
Hybrid Workload Prediction for Improved Autoscaling in IaaS Clouds: An ARIMA-

OLSTM Approach

Satya Nagamani Pothu* , Swathi Kailasam

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Guntur 522302, India

Corresponding Author Email: happysatyasai@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300413 ABSTRACT

Received: 5 February 2025

Revised: 15 April 2025

Accepted: 22 April 2025

Available online: 30 April 2025

Cloud computing's dynamic characteristics require precise prediction of workload and

effective auto-scaling to optimize resource usage in Infrastructure-as-a-Service (IaaS)

settings. To maximize auto-scaling, this research presents a robust hybrid workload

prediction model that uses a hybrid pelican optimization algorithm (POA) for intelligent

scaling decisions and Autoregressive Integrated Moving Average-Long Short-Term

Memory (ARIMA-OLSTM) for accurate workload forecasting. ARIMA-OLSTM

combines deep learning techniques with statistical methods. LSTM (optimized by

RMSProp) learns non-linear, sequential information from ARIMA's residuals, while

ARIMA represents the linear trends within historical workload sequences. The prediction

accuracy is significantly increased by this two-step process. Resource scaling decisions are

ideally determined during the planning stage by a Hybrid POA that is inspired by pelican

hunting techniques and further improved using Lyrebird Optimization. Through constantly

changing virtual machine parameters, it is strategically beneficial to find a balance between

cost-effectiveness, system responsiveness, and SLA fulfillment. Extensive tests on realistic

cloud workloads demonstrate that the suggested model outperforms existing models such

as RHAS, GRASP, and ADA-RP, minimizing RMSE to 0.1513 and MAPE to 0.1557.

Furthermore, compared to traditional methods, it maintains 50% less resource use and

achieves a 70% reduction in reaction time, confirming the model's effectiveness, scalability,

and prediction accuracy.

Keywords:

auto scaling, workload prediction;

scalability; infrastructure-as-a-service;

resource utilization

1. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds, which provide

scalable and flexible resources on demand, have modified the

computing environment [1]. The growing dependence of

companies on cloud infrastructures to guide their programs

highlights the important need for powerful useful resource

control structures. The largest one is Auto Scaling, which

dynamically modifies the assets allocated in reaction to

varying workload needs [2, 3]. The unpredictable nature of

workloads makes it tough to obtain the most excellent Auto

Scaling in IaaS clouds [4]. A hybrid workload prediction

model that integrates proactive and reactive scaling methods

is obtainable as a solution to this problem. By enhancing the

effectiveness and responsiveness of auto-scaling methods, this

model seeks to maximize aid utilization and minimize

expenses.

Resource control in dynamic computing environments is

being revolutionized through the hybrid workload prediction

model for Auto Scaling in IaaS clouds, which creatively

combines proactive and reactive scaling methodologies [5].

Proactive scaling allows for seamless adaptations to

anticipated versions and maximizes aid efficiency. It is

characterized by way of preemptive useful resource

modifications based totally on predicted workload styles.

Instead, reactive scaling ensures that overall performance isn't

always disrupted by unplanned spikes or declines in demand

by way of quickly adapting to unanticipated workload

fluctuations in real time [6, 7]. The hybrid paradigm leverages

the benefits of both proactive foresight and reactive model

with the aid of skillfully fusing two techniques. The Auto

Scaling system is enabled by this synergistic integration to

anticipate changes in workload and modify efficiently, making

sure the highest quality performance and aid allocation below

a variety of operating situations [8]. The hybrid model creates

a brand-new benchmark for agility and performance in cloud

aid control by combining real-time responsiveness and

predictive analytics dynamically. This permits organizations

to navigate through the complexity of converting needs with

unparalleled precision and resilience

The dynamic and unpredictable nature of cloud workloads

won't be accurately captured via conventional workload

prediction models, which frequently depend best on historic

data or statistical forecasting strategies [9, 10]. Instead, the

recommended hybrid model improves workload estimates'

accuracy and dependability by combining the advantages of

time-series analysis, predictive analytics, and machine-

learning techniques. The hybrid model's ability to continually

analyze historical data and adjust to changing workload

patterns can result in more precise estimations that can be

Ingénierie des Systèmes d’Information
Vol. 30, No. 4, April, 2025, pp. 961-970

Journal homepage: http://iieta.org/journals/isi

961

https://orcid.org/0009-0004-2131-4954
https://orcid.org/0000-0001-7212-078X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300413&domain=pdf

obtained with greater confidence. Furthermore, the system can

fast start reactive scaling sports in reaction to unexpected

workload fluctuations due to the fact real-time monitoring and

feedback mechanisms are covered [11]. This ensures the most

efficient resource provisioning and overall performance

balance

Therefore, an innovative step in cloud resource

management has been made with the creation of a hybrid

workload prediction model for Auto Scaling in IaaS clouds.

This model provides a complete method to the issues presented

by using workload variability and unpredictability by

smoothly merging proactive foresight and reactive flexibility

[12, 13]. In dynamic computing environments, cloud

infrastructures may additionally allocate resources

efficaciously, fulfill overall performance desires, and optimize

cost efficiency because of the hybrid version's dynamic

interplay of predictive analytics and actual-time

responsiveness. Because of its adaptive studying abilities,

workload forecasts can be constantly advanced, ensuing in

particular and well-timed modifications to fulfill changing

wishes [14]. In the continuously changing world of cloud

computing, the hybrid workload prediction model, as a

lighthouse of efficiency and innovation, attendants in a brand-

new generation of efficient useful resource usage and

operational resilience

The major contributions of the paper are as follows:

• The hybrid technique of the model, which combines the

hybrid POA and the hybrid ARIMA with an optimized

long short-term module (ARIMA-OLSTM), enables to

maximization of useful resource utilization in cloud

structures. Through precise forecasting of incoming

demand and adaptive resource sizing, it ensures

effective distribution of processing electricity and

storage ability, resulting in monetary financial savings

and more desirable provider durability

• The Monitoring, Analysis, Planning, Execution, and

Knowledge phases of the version's framework facilitate

better decision-making for IaaS carriers. It makes it

feasible to balance commercial enterprise issues with

Service Level Agreements (SLA) compliance using

making well-timed and properly informed decisions

about scaling up or down. This complements cloud-

primarily based apps' standard overall performance and

boosts user happiness

• The model shows the use of Mean-Absolute-

Percentage-Error (MAPE) and Root-Mean-Square-

Error (RMSE) to evaluate how correct workload

estimates are. The version also evaluates reaction time

and CPU utilization, presenting a thorough evaluation

framework to affirm the efficacy of the prediction

model and automobile-scaling alternatives in actual

cloud environments.

The following sections are organized as follows: Section 2

explores relevant research and literature reviews, Section 3

introduces the proposed framework, Section 4 provides a

detailed analysis of the observed results and discussions, and

Section 5 offers the final assessment of this study.

2. LITERATURE REVIEW

This section reviewed some of the most recent research

studies on reactive, and proactive-based workload prediction

in IaaS CC settings.

A Robust Hybrid Auto-Scaler (RHAS) was proposed in

2021 for cloud-based web applications, utilizing threshold-

based criteria, time series forecasting, and proactive/reactive

auto-scaling strategies to dynamically allocate processing and

storage resources [15]. The framework contains functions to

safeguard user requests and responses to deal with safety

concerns.

RHAS proved its effectiveness in maximizing performance

and resource utilization by demonstrating a 14% cost

reduction, notable improvements in response time, service

level agreement (SLA) compliance, and consistent CPU

utilization through experimentation with real-time web

application workloads from NASA and ClarkNet.

FLAS is an auto-scaler for distributed systems that

seamlessly integrates proactive and reactive scaling

techniques [16]. To optimize scaling actions, FLAS leverages

a reactive contingency system and predictive models for high-

level metrics trends. When FLAS was implemented for a

content-based publish-subscribe middleware, it was capable of

minimizing instrumentation and obtaining performance

necessities greater than 99% of the time, all while being

adaptable to different programs.

An innovative proactive autoscaling technique was offered

in 2023 [17] to improve the Quality of Service (QoS) of

microservice installations in cloud environments. The method

optimizes useful resource allocation via the use of a two-state

machine-learning Random Forest (RF) version to estimate

future CPU and memory usage values. The technique

confirmed awesome discounts in end-to-end latency and

resource consumption through validation with actual global

workloads and deployment on a microservice prototype

platform.

An approach for simulating auto-scaling mechanisms in

cloud infrastructures utilizing stochastic Petri nets (SPN) and

an adaptive search metaheuristic (GRASP) has been proposed

[18]. The purpose of the technique is to locate the first-rate

configurations to decrease costs and achieve service level

agreements (SLAs), permitting higher operational

management of cloud offerings.

An adaptive auto-scaling structure referred to as ADA-RP

was presented in 2023 [19] to enhance useful resource

provisioning in cloud computing environments. ADA-RP

lowers prices and improves application overall performance

by using dynamically automobile-scaling cloud resources in

actual time based on expected workload calls using making

use of beyond-time-series statistics.

A computational method for assessing the workload of

microservices in cloud-native web programs was created in

2023 [20]. The method minimized scaling techniques and

progressed useful resource allocation efficiency while

upholding Quality of Service (QoS) requirements via a multi-

criteria selection-making mechanism.

The research [21] performed a comparative study in 2024

between new methods based on control theory and queuing

theory and autoscaling solutions provided by vast cloud

providers. To shed mild on the effectiveness of diverse

autoscaling strategies, the examine set out to evaluate their

overall performance in terms of resource utilization

optimization and violations of carrier-level agreements

(SLAs).

BIAS Autoscaler introduces a novel approach leveraging

burstable instances alongside standard instances for efficient

queuing management in cloud-based microservice workloads

[22]. After accomplishing an intensive trial on the Google

962

Cloud Platform, BIAS Autoscaler proved that it may save

expenses by up to 25% and increase useful resource

performance using 42% when compared to the usage of

conventional instances solely.

3. PROPOSED METHODOLOGY

The proposed Robust Hybrid Workload Prediction Model

aims to address the difficult conditions of workload prediction

in cloud computing, particularly for autoscaling in web

programs. By leveraging previous workload strains, this

model forecasts future workload on physical machines,

enabling more efficient resource allocation and capacity

planning. The key is to accurately estimate the given attribute

for horizontal scaling, especially by taking into account the

expected workload. Through this technique, IaaS providers

can enhance company sustainability, reduce operational

expenses, and optimize resource utilization inside cloud data

centers. Figure 1 suggests the overall architecture of the

proposed technique.

Figure 1. Overall architecture of the proposed methodology

3.1 Monitoring phase

Initially, this phase collects data often approximately the

software and infrastructure stage parameters. The monitoring

module records the request arrival rate, capacity available, and

capacity utilized the use of the manipulated domain.

Request Arrival Rate: It is the pace at which tasks or

requests are directed to the cloud. Monitoring this metric

offers insights into workload intensity and demand

fluctuations, supporting optimizing resource allocation and

understanding performance dynamics inside cloud

environments

Capacity Available: It denotes the entire resources like

virtual machines, storage, and community bandwidth ready for

deployment in the cloud infrastructure. Monitoring this metric

gives visibility into resource availability, guiding decisions on

scaling, and allocation, and making sure the maximum

beneficial performance and responsiveness to various

workloads in cloud environments.

Capacity Utilized: Capacity Utilized inside the usage of the

manipulated area refers to the degree to which resources

within the cloud infrastructure are currently being used. The

control domain encompasses the management and monitoring

mechanisms that oversee resource allocation and utilization.

By monitoring capability utilization via this domain, cloud

administrators can ensure efficient resource management,

identify capability bottlenecks, and make knowledgeable

selections regarding scaling, load balancing, and optimization

techniques to maintain system performance and stability.

3.2 Analysis phase

In this phase, a hybrid method combining reactive and

proactive strategies is delivered. Specifically, the ARIMA-

OLSTM technique is hired. Additionally, reading CPU

utilization and reaction time, it forecasts the high workload of

one minute for the next scaling period. This integrated

approach complements workload forecasting accuracy and

allows powerful useful resource allocation in real-time cloud

environments

One of the most broadly used linear regression strategies for

stationary time collection forecasting is the Autoregressive

integrated shifting common version (ARIMA) model. The

forecasting model's structure is represented through the

parameters 𝑎, 𝑑, and 𝑚 , which stand for auto-regression

𝐴𝑢𝑡𝑜𝑟𝑒𝑔(𝑎), moving average 𝑀𝑜𝑣𝑎𝑣𝑔 (𝑚), and differencing

degree 𝑑. The version is expressed as ARIMA (𝑎,𝑚, 𝑑). The

following is a description of the scientific formulation for

ARIMA (𝑎,𝑚, 𝑑) in Eq. (1)

(1 − ∑𝜑𝑖

𝑎

𝑖=1

𝑙𝑖) (1 − 𝑙)𝑑𝑥𝑡 = (1 + ∑ 𝜃𝑖

𝑚

𝑖=1

𝑙𝑖) 𝜀𝑡 (1)

where, 𝜀𝑡 are error terms, 𝜑𝑖 are the model's autoregressive

part's [23] parameters, and 𝜃𝑖 are the 𝑀𝑜𝑣𝑎𝑣𝑔 part's

parameters. 𝑙 stands for the lag operator in this equation.

For accurate time series forecasting, Box and Jenkins

proposed a three-step method for building an ARIMA model.

Model identification is the first phase, which includes using

differencing to make the series stable and analyzing ACF and

PACF plots to determine ARIMA terms. The second phase,

parameter estimation, finds the optimal model order by

applying criteria like AIC and BIC. Diagnostic checking is the

final phase, in which residuals are examined to verify the

sufficiency of the model. This methodical technique strikes a

balance between model accuracy and simplicity to deliver

effective workload prediction in cloud systems. The LSTM

model then receives the ARIMA residuals as input.

LSTM is a type of recurrent neural network (RNN) that

works well with sequential data, like time series, since it can

retain input memory over time. With their huge memory

capacity, LSTMs combat the vanishing gradient problem,

which hinders learning over lengthy sequences, which

typically affects standard RNNs. They can learn from stimuli

that are widely apart and develop long-term dependence.

Three crucial gates that regulate data flow in a network forget,

input, and output are used by LSTMs to do this.

963

Forget gate: Controls conditionally what data to remove

from the block, from which the following is derived in Eq. (2).

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

Input gate: Selects values to be inserted conditionally to

update the memory state.

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3)

Output gate: Determine output conditionally using the

input and block memory.

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4)

These three analog gates operate in the 0–1 range and are

based on the sigmoid function. To drive the values to be

between -1 and 1, a tanh function is used to calculate the input

features at every time t using input 𝑥𝑡, prior hidden state ℎ𝑡−1

as follows in Eq. (5)

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5)

The adjusted input characteristics along with the partial

decay of the previous memory cell contribute to the

modification of the memory cell, resulting in Eq. (6).

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐̃𝑡 (6)

In the end, memory 𝑐𝑡 and output gate 𝑜𝑡 compute the

hidden output state ℎ.

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ (𝑐𝑡) (7)

In Eqs. (2)-(7), matrices weight matrices are 𝑤𝑐 , 𝑤𝑓, 𝑤𝑖 and

𝑤𝑜; the bias vectors are 𝑏𝑐 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑜.

Using RMSProp to optimize the LSTM model significantly

boosts performance by dynamically adjusting each parameter's

learning rate using the moving average of squared gradients.

The complex architecture of LSTM makes this technique very

helpful since it allows precise parameter adjustment, prevents

vanishing gradients, and offers reliable, effective training on

sequential data. The RMSProp method updates the weight

matrices 𝑤𝑐 , 𝑤𝑓, 𝑤𝑖 and 𝑤𝑜, and bias vectors 𝑏𝑐 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑜.

The Adaptive Gradient technique serves as the foundation for

RMSProp, a learning rate adaptation technique that reduces

the computational expense of neural network training. It works

particularly well at resolving vanishing gradients in RNNs,

notably LSTMs. In deep or complex LSTM structures,

disappearing or exploding gradients can still occur.

Techniques like gradient clipping, learning rate adjustment,

decay adjustment, and appropriate selection of batch sizes are

used to combat this. Regularization methods that increase

generalization and avoid overfitting include L2 regularization

and dropout. Better performance on sequential tasks and better

control of gradient difficulties are guaranteed by proper

hyperparameter tuning of both RMSProp and LSTM

parameters. Initialize the collected gradient, Squared gradient

accumulation for every parameter in Eq. (8).

𝐸𝑡 = 0 (8)

Repeated until most iterations or convergence, determine

the objective function's gradient approximately the parameters

in Eq. (9)

𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡) (9)

Revise the squared gradients' exponentially weighted

average in Eq. (10) and replace the parameters in Eq. (11)

𝐸𝑡 = 𝛾𝐸𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (10)

𝜃𝑡−1 = 𝜃𝑡 − 𝛼
𝑔𝑡

√𝐸𝑡 − 𝜖
 (11)

where, 𝜃 is an initial parameter, the learning rate is𝛼 , the

decay factor is 𝛾 , 𝑔𝑡 is the loss function's gradient at

time 𝑡 concerning the parameters, 𝐸𝑡 is the average of the

squared gradients weighted exponentially, a small constant

called 𝜖 keeps division by zero from happening.

Algorithm 1. Pseudocode for ARIMA-OLSTM

Input: Time series data (x), ARIMA operators (a, m, d), learning

rate (𝛼), decay rate (𝛾), 𝜖

Output: Trained ARIMA coefficients (𝜑 , 𝜃), Trained LSTM

parameters (the weights 𝑤𝑐 , 𝑤𝑓, 𝑤𝑖 and 𝑤𝑜; and the bias vectors

𝑏𝑐 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑜)

Initialize ARIMA-OLSTM parameters and hyperparameters.

Initialize RMSProp parameters (𝛼, 𝛾, 𝜖).

ARIMA-OLSTM Hybrid Model Development

Prepare the time series data and do some preprocessing

Create an ARIMA model by applying the Box-Jenkins technique

Utilizing stationarity and ACF/PACF analysis, identify the type of

model.

Utilise AIC/BIC metrics to estimate parameters (Eq. (1)).

Use residual analysis to validate the model.

Obtain the ARIMA residual time series for the LSTM input.

Training LSTM Models with RMSProp

Set the cumulative gradient 𝐸𝑡 (Eq. (8)) to zero for each parameter.

Continue until convergence is reached.

Determine the objective function's gradient, 𝑔𝑡, using (Eq. (9))

Update the squared gradients' exponentially weighted average, or

𝐸𝑡 (Eq. (10))

Use the RMSProp update rule (Eq. (11)) to update the model's

parameters.

Rule for RMSProp Updates (Eq. (11))

def RMSProp_Update(𝜃𝑡, 𝑔𝑡, 𝐸𝑡)

𝐸𝑡 = 𝛾𝐸𝑡−1 + (1 − 𝛾)𝑔𝑡
2

𝜃𝑡−1 = 𝜃𝑡 − 𝛼
𝑔𝑡

√𝐸𝑡 − 𝜖

 return 𝜃𝑡, 𝐸𝑡

3.3 Planning phase

The analysis phase assesses the existing situation, and this

makes decisions about scaling to balance advantage and SLA

compliance. The hybrid POA, which integrates cooperative

foraging behaviors with optimization algorithms to direct

effective resource allocation and decision-making in

complicated situations, is used in this decision-making process.

3.3.1 Hybrid POA and lyrebird optimization algorithm
The huge pelican uses a big pouch in its gullet to catch and

eat targets. It also has a long beak. This species, which inhabits
groups of several hundred pelicans, enjoys socializing and
living in groups. Pelicans are large birds with a height of 1.06
to 1.83m, a wingspan of 0.5 to 3m, and a weight range of 2.75
to 15kg. They mainly eat fish, but also frogs, crustaceans, and

964

turtles when necessary. Pelicans cooperate in hunting, and
diving from heights of 10-20 m or lower. They use their wings
to corral fish to shallow waters for easier catching. Their
hunting process involves efficient water removal before
swallowing the fish. This behavior showcases their
intelligence and hunting skills. The strategy of the proposed
POA is inspired by the hunting strategy of pelicans.

Mathematical Model: POA is a population-based
algorithm with pelicans as population followers proposing
candidate solutions. Each member suggests values for
variables based on their hunt space position. Primarily,
followers are erratically prepared within problem bounds
using Eq. (12).

𝑝𝑖,𝑗 = 𝐿𝑗 + 𝑟 ∙ (𝑈𝑗 − 𝐿𝑗), i=1,2…, n, j=1, 2, …, m (12)

Value of variables, denoted by 𝑝𝑖,𝑗 in 𝑖𝑡ℎ candidate solution.

𝑛 represents the population size, 𝑚 is the number of variables,
𝑟 is a random number between 0 and 1, 𝐿𝑗 is the lower bound
of 𝑗𝑡ℎ variable, and 𝑈𝑗 is the upper bound of 𝑗𝑡ℎ variable. A
population matrix in Eq. (13), for pelicans in the POA, is used
to identify population members. Candidate solutions are
represented by rows, and problem variable values are
represented by columns.

𝑃 =

[

𝑃1

⋮
𝑃𝑖

⋮
𝑃𝑛]

𝑛×𝑚

=

[

𝑝1,1 ⋯ 𝑝1,𝑗 ⋯ 𝑝1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑝𝑖,1

⋮
𝑝𝑛,1

⋯
⋰
⋯

𝑝𝑖,𝑗 ⋯ 𝑝𝑖,𝑚

⋮ ⋱ ⋮
𝑝𝑛,𝑗 ⋯ 𝑝𝑛,𝑚]

𝑛×𝑚

 (13)

where, the pelican population matrix is 𝑃 and 𝑃𝑖 represents
𝑖𝑡ℎ pelican. One possible solution for the mentioned problem
is to make every person in the population of the proposed POA
a pelican. Consequently, each of the potential solutions can be
utilized to assess the objective function of the specified
problem. Eq. (14) uses a vector known as the objective
function vector to derive values obtained for the objective
function.

𝐹𝑛 =

[

𝐹𝑛1

⋮
𝐹𝑛𝑖

⋮
𝐹𝑛𝑛]

𝑛×𝑚

=

[

𝐹𝑛(𝑃1)

⋮
𝐹𝑛(𝑃𝑖)

⋮
𝐹𝑛(𝑃𝑛)]

𝑛×1

 (14)

where, the 𝑖𝑡ℎ candidate solution's objective function value is

𝐹𝑛𝑖 and 𝐹𝑛 is the objective function vector.

Phase 1: Approaching the target

The pelicans have to locate their prey and then move in its

direction during the first step. Modeling this pelican technique

enables search space scanning and the exploration capabilities

of the proposed POA in identifying different search space

locations. The fact that the prey's location is randomly

generated inside the search space is essential to POA. As a

result, POA has more exploration capacity while precisely

searching the problem-solving domain. Eq. (15) provides a

mathematical simulation of the above-mentioned thoughts and

the pelican's method of finding prey.

𝑝𝑖,𝑗
𝑝𝑒𝑙𝑖

= {
𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑟𝑒𝑦𝑗 − 𝑘 ∙ 𝑝𝑖,𝑗), 𝐹𝑛𝑦 < 𝐹𝑛𝑖;

𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑖,𝑗 − 𝑝𝑟𝑒𝑦𝑖), 𝑒𝑙𝑠𝑒,
 (15)

where, 𝑘 is an arbitrary number between one and two, Prey is

located in 𝑗𝑡ℎ dimension, 𝑝𝑖,𝑗
𝑝𝑒𝑙𝑖

 is the 𝑖𝑡ℎ pelican's new rank in

𝑗𝑡ℎ dimension based on phase 1, and 𝐹𝑛𝑦 is its objective

function value. A number, parameter 𝑘, has a random value of

either 1 or 2. For every member and iteration, a random

parameter is chosen. This parameter's value of two causes a

member to be further displaced and might yield them into

previously unexplored areas of search space. Consequently,

parameter 𝑘affects POA's ability to discover and precisely

scan search space. If the pelican's new position improves the

goal function's value, the new position is accepted. This kind

of updating, known as efficient updating, keeps the algorithm

from going to suboptimal places. Eq. (16) is used to model this

process.

𝑃𝑖 = {
𝑃𝑖

𝑝𝑜𝑠1 , 𝐹𝑛𝑖
𝑃𝑒𝑙𝑖1 < 𝐹𝑛𝑖;

𝑃𝑖 , 𝑒𝑙𝑠𝑒
 (16)

where, 𝑃𝑖
𝑝𝑜𝑠1 is the objective function value founded on phase

1 and 𝐹𝑛𝑖
𝑃𝑒𝑙𝑖1 is the new position of 𝑖𝑡ℎ pelican.

Phase 2: Flying above the water's surface

During the second phase, the pelicans expand their wings to

drive the fish higher and gather the food into their throat pouch

once they reach the water's surface. In the area they are

attacking, pelicans can catch more fish by using this approach.

The recommended POA converges to more opportune places

inside the hunting zone as a result of modeling this pelican

behavior. This strategy improves POA's local search capability

and exploitation possibilities. Mathematically speaking, the

method needs to consider the points surrounding the pelican

position to converge to an ideal solution. Eq. (17) provides a

mathematical simulation of pelican hunting behavior.

𝑝𝑖,𝑗
𝑝𝑜𝑠2 = 𝑝𝑖,𝑗 + 𝐻 ∙ (1 −

𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟

) ∙ (2 ∙ 𝑟 − 1) ∙ 𝑝𝑖,𝑗 (17)

where, 𝐻 is a constant equivalent to 0.2, 𝐻 ∙ (1 −
𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟
) is

the locality range of 𝑝𝑖,𝑗 , 𝑖𝑡𝑟 is the iteration clock, and the

maximum number of iterations is 𝑚𝑎𝑥𝑖𝑡𝑟 . Based on phase 2,

𝑝𝑖,𝑗
𝑝𝑜𝑠2 represents the new position of 𝑖𝑡ℎ pelican in 𝑗𝑡ℎ

dimension. The coefficient 𝐻 ∙ (1 −
𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟
) represents the

radius of the population members' local neighborhoods to

search near each other to converge on a better answer. This

coefficient can be effectively applied to the POA exploitation

power to approximate the optimal global solution. More space

is considered around each member in the initial iterations due

to the high value of this coefficient. The neighborhood radii of

each member decrease as the procedure replicates more, due

to a decrease in coefficient. For the POA to approach the

global (and even precisely global) optimal solutions given the

utilization notion, this allows us to scan the region encircling

each individual in the population using increasingly smaller

and more accurate steps. In certain situations, the coordination

of agents within the algorithm may result in overhead and

complexity, which could affect its scalability and efficiency.

This is particularly true for difficult or high-dimensional

optimization problems. Thus, the improvement for POA is

enhanced by the lyrebird optimization algorithm (LOA).

The population member's location in the search space is

altered throughout this stage of LOA by the lyrebird's modeled

strategy of hiding in its immediate safe region. The potential

application of LOA in local searches is demonstrated by the

lyrebird's positional changes as it moves in little steps to find

965

a decent hiding location and accurately checks its

surroundings. Using Eq. (18), each LOA member's new

position is found in the LOA design based on the lyrebird's

migration model toward the closest suitable place for

concealment. The related member's previous position is

replaced if, by Eq. (19), this new placement increases the value

of the objective function.

𝑥𝑖,𝑗
𝑝𝑜𝑠

= 𝑥𝑖,𝑗 + (1 − 2𝑟𝑖,𝑗).
𝑈𝑗 − 𝐿𝑗

𝑖𝑡𝑟
 (18)

𝑃𝑖 = {
𝑃𝑖

𝑝𝑜𝑠2 , 𝐹𝑛𝑖
𝑝𝑜𝑠2 < 𝐹𝑛𝑖

𝑃𝑖 , 𝑒𝑙𝑠𝑒,
 (19)

In this case, 𝑃𝑖
𝑝𝑜𝑠2 is a new position determined for 𝑖𝑡ℎ

lyrebird using suggested LOA's concealing method; 𝑃𝑖
𝑝𝑜𝑠2 is its

𝑗𝑡ℎ dimension; 𝐹𝑛𝑖
𝑝𝑜𝑠2 is the value of its objective function;

𝑟𝑖,𝑗 are random values from interval [0, 1]; and the iteration

counter is 𝑖𝑡𝑟.

Algorithm 2: Pseudocode for H-PLA

Initialize Parameter 𝑃 →variable, 𝐹𝑛 → Function

Phase 1: Approaching the target

def phase_1_pelican_approach (𝑃, 𝐹𝑛, 𝑝𝑟𝑒𝑦, 𝑚𝑎𝑥𝑖𝑡𝑟)

 for 𝑖 in range (𝑚𝑎𝑥𝑖𝑡𝑟)

 for pelican in 𝑝𝑒𝑙𝑖
 𝑟=random. uniform (0, 1)

 𝑘=random. choice ([1, 2])

 for 𝑗 in range(len(pelican)):

 if 𝐹𝑛𝑦 < 𝐹𝑛𝑖

𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑟𝑒𝑦𝑗 − 𝑘 ∙ 𝑝𝑖,𝑗)

 else

𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑖,𝑗 − 𝑝𝑟𝑒𝑦𝑖)

 return 𝑃

Phase 2: Flying above the water's surface

def phase_2_pelican_flying (𝑃, 𝑚𝑎𝑥𝑖𝑡𝑟):

𝐻=0.2

 for 𝑖 in range (𝑚𝑎𝑥𝑖𝑡𝑟):

 for pelican in 𝑃

𝑟=random. uniform (0, 1)

 for 𝑗 in range(len(pelican))

𝑝𝑖,𝑗
𝑝𝑜𝑠2 = 𝑝𝑖,𝑗 + 𝐻 ∙ (1 −

𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟
) ∙ (2 ∙ 𝑟 − 1) ∙ 𝑝𝑖,𝑗

𝑃𝑖 = {
𝑃𝑖

𝑝𝑜𝑠2 , 𝐹𝑛𝑖
𝑝𝑜𝑠2 < 𝐹𝑛𝑖

𝑃𝑖 , 𝑒𝑙𝑠𝑒,

return 𝑃

Hybrid Pelican Optimization Algorithm (POA)

def hybrid_POA(𝑃 , 𝐹𝑛 , 𝑝𝑟𝑒𝑦 , 𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 1 ,

𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 2)

𝑃𝑝ℎ𝑎𝑠𝑒1 = 𝑃𝑝ℎ𝑎𝑠𝑒1
𝑝𝑒𝑙𝑖

 (𝑃, 𝐹𝑛, 𝑝𝑟𝑒𝑦, 𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 1)

𝑃𝑝ℎ𝑎𝑠𝑒2 = 𝑃𝑝ℎ𝑎𝑠𝑒2
𝑝𝑒𝑙𝑖

 (𝑃, 𝐹𝑛, 𝑝𝑟𝑒𝑦, 𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 2)

return 𝑃𝑝ℎ𝑎𝑠𝑒2

SLA compliance and workload for the VM will be balanced,

and resource scaling will play a major role in this process

during the planning phase. The POA, which draws inspiration

from the cooperative hunting behaviors of pelicans, will be

employed in this phase. Before evaluating each configuration

in terms of resource utilization and reaction time, an objective

function was used to set the CPU, memory, and storage

configurations for each virtual machine at random within the

constraints of the task. Pelicans (VM configurations), fly over

the search space in the first phase and adjust their placements

to achieve the best possible resource utilization. The new

configuration is approved if it has a better objective function.

The algorithm's second step fine-tunes the configurations by

taking the local search space into account and making minor

tweaks to increase efficiency. To guarantee that the system

operates close to optimal conditions, the LOA further fine-

tunes the setups. In cloud systems, this will result in efficient

resource allocation and SLA compliance.

3.4 Execution phase

The Execution Phase is based on the planner's

interpretations, which are critical to the system's subsequent

stages. There comes a point when a definitive choice is made

on whether to scale up, scale down, or maintain the status of

things, followed by a formal request to the CP for approval.

The default executor will select computers at random from the

resource pool available for execution during scale-up or scale-

down. As part of this phase's validation, a detailed

examination will be performed to ensure that the limit of on-

demand virtual machines is not exceeded before making a

scale-up decision. If the limit is exceeded, the request for

scale-up will be rejected, this is critical in adhering to set limits.

Furthermore, once the on-demand has reached zero, all

subsequent scaling requests will be deemed unnecessary and

will not be fulfilled. In contrast, to execute dynamic resource

management in the cloud, the algorithm is implemented in this

phase using the techniques outlined below.

It uses algorithms such as the POA to make intelligent

resource allocation decisions. The POA will balance the

exploration and exploitation phases to obtain the best virtual

machines and their utilization in a way that allows for optimal

resource allocation while respecting the limits and constraints

of the cloud environment, avoiding unwanted scaling, and

ensuring system efficiency.

3.5 Knowledge phase

This phase is centered on the knowledge capture,

preservation, and application of lessons learned during the

process loop to individuals. The preceding stage's

responsibilities included collecting raw data during

monitoring and completing evaluations. This process may

yield findings, patterns, best practices, or, in some cases,

identified errors. This knowledge must be organized in a way

that makes it easily accessible to the people. This data can be

stored on a collaborative platform, in project management

tools, or in a centralized knowledge management system. The

knowledge base should be searchable and well-structured,

with efficient retrieval achieved by usable naming conventions,

tagging, and categorization.

In a CC setting, this entails applying algorithms to the data

available. Some of the primary functions are performed by

Hybrid Pelican Optimisation Algorithm and Long Short-Term

Memory networks. POA, for example, can help with resource

allocation optimization because pelicans prioritize seeking

new resources over exploiting established ones. Instead,

LSTM networks aid in data processing and sequential

prediction, with the vanishing gradient issue well addressed by

their long-term memory capability.

At this stage, more collaboration is needed to help

algorithms develop strength in decision support and overall

efficacy in the cloud environment. These allow it to learn from

previous data, adapt to changing conditions over time, and

966

make the best use of resources to guarantee the system

performs optimally, all while adhering to service level

agreements.

4. RESULT AND DISCUSSION

The configuration and simulation settings which include a

range of scenarios meant to assess and analyse the outcomes

are explained in the sections that follow. The suggested

approach is compared against state-of-the-art methods such as

RHAS [15], GRASP [18], and ADA-RP [19] and proposed.

Evaluation metrics including Root-Mean-Square Error

(RMSE) and Mean-Absolute-Percentage-Error (MAPE) also

evaluated the CPU utilization and response time.

The suggested approach has been applied to the usage of

Python 3.10 on the Google Colab coding platform and

simulated on an Intel Core i3 Processor strolling Windows 10

with 8 GB of RAM. The configuration and simulation settings

which consist of more than a few scenarios supposed to assess

and analyse the results are defined in the sections that follow.

The cautioned approach is compared to new techniques

consisting of RHAS [15], GRASP [18], and ADA-RP [19]

proposed. Evaluation metrics consisting of RMSE and MAPE

additionally evaluated the CPU utilization and response time

4.1 Performance metrics

Evaluation metrics along with MAPE and RMSE

additionally evaluated the CPU utilization and response time.

• RMSE: The RMSE between the discovered and actual

values is the size of the variation between the 2.

𝑅𝑀𝑆𝐸 = √
∑ ‖𝑦(𝑖) − 𝑦̂(𝑖)‖2𝑁

𝑖=1

𝑁
 (20)

where, 𝑖 is the variable, 𝑁 denotes the non-statistics lacking

point, 𝑦(𝑖) is the actual remark time series, and 𝑦̂(𝑖) is the

envisioned time series.

• MAPE: A statistical forecasting technique's prediction

accuracy is gauged by way of the MAPE.

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑒(𝑖) − 𝑦𝑎(𝑖)

𝑦𝑎(𝑖)
| ∗ 100

𝑛

𝑖=1

 (21)

where, 𝑦𝑒(𝑖) is the real cost, 𝑦𝑎(𝑖) is the forecast value.

4.2 Performance analysis

It provides an overall performance analysis that sets the

suggested model against current ones in terms of RMSE,

MAPE, CPU utilization, and response time.

Table 1 is a comparison of the performance of four models

(RHAS, GRASP, ADA-RP, and Proposed) with different VM

machine configurations. With an increase in VM resources

from 10 to 50, all models improve in RMSE, MAPE, and

response time. For RHAS, RMSE goes down from 0.2738 to

0.2498, MAPE from 0.2914 to 0.2575, and prediction

accuracy improves from 97.26% to 97.53%. GRASP indicates

RMSE from 0.3281 to 0.2818, MAPE from 0.3024 to 0.2710,

and prediction accuracy from 96.67% to 96.8%. The RMSE of

ADA-RP reduces from 0.3016 to 0.2815, MAPE from 0.2678

to 0.2254, and prediction accuracy rises from 96.74% to

96.85%. The Proposed Model performs better than all the rest,

with RMSE reducing from 0.2078 to 0.1513, MAPE from

0.1816 to 0.1556, and prediction accuracy increasing from

98.05% to 98.45%.

Figure 2 shows the RMSE values, which show accurate

predictions, varied from 0.273874 to 0.251098. The MAPE

values demonstrated remarkable prediction accuracy, ranging

from 0.181694 to 0.291473, with the lowest value at 40 virtual

machines. With 40 virtual machines, the CPU utilization

reached a peak of 9.35% as machine size rose. The trade-off

between accuracy and reaction time in auto-scaling systems is

highlighted by the fact that response times increased with VMs,

taking 148.54 seconds with 50VMs.

Figure 3 shows MAPE values exhibit a range of 0.27104 to

0.30245, indicating that 50 virtual machines yielded the best

results. As the number of virtual machines rises, utilization

numbers climb from 21.57% to 108.21%, demonstrating a

trade-off between accuracy and resource utilization. In general,

more virtual machines increase accuracy but also use more

resources.

Table 1. Overall performance analysis based on existing models

Model VM Machine RMSE MAPE Utilization Response Time Prediction Accuracy (%)

RHAS [15]

10 0.2738 0.2914 0.0188 20.45 97.26

20 0.2641 0.2574 0.021966 41.38 97.36

30 0.2557 0.2334 0.020516 78.34 97.44

40 0.2510 0.1816 0.0935 124.41 97.52

50 0.2498 0.2575 0.01256 148.54 97.53

GRASP [18]

10 0.3281 0.3024 0.02424 21.57 96.67

20 0.3110 0.2976 0.01474 42.42 96.69

30 0.3004 0.2916 0.02096 75.28 96.7

40 0.2981 0.2875 0.04096 98.15 96.72

50 0.2818 0.2710 0.06096 108.21 96.8

ADA-RP [19]

10 0.3016 0.2678 0.03542 19.42 96.74

20 0.2990 0.2543 0.056487 38.52 96.75

30 0.2904 0.2447 0.02465 61.42 96.8

40 0.2892 0.2389 0.025463 85.47 96.82

50 0.2815 0.2254 0.036214 98.24 96.85

Proposed

10 0.2078 0.1816 0.003376 12.41 98.05

20 0.1988 0.1743 0.004606 24.23 98.11

30 0.1853 0.1712 0.0012462 30.52 98.21

40 0.1626 0.1654 0.0010335 41.06 98.34

50 0.1513 0.1556 0.009344 50.36 98.45

967

Figure 2. Graphical representation of the RMSE analysis

Figure 3. Graphical representation of the MAPE analysis

Figure 4 shows the algorithm's accuracy in estimating

workload was indicated by the utilization time, which varied

from 0.281581 to 0.301633. The algorithm's performance was

illustrated in terms of percentage error by MAPE values,

which varied from 0.22545 to 0.26789. The utilization

numbers, which show the effective utilization of resources,

ranged from 0.02465 to 0.056487. The response time ranged

from 19.42 to 98.24, demonstrating the adaptability of the

algorithm to varying demand scenarios.

Figure 4. Graphical representation of the resource utilization

analysis

In comparison to the RHAS model, Figure 5 demonstrates

the suggested approach shows considerable gains in workload

prediction accuracy across a range of virtual machine

configurations. It is regularly found that the suggested model

produces better accurate workload projections. The MAPE

values, which range from 0.174367 to 0.009344, likewise

show excellent precision. Notably, the MAPE stays low at

0.0010335, indicating small inaccuracy in percentage terms,

while the RMSE lowers to 0.162614 for 40 virtual machines,

indicating precise predictions. With a CPU utilization range

from 0.003376 to 0.009344, it is evident that resources are

being used efficiently. With 10VMs, reaction times grow

progressively to 50.36 seconds for 50 VMs, indicating the

anticipated trade-off between prediction accuracy and system

response time in auto-scaling systems. Figure 6 shows the

visual representation of the performance analysis for the

prediction accuracy results.

Figure 5. Graphical representation of the response time

analysis

Figure 6. Graphical representation of the prediction accuracy

analysis

The ANOVA test findings demonstrate that RMSE and

MAPE differ significantly between groups, with incredibly

low p-values (6.47E-09 and 4.66E-06, respectively) as shown

in Table 2 and Figure 7. This suggests that the models or

conditions assessed have a considerable impact on these

measurements. Instead, there are no discernible variations in

Response Time (p-value=2.12E-01) or Utilization (p-

value=7.97E-02), indicating that these variables do not

significantly differ between the groups and ANOVA

distribution plot is also shown in the Figure 8.

Table 2. Performance analysis for the ANOVA test

Metric F-Statistic P-Value

RMSE 59.82962 6.47E-09

MAPE 23.10992 4.66E-06

Utilization 2.71018 7.97E-02

Response Time 1.675569 2.12E-01

968

(a)

(b)

(c)

(d)

Figure 7. Graphical representation of the boxplot

comparison. (a) MAPE, (b) Response time, (c) RMSE, and

(d) Utilization

Figure 8. ANOVA test results for RMSE

5. CONCLUSION

For auto-scaling in web applications, a robust hybrid

workload prediction model is developed using a

comprehensive architecture that comprises phases for

monitoring, analysis, planning, execution, and knowledge.

With this approach, cloud computing companies can increase

service sustainability, reduce operational costs, and better

manage infrastructure resources. Time series forecasting,

hybrid analysis techniques, and optimization algorithms such

as H-PLA and ARIMA-OLSTM enable accurate workload

prediction and dynamic auto-scaling decisions. This helps to

maximize resource utilization, promote scalability, and

improve compliance with SLAs while considering profit

trade-offs. The assessment measures provide a robust

validation framework for the prediction model's accuracy and

the effectiveness of auto-scaling choices. The analysis of 50

node findings showed effective resource management, with a

MAPE of 0.151318, RMSE of 0.155692, utilization time of

0.009344, and reaction time of 50.36 units. Future research

will examine the application of the three novel models in a

range of cloud contexts to assess the models' efficacy and

presentation. Future studies might use Transformer-based

models to identify temporal patterns more accurately, extend

the model to edge-cloud hybrid systems, use reinforcement

learning to make decisions in real-time, and evaluate

performance across large, diverse datasets and workload

profiles.

REFERENCES

[1] Dass, A.K., Parida, A., Panigrahi, S., Moharana, S.K.

(2023). Virtualization in cloud computing: Transforming

infrastructure and enhancing efficiency. Research and

Applications: Emerging Technologies, 5(3): 26-40.

https://doi.org/10.5281/zenodo.10300506

[2] Dittakavi, R.S.S. (2021). An extensive exploration of

techniques for resource and cost management in

contemporary cloud computing environments. Applied

Research in Artificial Intelligence and Cloud Computing,

4(1): 45-61.

[3] Park, J., Jeong, J. (2023). An autoscaling system based

on predicting the demand for resources and responding

to failure in forecasting. Sensors, 23(23): 9436.

https://doi.org/10.3390/s23239436

[4] Chouliaras, S. (2023). Adaptive resource provisioning in

969

cloud computing environments. Doctoral Dissertation,

Birkbeck, University of London.

https://doi.org/10.18743/PUB.00051213

[5] Santos, J., Wauters, T., Volckaert, B., De Turck, F.

(2021). Towards low-Latency service delivery in a

continuum of virtual resources: State-of-the-art and

research directions. IEEE Communications Surveys &

Tutorials, 23(4): 2557-2589.

https://doi.org/10.1109/COMST.2021.3095358

[6] Tärneberg, W., Skarin, P. (2023). Constructive

dissonance in the cloud: Adaptive out-of-phase

scheduling for periodic tasks. In 2023 IEEE 12th

International Conference on Cloud Networking

(CloudNet), Hoboken, NJ, USA, pp. 103-111.

https://doi.org/10.1109/CloudNet59005.2023.10490059

[7] Taha, M.B., Sanjalawe, Y., Al-Daraiseh, A., Fraihat, S.,

Al-E’mari, S.R. (2024). Proactive auto-Scaling for

service function chains in cloud computing based on

deep learning. IEEE Access, 12: 38575-38593.

https://doi.org/10.1109/ACCESS.2024.3375772

[8] Katal, A., Sethi, V., Lamba, S. (2021). Virtual machine

scaling in autonomic cloud resource management.

Autonomic Computing in Cloud Resource Management

in Industry 4.0. Springer, Cham, 301-323.

https://doi.org/10.1007/978-3-030-71756-8_17

[9] Al-Sayed, M.M. (2022). Workload time series

cumulative prediction mechanism for cloud resources

using neural machine translation technique. Journal of

Grid Computing, 20(2): 16.

https://doi.org/10.1007/s10723-022-09607-0

[10] Alqahtani, D. (2023). Leveraging sparse auto-Encoding

and dynamic learning rate for efficient cloud workloads

prediction. IEEE Access, 11: 64586-64599.

https://doi.org/10.1109/ACCESS.2023.3289884

[11] Pulle, R., Anand, G., Kumar, S. (2023). Monitoring

performance computing environments and autoscaling

using AI. International Research Journal of

Modernization in Engineering Technology and Science,

5(5): 8934-8942.

https://www.doi.org/10.56726/IRJMETS40883

[12] SILVA, P.R.P.D. (2019). A hybrid strategy for auto-

Scaling of VMs: An approach based on time series and

thresholds. Master's Thesis, Universidade Federal de

Pernambuco.

[13] Chatzipanagiotou, D. (2024). Prediction-Based resource

allocation in a rolling-Horizon framework considering

activity prioritization.

[14] CODE, A.I.A. (2023) Dynamic autonomic systems:

Augmenting infrastructure as code with machine

learning for proactive and predictive scaling in complex

it environments. Journal ID, 9339: 1263.

[15] Singh, P., Kaur, A., Gupta, P., Gill, S.S., Jyoti, K. (2021).

RHAS: Robust hybrid auto-Scaling for web applications

in cloud computing. Cluster Computing, 24(2): 717-737.

https://doi.org/10.1007/s10586-020-03148-5

[16] Rampérez, V., Soriano, J., Lizcano, D., Lara, J.A. (2021).

FLAS: A combination of proactive and reactive auto-

Scaling architecture for distributed services. Future

Generation Computer Systems, 118: 56-72.

https://doi.org/10.1016/j.future.2020.12.025

[17] Al Qassem, L.M., Stouraitis, T., Damiani, E., Elfadel,

I.A.M. (2023). Proactive random-forest autoscaler for

microservice resource allocation. IEEE Access, 11:

2570-2585.

https://doi.org/10.1109/ACCESS.2023.3234021

[18] Fé, I., Matos, R., Dantas, J., Melo, C., Nguyen, T.A., Min,

D., Choi, E., Silva, F.A., Maciel, P.R.M. (2022).

Performance-cost trade-off in auto-scaling mechanisms

for cloud computing. Sensors, 22(3): 1221.

https://doi.org/10.3390/s22031221

[19] Chouliaras, S., Sotiriadis, S. (2023). An adaptive auto-

scaling framework for cloud resource provisioning.

Future Generation Computer Systems, 148: 173-183.

https://doi.org/10.1016/j.future.2023.05.017

[20] ZargarAzad, M., Ashtiani, M. (2023). An auto-Scaling

approach for microservices in cloud computing

environments. Journal of Grid Computing, 21(4): 73.

https://doi.org/10.1007/s10723-023-09713-7

[21] Quattrocchi, G., Incerto, E., Pinciroli, R., Trubiani, C.,

Baresi, L. (2024). Autoscaling solutions for cloud

applications under dynamic workloads. IEEE

Transactions on Services Computing, 17(3): 804-820.

https://doi.org/10.1109/TSC.2024.3354062

[22] Dantas, J., Khazaei, H., Litoiu, M. (2021). Bias

autoscaler: Leveraging burstable instances for cost-

effective autoscaling on cloud systems. In Proceedings of

the Seventh International Workshop on Serverless

Computing (WoSC7) 2021, pp. 9-16.

https://doi.org/10.1145/3493651.3493667

[23] Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., Sun, Z.

(2021). Well production forecasting based on ARIMA-

LSTM model considering manual operations. Energy,

220: 119708.

https://doi.org/10.1016/j.energy.2020.119708

970

