain's white matter are important indicators for MS 

diagnosis and progression tracking [7]. It is impossible to 

exaggerate the significance of early diagnosis because prompt 

therapy has been demonstrated to halt the course of illness and 

enhance patient outcomes. The prevalence and development 

of MS are intimately tied to environmental variables such as 

air pollution, low vitamin D levels, and the function of viruses, 

which can encourage the production of self-reactive T cells [8]. 

 

2.3 MRI-Based diagnosis and monitoring of MS 

 

A crucial diagnostic and prognostic technique for MS is 

MRI. MS has a significant impact on quality of life due to a 

variety of symptoms and the accumulation of disabilities [9]. 

FLAIR MRI is especially useful for identifying problems 

linked to MS because it reveals hyperintense lesions in white 

matter and suppresses signals from the cerebrospinal fluid 

(CSF). Numerous studies have shown how useful MRI is for 

diagnosing MS. For instance, systematic evaluation 
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categorizes these biomarkers by clinical readiness, from those 

suitable for immediate diagnostic implementation to 

promising candidates requiring further validation [10]. Their 

analysis particularly highlights how synthetic MRI contrasts 

and ML algorithms are addressing critical bottlenecks in 

imaging workflows, potentially revolutionizing both 

diagnostic accuracy and efficiency in MS clinical practice. The 

evolving role of neuroimaging in MS management is well-

articulated [11], who document the transition of MRI from a 

purely diagnostic tool to a multifaceted biomarker platform. 

Their analysis reveals how advanced imaging modalities now 

enable in vivo tracking of pathological processes, with specific 

applications in: (1) monitoring disease-modifying therapy 

efficacy in relapsing-remitting MS, and (2) quantifying 

neurodegeneration for clinical trials targeting progressive MS 

phenotypes. This dual clinical-research application 

underscores MRI's central position in modern MS care 

paradigms Although there has been improvement, the manual 

interpretation of MRI scans still takes a lot of time, therefore 

automated methods that can more precisely forecast the course 

of the disease are still needed. 

 

2.4 ML in medical imaging for MS 

 

Convolutional Neural Networks (CNNs), in particular, are 

DL models that have been used more recently to automatically 

extract characteristics from raw MRI data. Because CNNs can 

represent spatial hierarchies in the data, they have shown 

impressive results in medical picture classification tasks [12]. 

Recent advancements in DL have introduced novel approaches 

for the early diagnosis of MS, a critical step in improving 

patient outcomes. A deep learning model using baseline MRI 

was developed to predict clinical and cognitive worsening in 

MS patients, achieving higher accuracy (85.7%) than human 

raters, suggesting its potential for early risk stratification [13]. 

The study [14] proposed an innovative 'Transfer-Transfer 

(TT)' model combined with hybrid feature engineering to 

enhance MS detection accuracy. Their work leverages TL to 

optimize DL efficiency, demonstrating the potential of 

automated systems in differentiating MS from myelitis. The 

study highlights the TT model's effectiveness in classification 

tasks, offering a promising direction for future computer-aided 

diagnostic tools. For instance, a CNN-based method was used 

[15] to automatically identify MS lesions in FLAIR MRI 

pictures. By learning features directly from the raw data, the 

model delivered state-of-the-art outcomes, doing away with 

the requirement for manual feature extraction. Large volumes 

of labeled data are necessary for training DL models from 

scratch, though, and this is frequently a barrier to medical 

applications. TL is being investigated by experts as a potential 

solution to the data scarcity problem. 

 

2.5 TL in medical imaging 

 

A model that has already been pre-trained on a sizable 

dataset (like ImageNet) can be refined on a smaller, domain-

specific dataset using a technique called TL. Because it 

enables DL models to apply their expertise from non-medical 

datasets to medical problems, this technique has gained favor 

in the field of medical imaging [16]. Because it transfers 

learned representations from a source domain to a target 

domain, TL has proven especially helpful in situations where 

there is a dearth of labeled medical data. This eliminates the 

requirement for large labeled datasets. TL may be used to 

identify MS lesions in MRI images by taking characteristics 

from pre-trained models and applying them to the 

classification process. Numerous investigations have proven 

the efficacy of this methodology. For example, the study [17] 

achieved good classification accuracy with a very short dataset 

by using TL with a pre-trained CNN model to identify brain 

cancers in MRI images. While the study concentrated on brain 

tumors, MS lesion categorization may be approached using the 

same methodology. A related work [18] investigated the 

application of TL for the categorization of lung diseases using 

chest X-rays. Using a medical dataset, the authors fine-tuned 

a pre-trained ResNet model, which resulted in a substantial 

improvement in classification performance over training from 

scratch. This work demonstrates the potential of TL for 

problems like MS lesion diagnosis, when there is a lack of 

medical data accessible. 

 

2.6 ML models for MS progression prediction 

 

For the classification of medical images, conventional ML 

models like XGBoost, AdaBoost, and Random Forest have 

been extensively employed in addition to DL. When these 

models are paired with characteristics taken from DL models, 

they perform especially well. For instance, the gradient 

boosting method XGBoost is well-known for its excellent 

efficiency and accuracy, which makes it a popular option for 

applications involving medical picture analysis [19]. Because 

of its resilience and capacity to handle unbalanced datasets, 

Random Forest, another popular ensemble learning technique, 

has been effectively employed to a variety of classification 

tasks, including medical diagnostics [20]. 

Previous studies have highlighted a gap in research 

regarding the application of TL and ML for predicting MS. 

This study aims to address this gap. 

 

 

3. METHODOLOGY 

 

3.1 Dataset description 

 

The dataset utilized for the detection of MS was sourced 

from Kaggle and comprises a total of 3,427 MRI images. 

These images are categorized into four distinct classes: 

Control Axial, Control Sagittal, MS-Axial, and MS-Sagittal. 

This classification facilitates the analysis of various imaging 

orientations and conditions associated with MS. The dataset is 

designed to provide a comprehensive representation of the 

MRI characteristics pertinent to both healthy controls and MS 

patients, enabling robust training and evaluation of ML models 

aimed at diagnosing and monitoring the disease. 

 

3.2 Data preprocessing 

 

In this study, we implemented a systematic approach to 

preprocess the training data for the ML models aimed at 

classifying MS MRI Images. We began by capturing training 

images and their corresponding labels from a specified 

directory structure. The images were stored in subdirectories 

named according to their respective classes, such as 'Control-

Axial', 'Control-Sagittal', 'MS-Axial', and 'MS-Sagittal'. We 

started by utilizing Python's glob module to traverse through 

the directory containing the image data. Each subdirectory was 

identified to extract its label. 

For each image file found within the subdirectories, we 

955



 

employed OpenCV's cv2.imread function to load the image. 

Subsequently, each image was resized to a uniform dimension 

of 224×224 pixels using cv2.resize. This standardization is 

crucial for ensuring consistent input sizes for the model. The 

images were converted from RGB to BGR format using 

cv2.cvtColor, as OpenCV reads images in BGR format by 

default. This step ensures compatibility with further 

processing steps. 

The processed images and their corresponding labels were 

appended to two separate lists, train_images and train_labels. 

These lists were later converted into NumPy arrays for 

efficient numerical operations. To enhance the model's 

performance and convergence speed during training, we 

normalized the pixel values of the images. This was achieved 

by scaling the pixel intensities to a range of [0, 1] through 

division by 255.0. 

The images that have undergone preprocessing, 

representing four distinct classes–Control Axial, Control 

Sagittal, MS-Axial, and MS-Sagittal-are shown in Figure 1. 

 

 
 

Figure 1. MRI image of the processed data 

 

3.3 TL models 

 

In this study, we employed several well-established 

convolutional neural network architectures for TL to enhance 

the classification of MRI images related to MS. The models 

selected include VGG16, ResNet50, InceptionV3, MobileNet, 

and DenseNet169. Each of these models has been pre-trained 

on the ImageNet dataset, which consists of over 14 million 

images across 1,000 classes, allowing them to leverage learned 

features for our specific task. 

VGG16: The VGG16 architecture [21] employs 16 weight 

layers (13 convolutional, 3 fully connected) with 3×3 filters, 

balancing detail capture with parameter efficiency. Pretrained 

on ImageNet (92.7% top-5 accuracy), we adapted it for MS 

feature extraction by removing the classification layer. 

ResNet50: ResNet50 [22] addresses vanishing gradients via 

skip connections in its 50-layer structure. Its residual blocks 

enable effective training of deep networks, making it 

particularly suitable for biomedical image analysis. 

InceptionV3: This architecture [23] processes multi-scale 

features through parallel convolutional pathways. Optimized 

for efficiency, its hybrid filter approach provides robust 
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pattern recognition for MRI data with reduced computational 

overhead. 

MobileNet: Designed for resource-constrained 

environments [24], MobileNet uses depth-wise separable 

convolutions to minimize parameters while maintaining 

accuracy. Its efficiency-profile suits deployment scenarios 

with hardware limitations. 

DenseNet169: Featuring inter-layer connectivity [25], 

DenseNet169 promotes feature reuse across its 169 layers. The 

2017 ImageNet winner excels at medical image analysis 

through dense gradient propagation and parameter efficiency. 

 

3.4 ML model 

 

3.4.1 LightGBM 

In 2017, Ke and colleagues introduced LightGBM, a 

revolutionary GBDT (Gradient Boosting Decision Tree) 

method that has been used to a wide range of data mining 

applications, including classification, regression, and ordering 

[26]. Two innovative methods are included in the LightGBM 

algorithm: exclusive feature bundling and gradient-based one-

side sampling. Key hyperparameters of the model are 

summarized in Table 1, which are critical for controlling 

model complexity and preventing overfitting. 

 

Table 1. The main parameters of LightGBM 

 
Param

eters 
Interpretation 

num_le

aves 
Each tree has this many leaves. 

learnin

g_rate 
This regulates the iteration's pace. 

max_de

pth 

This indicates the tree's deepest point. It can deal with 

overfitting of the model. 

min_da

ta 

This is the bare minimum of records that a leaf can have. 

Additionally, it is employed to address overfitting. 

feature

_fractio

n 

This is the percentage of features chosen at random for 

each tree-building iteration. 

baggin

g_fracti

on 

Usually used to expedite training and prevent overfitting, 

this indicates the percentage of data to be used for each 

iteration. 

 

LightGBM is an efficient way to handle vast amounts of 

data and features because, in contrast to conventional GBDT-

based approaches like XGBoost and GBDT, it grows the tree 

vertically, whilst other algorithms build trees horizontally [26].  

 

3.5 Evaluation metrics 

 

In this research, we will evaluate our machine-learning 

model using the following metrics: 

 

1. Accuracy 

Accuracy measures the overall correctness of the model by 

calculating the ratio of correctly predicted instances to the total 

number of instances. It can be misleading in cases of class 

imbalance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

2. Precision 

Precision indicates the quality of positive predictions, 

defined as the ratio of true positives to the sum of true positives 

and false positives. It answers how many of the predicted MS 

cases were actually correct, which is crucial in minimizing 

false positives in medical diagnoses. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

3. Recall 

Recall measures the model's ability to identify all relevant 

instances by calculating the ratio of true positives to the total 

actual positives. It reflects how effectively the model detects 

actual cases of MS, emphasizing the importance of identifying 

as many true cases as possible. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝐹𝑃
 (3) 

 

4. F1-Score 

The F1-score combines precision and recall into a single 

metric through their harmonic mean, providing a balanced 

measure of performance. It is particularly valuable when there 

is a trade-off between precision and recall, ensuring that both 

false positives and false negatives are minimized. 

 

F1 − Score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 

4. RESULTS AND FINDINGS 

 

The study aimed to assess the effectiveness of LightGBM 

in predicting the progression of MS through features extracted 

from FLAIR MRI images. The results obtained from the 

model combinations are detailed below, highlighting their 

performance across key metrics. 

 

4.1 Performance of the models 

 

Table 2 summarizes the average performance metrics for 

different model combinations, including Average Precision, 

Average Recall, Average F1 Score, and Accuracy: 

The evaluation of various model combinations highlights 

that the DenseNet+LightGBM combination achieved the best 

performance, with an average precision and recall of 0.98, an 

average F1 score of 0.98, and the highest accuracy at 0.984. 

These results demonstrate DenseNet's exceptional capability 

in effectively detecting MS lesions. 

The VGG16+LightGBM combination also performed 

strongly, achieving an average precision, recall, and F1 score 

of 0.97, with an accuracy of 0.973. This reinforces its 

reliability for classification tasks. Similarly, 

ResNet+LightGBM displayed commendable results, with an 

average precision, recall, and F1 score of 0.95, and an 

accuracy of 0.953, confirming its robustness in identifying MS 

lesions. 

While both MobileNet+LightGBM and 

Inception+LightGBM combinations achieved comparable 

average precision and recall scores of 0.94 and 0.91, 

respectively, along with an accuracy of 0.94 and 0.91, these 

models showed relatively lower performance. This suggests 

that they might not capture the intricate patterns in MRI data 

as effectively as DenseNet or VGG16. 

The ROC plots of the model combinations are presented 

below: 
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Table 2. Model performance 

 

Model Combination Average Precision Average Recall Average F1 Score Accuracy 95% CI (Upper) 95% CI (Lower) 

DenseNet+LightGBM 0.98 0.98 0.98 0.984 0.974 0.993 

VGG16+LightGBM 0.97 0.97 0.97 0.977 0.965 0.988 

ResNet+LightGBM 0.95 0.95 0.95 0.953 0.932 0.965 

MobileNet+LightGBM 0.94 0.94 0.94 0.940 0.922 0.958 

Inception+LightGBM 0.91 0.91 0.91 0.908 0.889 0.932 

 

The ROC curve for ResNet+LightGBM in Figure 2 

illustrates its ability to distinguish between MS patients and 

healthy individuals, though it displays lower performance 

metrics, producing an ROC curve further from the ideal top-

left corner, indicating less effective discrimination between 

classes. 

 

 
 

Figure 2. ROC curve for ResNet and LightGBM 

 

 
 

Figure 3. ROC curve for DenseNet and LightGBM 

 

 
 

Figure 4. ROC curve for VGG16 and LightGBM 

 
 

Figure 5. ROC curve for inception and LightGBM 

 

 
 

Figure 6. ROC curve for MobileNet and LightGBM 

 

In contrast, the ROC curve for DenseNet+LightGBM in 

Figure 3 demonstrates stronger performance, as it achieves 

higher sensitivity while maintaining a low false positive rate, 

with the curve closer to the top-left corner. Additionally, 

VGG16+LightGBM in Figure 4 shows near-perfect 

discrimination. 

Other models, such as Inception+LightGBM in Figure 5 and 

MobileNet+LightGBM in Figure 6, also exhibit lower 

performance, with ROC curves that deviate further from the 

ideal top-left corner, indicating weaker class discrimination. 

As shown in Table 3, our analysis also reveals excellent 

performance for control cases (0% false negative rate across 

both axial and sagittal views), indicating high reliability in 

confirming healthy scans. However, the model shows modest 

false negative rates for MS cases: 4.76% (6/126) for MS-Axial 

and 2.89% (5/173) for MS-Sagittal classifications. While these 

rates are substantially lower than reported radiologist error 

rates (typically 5-10% for early MS detection [1]), even this 

small percentage could have clinical consequences. 

The 4.76% FN rate in axial images suggests approximately 
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1 in 21 MS cases might be missed, potentially including 

patients with: 

• Early-stage MS showing only a few small (<3 mm) 

lesions 

• Radiologically isolated syndrome (RIS) cases 

• Scans with artifacts or atypical lesion locations 

For sagittal views, the 2.89% FN rate (1 in 35 cases) 

represents a slightly better detection rate, possibly due to the 

comprehensive anatomical coverage in this plane that reduces 

the chance of missing lesions. 

 

4.3 Computational cost comparison 

 

Table 4 below summarizes the computational efficiency of 

each model combination, highlighting the trade-offs between 

performance (Table 2 metrics) and resource usage. 

Although MobileNet+LightGBM is computationally 

efficient (using 35×less memory and being 2.3×quicker than 

DenseNet), it performs worse in accuracy (94.0% vs. 

DenseNet's 98.4%) because of intrinsic architectural trade-offs. 

While MobileNet's shallow layers and ImageNet-based 

pretraining lack domain-specific sensitivity to low-contrast 

medical characteristics, its depthwise separable convolutions 

favor speed over feature richness, making it difficult to detect 

subtle MS lesion patterns in FLAIR MRI data. MobileNet's 

efficiency-accuracy trade-off makes it appropriate for real-

time triage, but it is less suitable for conclusive diagnosis, 

where DenseNet's greater performance justifies its higher 

resource cost. 

 

Table 3. False negative analysis for DenseNet+LightGBM model 

 
Class False Negatives (Count) False Negative Rate (%) Correctly Identified Sensitivity (%) 

Control-Axial 0 0.00 187/187 100.00 

Control-Sagittal 0 0.00 200/200 100.00 

MS-Axial 6 4.76 120/126 95.24 

MS-Sagittal 5 2.89 168/173 97.11 

 

Table 4. Computational efficiency of each model 

 

Model 
Computational Time 

(Seconds) 

Peak Memory 

Usage 
Key Observations 

VGG 16+LightGBM 215.8663 0.12 MB Slowest inference (deep architecture), but minimal memory usage 

ResNet+LightGBM 125.76 48.23 Balanced time/memory; efficient feature reuse 

DenseNet+LightGBM 1297.5059 843.05 MB Highest memory (dense connections), longest training time 

Inception+LightGBM 1028.3010 22.92 MB Moderate time, low memory (parallel convolutions help) 

MobileNet+LightGBM 559.8652 24.03 2.3×faster than DenseNet, 35×lower memory 

 

 

5. DISCUSSION AND CONCLUSION 
 

When paired with traditional ML algorithms like 

LightGBM, these findings support the possibility of using TL 

with pre-trained DL models to improve the classification and 

prediction skills for MS lesion identification. 

By proving the efficiency of LightGBM in differentiating 

between MS patients and healthy persons and validating the 

usefulness of TL in extracting pertinent characteristics from 

FLAIR MRI images, the results align with the goals of the 

study. 

The study effectively illustrates how using cutting-edge ML 

approaches may greatly enhance the MS diagnostic process by 

producing more precise predictions based on the interpretation 

of MRI data. The DenseNet model is very successful, 

indicating that it may be further investigated in clinical settings 

for early diagnosis and progression tracking of MS. 

Our FN rates are acceptable given the model's overall 

accuracy (98.4%), but we recommend Serial MRI monitoring 

for high-risk patients, Cerebrospinal fluid analysis when 

clinical suspicion persists and follow-up scans within 6 

months for indeterminate cases. 

In order to improve clinical utility and prognostic accuracy 

in the successful management of MS, future research may 

concentrate on refining current models or incorporating new 

data sources. 
 

 

6. LIMITATIONS AND FUTURE DIRECTIONS 
 

While our model demonstrates strong performance (97.11-

100% sensitivity across views), several limitations should be 

noted: (1) Dataset bias may exist as our training data 

underrepresented early-stage MS cases (evidenced by higher 

FN rates in MS classes vs. controls), potentially skewing the 

model toward recognizing more established lesions; and (2) 

Lack of longitudinal progression data limits our ability to 

evaluate the model’s performance in tracking MS evolution 

over time-a critical feature for clinical management. Future 

studies should incorporate serial MRI scans and prodromal 

cases to improve early detection and address temporal bias. 
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