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Cloud computing's dynamic characteristics require precise prediction of workload and 

effective auto-scaling to optimize resource usage in Infrastructure-as-a-Service (IaaS) 

settings. To maximize auto-scaling, this research presents a robust hybrid workload 

prediction model that uses a hybrid pelican optimization algorithm (POA) for intelligent 

scaling decisions and Autoregressive Integrated Moving Average-Long Short-Term 

Memory (ARIMA-OLSTM) for accurate workload forecasting. ARIMA-OLSTM 

combines deep learning techniques with statistical methods. LSTM (optimized by 

RMSProp) learns non-linear, sequential information from ARIMA's residuals, while 

ARIMA represents the linear trends within historical workload sequences. The prediction 

accuracy is significantly increased by this two-step process. Resource scaling decisions are 

ideally determined during the planning stage by a Hybrid POA that is inspired by pelican 

hunting techniques and further improved using Lyrebird Optimization. Through constantly 

changing virtual machine parameters, it is strategically beneficial to find a balance between 

cost-effectiveness, system responsiveness, and SLA fulfillment. Extensive tests on realistic 

cloud workloads demonstrate that the suggested model outperforms existing models such 

as RHAS, GRASP, and ADA-RP, minimizing RMSE to 0.1513 and MAPE to 0.1557. 

Furthermore, compared to traditional methods, it maintains 50% less resource use and 

achieves a 70% reduction in reaction time, confirming the model's effectiveness, scalability, 

and prediction accuracy. 
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1. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds, which provide 

scalable and flexible resources on demand, have modified the 

computing environment [1]. The growing dependence of 

companies on cloud infrastructures to guide their programs 

highlights the important need for powerful useful resource 

control structures. The largest one is Auto Scaling, which 

dynamically modifies the assets allocated in reaction to 

varying workload needs [2, 3]. The unpredictable nature of 

workloads makes it tough to obtain the most excellent Auto 

Scaling in IaaS clouds [4]. A hybrid workload prediction 

model that integrates proactive and reactive scaling methods 

is obtainable as a solution to this problem. By enhancing the 

effectiveness and responsiveness of auto-scaling methods, this 

model seeks to maximize aid utilization and minimize 

expenses. 

Resource control in dynamic computing environments is 

being revolutionized through the hybrid workload prediction 

model for Auto Scaling in IaaS clouds, which creatively 

combines proactive and reactive scaling methodologies [5]. 

Proactive scaling allows for seamless adaptations to 

anticipated versions and maximizes aid efficiency. It is 

characterized by way of preemptive useful resource 

modifications based totally on predicted workload styles. 

Instead, reactive scaling ensures that overall performance isn't 

always disrupted by unplanned spikes or declines in demand 

by way of quickly adapting to unanticipated workload 

fluctuations in real time [6, 7]. The hybrid paradigm leverages 

the benefits of both proactive foresight and reactive model 

with the aid of skillfully fusing two techniques. The Auto 

Scaling system is enabled by this synergistic integration to 

anticipate changes in workload and modify efficiently, making 

sure the highest quality performance and aid allocation below 

a variety of operating situations [8]. The hybrid model creates 

a brand-new benchmark for agility and performance in cloud 

aid control by combining real-time responsiveness and 

predictive analytics dynamically. This permits organizations 

to navigate through the complexity of converting needs with 

unparalleled precision and resilience 

The dynamic and unpredictable nature of cloud workloads 

won't be accurately captured via conventional workload 

prediction models, which frequently depend best on historic 

data or statistical forecasting strategies [9, 10]. Instead, the 

recommended hybrid model improves workload estimates' 

accuracy and dependability by combining the advantages of 

time-series analysis, predictive analytics, and machine-

learning techniques. The hybrid model's ability to continually 

analyze historical data and adjust to changing workload 

patterns can result in more precise estimations that can be 
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obtained with greater confidence. Furthermore, the system can 

fast start reactive scaling sports in reaction to unexpected 

workload fluctuations due to the fact real-time monitoring and 

feedback mechanisms are covered [11]. This ensures the most 

efficient resource provisioning and overall performance 

balance 

Therefore, an innovative step in cloud resource 

management has been made with the creation of a hybrid 

workload prediction model for Auto Scaling in IaaS clouds. 

This model provides a complete method to the issues presented 

by using workload variability and unpredictability by 

smoothly merging proactive foresight and reactive flexibility 

[12, 13]. In dynamic computing environments, cloud 

infrastructures may additionally allocate resources 

efficaciously, fulfill overall performance desires, and optimize 

cost efficiency because of the hybrid version's dynamic 

interplay of predictive analytics and actual-time 

responsiveness. Because of its adaptive studying abilities, 

workload forecasts can be constantly advanced, ensuing in 

particular and well-timed modifications to fulfill changing 

wishes [14]. In the continuously changing world of cloud 

computing, the hybrid workload prediction model, as a 

lighthouse of efficiency and innovation, attendants in a brand-

new generation of efficient useful resource usage and 

operational resilience 

The major contributions of the paper are as follows: 

• The hybrid technique of the model, which combines the 

hybrid POA and the hybrid ARIMA with an optimized 

long short-term module (ARIMA-OLSTM), enables to 

maximization of useful resource utilization in cloud 

structures. Through precise forecasting of incoming 

demand and adaptive resource sizing, it ensures 

effective distribution of processing electricity and 

storage ability, resulting in monetary financial savings 

and more desirable provider durability 

• The Monitoring, Analysis, Planning, Execution, and 

Knowledge phases of the version's framework facilitate 

better decision-making for IaaS carriers. It makes it 

feasible to balance commercial enterprise issues with 

Service Level Agreements (SLA) compliance using 

making well-timed and properly informed decisions 

about scaling up or down. This complements cloud-

primarily based apps' standard overall performance and 

boosts user happiness 

• The model shows the use of Mean-Absolute-

Percentage-Error (MAPE) and Root-Mean-Square-

Error (RMSE) to evaluate how correct workload 

estimates are. The version also evaluates reaction time 

and CPU utilization, presenting a thorough evaluation 

framework to affirm the efficacy of the prediction 

model and automobile-scaling alternatives in actual 

cloud environments. 

The following sections are organized as follows: Section 2 

explores relevant research and literature reviews, Section 3 

introduces the proposed framework, Section 4 provides a 

detailed analysis of the observed results and discussions, and 

Section 5 offers the final assessment of this study. 

 

 

2. LITERATURE REVIEW 

 

This section reviewed some of the most recent research 

studies on reactive, and proactive-based workload prediction 

in IaaS CC settings. 

A Robust Hybrid Auto-Scaler (RHAS) was proposed in 

2021 for cloud-based web applications, utilizing threshold-

based criteria, time series forecasting, and proactive/reactive 

auto-scaling strategies to dynamically allocate processing and 

storage resources [15]. The framework contains functions to 

safeguard user requests and responses to deal with safety 

concerns. 

RHAS proved its effectiveness in maximizing performance 

and resource utilization by demonstrating a 14% cost 

reduction, notable improvements in response time, service 

level agreement (SLA) compliance, and consistent CPU 

utilization through experimentation with real-time web 

application workloads from NASA and ClarkNet. 

FLAS is an auto-scaler for distributed systems that 

seamlessly integrates proactive and reactive scaling 

techniques [16]. To optimize scaling actions, FLAS leverages 

a reactive contingency system and predictive models for high-

level metrics trends. When FLAS was implemented for a 

content-based publish-subscribe middleware, it was capable of 

minimizing instrumentation and obtaining performance 

necessities greater than 99% of the time, all while being 

adaptable to different programs. 

An innovative proactive autoscaling technique was offered 

in 2023 [17] to improve the Quality of Service (QoS) of 

microservice installations in cloud environments. The method 

optimizes useful resource allocation via the use of a two-state 

machine-learning Random Forest (RF) version to estimate 

future CPU and memory usage values. The technique 

confirmed awesome discounts in end-to-end latency and 

resource consumption through validation with actual global 

workloads and deployment on a microservice prototype 

platform. 

An approach for simulating auto-scaling mechanisms in 

cloud infrastructures utilizing stochastic Petri nets (SPN) and 

an adaptive search metaheuristic (GRASP) has been proposed 

[18]. The purpose of the technique is to locate the first-rate 

configurations to decrease costs and achieve service level 

agreements (SLAs), permitting higher operational 

management of cloud offerings. 

An adaptive auto-scaling structure referred to as ADA-RP 

was presented in 2023 [19] to enhance useful resource 

provisioning in cloud computing environments. ADA-RP 

lowers prices and improves application overall performance 

by using dynamically automobile-scaling cloud resources in 

actual time based on expected workload calls using making 

use of beyond-time-series statistics. 

A computational method for assessing the workload of 

microservices in cloud-native web programs was created in 

2023 [20]. The method minimized scaling techniques and 

progressed useful resource allocation efficiency while 

upholding Quality of Service (QoS) requirements via a multi-

criteria selection-making mechanism. 

The research [21] performed a comparative study in 2024 

between new methods based on control theory and queuing 

theory and autoscaling solutions provided by vast cloud 

providers. To shed mild on the effectiveness of diverse 

autoscaling strategies, the examine set out to evaluate their 

overall performance in terms of resource utilization 

optimization and violations of carrier-level agreements 

(SLAs). 

BIAS Autoscaler introduces a novel approach leveraging 

burstable instances alongside standard instances for efficient 

queuing management in cloud-based microservice workloads 

[22]. After accomplishing an intensive trial on the Google 
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Cloud Platform, BIAS Autoscaler proved that it may save 

expenses by up to 25% and increase useful resource 

performance using 42% when compared to the usage of 

conventional instances solely.  

 

 

3. PROPOSED METHODOLOGY 

 

The proposed Robust Hybrid Workload Prediction Model 

aims to address the difficult conditions of workload prediction 

in cloud computing, particularly for autoscaling in web 

programs. By leveraging previous workload strains, this 

model forecasts future workload on physical machines, 

enabling more efficient resource allocation and capacity 

planning. The key is to accurately estimate the given attribute 

for horizontal scaling, especially by taking into account the 

expected workload. Through this technique, IaaS providers 

can enhance company sustainability, reduce operational 

expenses, and optimize resource utilization inside cloud data 

centers. Figure 1 suggests the overall architecture of the 

proposed technique. 

 

 
 

Figure 1. Overall architecture of the proposed methodology 

 

3.1 Monitoring phase 

 

Initially, this phase collects data often approximately the 

software and infrastructure stage parameters. The monitoring 

module records the request arrival rate, capacity available, and 

capacity utilized the use of the manipulated domain. 

Request Arrival Rate: It is the pace at which tasks or 

requests are directed to the cloud. Monitoring this metric 

offers insights into workload intensity and demand 

fluctuations, supporting optimizing resource allocation and 

understanding performance dynamics inside cloud 

environments 

Capacity Available: It denotes the entire resources like 

virtual machines, storage, and community bandwidth ready for 

deployment in the cloud infrastructure. Monitoring this metric 

gives visibility into resource availability, guiding decisions on 

scaling, and allocation, and making sure the maximum 

beneficial performance and responsiveness to various 

workloads in cloud environments. 

Capacity Utilized: Capacity Utilized inside the usage of the 

manipulated area refers to the degree to which resources 

within the cloud infrastructure are currently being used. The 

control domain encompasses the management and monitoring 

mechanisms that oversee resource allocation and utilization. 

By monitoring capability utilization via this domain, cloud 

administrators can ensure efficient resource management, 

identify capability bottlenecks, and make knowledgeable 

selections regarding scaling, load balancing, and optimization 

techniques to maintain system performance and stability. 

 

3.2 Analysis phase 

 
In this phase, a hybrid method combining reactive and 

proactive strategies is delivered. Specifically, the ARIMA-

OLSTM technique is hired. Additionally, reading CPU 

utilization and reaction time, it forecasts the high workload of 

one minute for the next scaling period. This integrated 

approach complements workload forecasting accuracy and 

allows powerful useful resource allocation in real-time cloud 

environments 

One of the most broadly used linear regression strategies for 

stationary time collection forecasting is the Autoregressive 

integrated shifting common version (ARIMA) model. The 

forecasting model's structure is represented through the 

parameters 𝑎, 𝑑,  and 𝑚 , which stand for auto-regression 

𝐴𝑢𝑡𝑜𝑟𝑒𝑔(𝑎), moving average 𝑀𝑜𝑣𝑎𝑣𝑔  (𝑚), and differencing 

degree 𝑑. The version is expressed as ARIMA (𝑎,𝑚, 𝑑). The 

following is a description of the scientific formulation for 

ARIMA (𝑎,𝑚, 𝑑) in Eq. (1) 

 

(1 − ∑𝜑𝑖

𝑎

𝑖=1

𝑙𝑖) (1 − 𝑙)𝑑𝑥𝑡 = (1 + ∑ 𝜃𝑖

𝑚

𝑖=1

𝑙𝑖) 𝜀𝑡 (1) 

 

where, 𝜀𝑡  are error terms, 𝜑𝑖  are the model's autoregressive 

part's [23] parameters, and 𝜃𝑖  are the 𝑀𝑜𝑣𝑎𝑣𝑔  part's 

parameters. 𝑙 stands for the lag operator in this equation. 

For accurate time series forecasting, Box and Jenkins 

proposed a three-step method for building an ARIMA model. 

Model identification is the first phase, which includes using 

differencing to make the series stable and analyzing ACF and 

PACF plots to determine ARIMA terms. The second phase, 

parameter estimation, finds the optimal model order by 

applying criteria like AIC and BIC. Diagnostic checking is the 

final phase, in which residuals are examined to verify the 

sufficiency of the model. This methodical technique strikes a 

balance between model accuracy and simplicity to deliver 

effective workload prediction in cloud systems. The LSTM 

model then receives the ARIMA residuals as input. 

LSTM is a type of recurrent neural network (RNN) that 

works well with sequential data, like time series, since it can 

retain input memory over time. With their huge memory 

capacity, LSTMs combat the vanishing gradient problem, 

which hinders learning over lengthy sequences, which 

typically affects standard RNNs. They can learn from stimuli 

that are widely apart and develop long-term dependence. 

Three crucial gates that regulate data flow in a network forget, 

input, and output are used by LSTMs to do this. 
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Forget gate: Controls conditionally what data to remove 

from the block, from which the following is derived in Eq. (2). 

 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

 

Input gate: Selects values to be inserted conditionally to 

update the memory state. 

 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

 

Output gate: Determine output conditionally using the 

input and block memory. 

 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

 

These three analog gates operate in the 0–1 range and are 

based on the sigmoid function. To drive the values to be 

between -1 and 1, a tanh function is used to calculate the input 

features at every time t using input 𝑥𝑡, prior hidden state ℎ𝑡−1 

as follows in Eq. (5) 

 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 

 

The adjusted input characteristics along with the partial 

decay of the previous memory cell contribute to the 

modification of the memory cell, resulting in Eq. (6). 

 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐̃𝑡 (6) 

 

In the end, memory 𝑐𝑡 and output gate 𝑜𝑡  compute the 

hidden output state ℎ. 

 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ (𝑐𝑡) (7) 

 

In Eqs. (2)-(7), matrices weight matrices are 𝑤𝑐 , 𝑤𝑓, 𝑤𝑖  and 

𝑤𝑜; the bias vectors are 𝑏𝑐 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑜. 

Using RMSProp to optimize the LSTM model significantly 

boosts performance by dynamically adjusting each parameter's 

learning rate using the moving average of squared gradients. 

The complex architecture of LSTM makes this technique very 

helpful since it allows precise parameter adjustment, prevents 

vanishing gradients, and offers reliable, effective training on 

sequential data. The RMSProp method updates the weight 

matrices 𝑤𝑐 , 𝑤𝑓, 𝑤𝑖  and 𝑤𝑜, and bias vectors 𝑏𝑐 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑜. 

The Adaptive Gradient technique serves as the foundation for 

RMSProp, a learning rate adaptation technique that reduces 

the computational expense of neural network training. It works 

particularly well at resolving vanishing gradients in RNNs, 

notably LSTMs. In deep or complex LSTM structures, 

disappearing or exploding gradients can still occur. 

Techniques like gradient clipping, learning rate adjustment, 

decay adjustment, and appropriate selection of batch sizes are 

used to combat this. Regularization methods that increase 

generalization and avoid overfitting include L2 regularization 

and dropout. Better performance on sequential tasks and better 

control of gradient difficulties are guaranteed by proper 

hyperparameter tuning of both RMSProp and LSTM 

parameters. Initialize the collected gradient, Squared gradient 

accumulation for every parameter in Eq. (8). 

 

𝐸𝑡 = 0 (8) 

 

Repeated until most iterations or convergence, determine 

the objective function's gradient approximately the parameters 

in Eq. (9) 

 

𝑔𝑡 = ∇𝜃𝐽(𝜃𝑡) (9) 

 

Revise the squared gradients' exponentially weighted 

average in Eq. (10) and replace the parameters in Eq. (11) 

 

𝐸𝑡 = 𝛾𝐸𝑡−1 + (1 − 𝛾)𝑔𝑡
2 (10) 

 

𝜃𝑡−1 = 𝜃𝑡 − 𝛼
𝑔𝑡

√𝐸𝑡 − 𝜖
 (11) 

 

where, 𝜃  is an initial parameter, the learning rate is𝛼 , the 

decay factor is 𝛾 , 𝑔𝑡 is the loss function's gradient at 

time  𝑡 concerning the parameters, 𝐸𝑡  is the average of the 

squared gradients weighted exponentially, a small constant 

called 𝜖 keeps division by zero from happening. 

 
Algorithm 1. Pseudocode for ARIMA-OLSTM 

Input: Time series data (x), ARIMA operators (a, m, d), learning 

rate (𝛼), decay rate (𝛾), 𝜖 

Output: Trained ARIMA coefficients (𝜑 , 𝜃 ), Trained LSTM 

parameters (the weights  𝑤𝑐 , 𝑤𝑓, 𝑤𝑖 and 𝑤𝑜; and the bias vectors 

𝑏𝑐 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑜) 

Initialize ARIMA-OLSTM parameters and hyperparameters. 

Initialize RMSProp parameters (𝛼, 𝛾, 𝜖). 

ARIMA-OLSTM Hybrid Model Development 

Prepare the time series data and do some preprocessing 

Create an ARIMA model by applying the Box-Jenkins technique 

Utilizing stationarity and ACF/PACF analysis, identify the type of 

model. 

Utilise AIC/BIC metrics to estimate parameters (Eq. (1)). 

Use residual analysis to validate the model. 

Obtain the ARIMA residual time series for the LSTM input. 

Training LSTM Models with RMSProp 

Set the cumulative gradient 𝐸𝑡 (Eq. (8)) to zero for each parameter. 

Continue until convergence is reached. 

Determine the objective function's gradient, 𝑔𝑡, using (Eq. (9)) 

Update the squared gradients' exponentially weighted average, or 

𝐸𝑡 (Eq. (10)) 

Use the RMSProp update rule (Eq. (11)) to update the model's 

parameters. 

Rule for RMSProp Updates (Eq. (11)) 

def RMSProp_Update(𝜃𝑡, 𝑔𝑡, 𝐸𝑡) 

 

𝐸𝑡 = 𝛾𝐸𝑡−1 + (1 − 𝛾)𝑔𝑡
2 

𝜃𝑡−1 = 𝜃𝑡 − 𝛼
𝑔𝑡

√𝐸𝑡 − 𝜖
 

    return 𝜃𝑡, 𝐸𝑡 

 

3.3 Planning phase 

 

The analysis phase assesses the existing situation, and this 

makes decisions about scaling to balance advantage and SLA 

compliance. The hybrid POA, which integrates cooperative 

foraging behaviors with optimization algorithms to direct 

effective resource allocation and decision-making in 

complicated situations, is used in this decision-making process. 

 

3.3.1 Hybrid POA and lyrebird optimization algorithm  
The huge pelican uses a big pouch in its gullet to catch and 

eat targets. It also has a long beak. This species, which inhabits 
groups of several hundred pelicans, enjoys socializing and 
living in groups. Pelicans are large birds with a height of 1.06 
to 1.83m, a wingspan of 0.5 to 3m, and a weight range of 2.75 
to 15kg. They mainly eat fish, but also frogs, crustaceans, and 
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turtles when necessary. Pelicans cooperate in hunting, and 
diving from heights of 10-20 m or lower. They use their wings 
to corral fish to shallow waters for easier catching. Their 
hunting process involves efficient water removal before 
swallowing the fish. This behavior showcases their 
intelligence and hunting skills. The strategy of the proposed 
POA is inspired by the hunting strategy of pelicans. 

Mathematical Model: POA is a population-based 
algorithm with pelicans as population followers proposing 
candidate solutions. Each member suggests values for 
variables based on their hunt space position. Primarily, 
followers are erratically prepared within problem bounds 
using Eq. (12). 

 

𝑝𝑖,𝑗 = 𝐿𝑗 + 𝑟 ∙ (𝑈𝑗 − 𝐿𝑗), i=1,2…, n, j=1, 2, …, m (12) 

 
Value of variables, denoted by 𝑝𝑖,𝑗 in 𝑖𝑡ℎ candidate solution. 

𝑛 represents the population size, 𝑚 is the number of variables, 
𝑟 is a random number between 0 and 1, 𝐿𝑗 is the lower bound 
of 𝑗𝑡ℎ variable, and 𝑈𝑗 is the upper bound of 𝑗𝑡ℎ variable. A 
population matrix in Eq. (13), for pelicans in the POA, is used 
to identify population members. Candidate solutions are 
represented by rows, and problem variable values are 
represented by columns. 

 

𝑃 =

[
 
 
 
 
𝑃1

⋮
𝑃𝑖

⋮
𝑃𝑛]

 
 
 
 

𝑛×𝑚

=

[
 
 
 
 
𝑝1,1 ⋯ 𝑝1,𝑗 ⋯ 𝑝1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑝𝑖,1

⋮
𝑝𝑛,1

⋯
⋰
⋯

𝑝𝑖,𝑗 ⋯ 𝑝𝑖,𝑚

⋮ ⋱ ⋮
𝑝𝑛,𝑗 ⋯ 𝑝𝑛,𝑚]

 
 
 
 

𝑛×𝑚

 (13) 

 
where, the pelican population matrix is 𝑃  and 𝑃𝑖  represents 
𝑖𝑡ℎ pelican. One possible solution for the mentioned problem 
is to make every person in the population of the proposed POA 
a pelican. Consequently, each of the potential solutions can be 
utilized to assess the objective function of the specified 
problem. Eq. (14) uses a vector known as the objective 
function vector to derive values obtained for the objective 
function. 

 

𝐹𝑛 =

[
 
 
 
 
𝐹𝑛1

⋮
𝐹𝑛𝑖

⋮
𝐹𝑛𝑛]

 
 
 
 

𝑛×𝑚

=

[
 
 
 
 
𝐹𝑛(𝑃1)

⋮
𝐹𝑛(𝑃𝑖)

⋮
𝐹𝑛(𝑃𝑛)]

 
 
 
 

𝑛×1

 (14) 

 

where, the 𝑖𝑡ℎ candidate solution's objective function value is 

𝐹𝑛𝑖 and 𝐹𝑛 is the objective function vector. 

Phase 1: Approaching the target 

The pelicans have to locate their prey and then move in its 

direction during the first step. Modeling this pelican technique 

enables search space scanning and the exploration capabilities 

of the proposed POA in identifying different search space 

locations. The fact that the prey's location is randomly 

generated inside the search space is essential to POA. As a 

result, POA has more exploration capacity while precisely 

searching the problem-solving domain. Eq. (15) provides a 

mathematical simulation of the above-mentioned thoughts and 

the pelican's method of finding prey. 

 

𝑝𝑖,𝑗
𝑝𝑒𝑙𝑖

= {
𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑟𝑒𝑦𝑗 − 𝑘 ∙ 𝑝𝑖,𝑗),   𝐹𝑛𝑦 < 𝐹𝑛𝑖;

𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑖,𝑗 − 𝑝𝑟𝑒𝑦𝑖),                     𝑒𝑙𝑠𝑒,
 (15) 

 

where, 𝑘 is an arbitrary number between one and two, Prey is 

located in 𝑗𝑡ℎ dimension, 𝑝𝑖,𝑗
𝑝𝑒𝑙𝑖

 is the 𝑖𝑡ℎ pelican's new rank in 

𝑗𝑡ℎ  dimension based on phase 1, and 𝐹𝑛𝑦 is its objective 

function value. A number, parameter 𝑘, has a random value of 

either 1 or 2. For every member and iteration, a random 

parameter is chosen. This parameter's value of two causes a 

member to be further displaced and might yield them into 

previously unexplored areas of search space. Consequently, 

parameter 𝑘affects POA's ability to discover and precisely 

scan search space. If the pelican's new position improves the 

goal function's value, the new position is accepted. This kind 

of updating, known as efficient updating, keeps the algorithm 

from going to suboptimal places. Eq. (16) is used to model this 

process. 

 

𝑃𝑖 = {
𝑃𝑖

𝑝𝑜𝑠1 ,              𝐹𝑛𝑖
𝑃𝑒𝑙𝑖1 < 𝐹𝑛𝑖; 

𝑃𝑖 ,                    𝑒𝑙𝑠𝑒                  
 (16) 

 

where, 𝑃𝑖
𝑝𝑜𝑠1  is the objective function value founded on phase 

1 and 𝐹𝑛𝑖
𝑃𝑒𝑙𝑖1  is the new position of 𝑖𝑡ℎ pelican. 

Phase 2: Flying above the water's surface 

During the second phase, the pelicans expand their wings to 

drive the fish higher and gather the food into their throat pouch 

once they reach the water's surface. In the area they are 

attacking, pelicans can catch more fish by using this approach. 

The recommended POA converges to more opportune places 

inside the hunting zone as a result of modeling this pelican 

behavior. This strategy improves POA's local search capability 

and exploitation possibilities. Mathematically speaking, the 

method needs to consider the points surrounding the pelican 

position to converge to an ideal solution. Eq. (17) provides a 

mathematical simulation of pelican hunting behavior. 

 

𝑝𝑖,𝑗
𝑝𝑜𝑠2 = 𝑝𝑖,𝑗 + 𝐻 ∙ (1 −

𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟

) ∙ (2 ∙ 𝑟 − 1) ∙ 𝑝𝑖,𝑗 (17) 

 

where, 𝐻 is a constant equivalent to 0.2, 𝐻 ∙ (1 −
𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟
) is 

the locality range of 𝑝𝑖,𝑗 , 𝑖𝑡𝑟  is the iteration clock, and the 

maximum number of iterations is 𝑚𝑎𝑥𝑖𝑡𝑟 . Based on phase 2, 

𝑝𝑖,𝑗
𝑝𝑜𝑠2  represents the new position of 𝑖𝑡ℎ  pelican in 𝑗𝑡ℎ 

dimension. The coefficient 𝐻 ∙ (1 −
𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟
)  represents the 

radius of the population members' local neighborhoods to 

search near each other to converge on a better answer. This 

coefficient can be effectively applied to the POA exploitation 

power to approximate the optimal global solution. More space 

is considered around each member in the initial iterations due 

to the high value of this coefficient. The neighborhood radii of 

each member decrease as the procedure replicates more, due 

to a decrease in coefficient. For the POA to approach the 

global (and even precisely global) optimal solutions given the 

utilization notion, this allows us to scan the region encircling 

each individual in the population using increasingly smaller 

and more accurate steps. In certain situations, the coordination 

of agents within the algorithm may result in overhead and 

complexity, which could affect its scalability and efficiency. 

This is particularly true for difficult or high-dimensional 

optimization problems. Thus, the improvement for POA is 

enhanced by the lyrebird optimization algorithm (LOA). 

The population member's location in the search space is 

altered throughout this stage of LOA by the lyrebird's modeled 

strategy of hiding in its immediate safe region. The potential 

application of LOA in local searches is demonstrated by the 

lyrebird's positional changes as it moves in little steps to find 
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a decent hiding location and accurately checks its 

surroundings. Using Eq. (18), each LOA member's new 

position is found in the LOA design based on the lyrebird's 

migration model toward the closest suitable place for 

concealment. The related member's previous position is 

replaced if, by Eq. (19), this new placement increases the value 

of the objective function. 

 

𝑥𝑖,𝑗
𝑝𝑜𝑠

= 𝑥𝑖,𝑗 + (1 − 2𝑟𝑖,𝑗).
𝑈𝑗 − 𝐿𝑗

𝑖𝑡𝑟
 (18) 

 

𝑃𝑖 = {
𝑃𝑖

𝑝𝑜𝑠2 ,      𝐹𝑛𝑖
𝑝𝑜𝑠2 < 𝐹𝑛𝑖

𝑃𝑖 ,          𝑒𝑙𝑠𝑒,                 
 (19) 

 

In this case, 𝑃𝑖
𝑝𝑜𝑠2  is a new position determined for 𝑖𝑡ℎ 

lyrebird using suggested LOA's concealing method; 𝑃𝑖
𝑝𝑜𝑠2 is its 

𝑗𝑡ℎ dimension; 𝐹𝑛𝑖
𝑝𝑜𝑠2  is the value of its objective function; 

𝑟𝑖,𝑗 are random values from interval [0, 1]; and the iteration 

counter is 𝑖𝑡𝑟. 

 
Algorithm 2: Pseudocode for H-PLA 

Initialize Parameter 𝑃 →variable, 𝐹𝑛 → Function 

Phase 1: Approaching the target 

def phase_1_pelican_approach (𝑃, 𝐹𝑛, 𝑝𝑟𝑒𝑦, 𝑚𝑎𝑥𝑖𝑡𝑟) 

    for 𝑖 in range (𝑚𝑎𝑥𝑖𝑡𝑟) 

        for pelican in 𝑝𝑒𝑙𝑖 
              𝑟=random. uniform (0, 1) 

 𝑘=random. choice ([1, 2]) 

            for 𝑗 in range(len(pelican)): 

                if 𝐹𝑛𝑦 < 𝐹𝑛𝑖 

𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑟𝑒𝑦𝑗 − 𝑘 ∙ 𝑝𝑖,𝑗) 

                else 

𝑝𝑖,𝑗 + 𝑟 ∙ (𝑝𝑖,𝑗 − 𝑝𝑟𝑒𝑦𝑖) 

    return 𝑃 

Phase 2: Flying above the water's surface 

def phase_2_pelican_flying (𝑃, 𝑚𝑎𝑥𝑖𝑡𝑟): 

𝐻=0.2 

    for 𝑖 in range (𝑚𝑎𝑥𝑖𝑡𝑟): 

        for pelican in 𝑃 

𝑟=random. uniform (0, 1) 

            for 𝑗 in range(len(pelican)) 

 

𝑝𝑖,𝑗
𝑝𝑜𝑠2 = 𝑝𝑖,𝑗 + 𝐻 ∙ (1 −

𝑖𝑡𝑟

𝑚𝑎𝑥𝑖𝑡𝑟
) ∙ (2 ∙ 𝑟 − 1) ∙ 𝑝𝑖,𝑗 

𝑃𝑖 = {
𝑃𝑖

𝑝𝑜𝑠2 ,      𝐹𝑛𝑖
𝑝𝑜𝑠2 < 𝐹𝑛𝑖

𝑃𝑖 ,          𝑒𝑙𝑠𝑒,                  
 

return 𝑃 

Hybrid Pelican Optimization Algorithm (POA) 

def hybrid_POA( 𝑃 , 𝐹𝑛 , 𝑝𝑟𝑒𝑦 , 𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 1 , 

𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 2) 

 

𝑃𝑝ℎ𝑎𝑠𝑒1 = 𝑃𝑝ℎ𝑎𝑠𝑒1
𝑝𝑒𝑙𝑖

 (𝑃, 𝐹𝑛, 𝑝𝑟𝑒𝑦, 𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 1) 

𝑃𝑝ℎ𝑎𝑠𝑒2 = 𝑃𝑝ℎ𝑎𝑠𝑒2
𝑝𝑒𝑙𝑖

 (𝑃, 𝐹𝑛, 𝑝𝑟𝑒𝑦, 𝑚𝑎𝑥𝑖𝑡𝑟𝑃ℎ𝑎𝑠𝑒 2) 

return 𝑃𝑝ℎ𝑎𝑠𝑒2 

 

SLA compliance and workload for the VM will be balanced, 

and resource scaling will play a major role in this process 

during the planning phase. The POA, which draws inspiration 

from the cooperative hunting behaviors of pelicans, will be 

employed in this phase. Before evaluating each configuration 

in terms of resource utilization and reaction time, an objective 

function was used to set the CPU, memory, and storage 

configurations for each virtual machine at random within the 

constraints of the task. Pelicans (VM configurations), fly over 

the search space in the first phase and adjust their placements 

to achieve the best possible resource utilization. The new 

configuration is approved if it has a better objective function. 

The algorithm's second step fine-tunes the configurations by 

taking the local search space into account and making minor 

tweaks to increase efficiency. To guarantee that the system 

operates close to optimal conditions, the LOA further fine-

tunes the setups. In cloud systems, this will result in efficient 

resource allocation and SLA compliance. 

 

3.4 Execution phase 

 

The Execution Phase is based on the planner's 

interpretations, which are critical to the system's subsequent 

stages. There comes a point when a definitive choice is made 

on whether to scale up, scale down, or maintain the status of 

things, followed by a formal request to the CP for approval. 

The default executor will select computers at random from the 

resource pool available for execution during scale-up or scale-

down. As part of this phase's validation, a detailed 

examination will be performed to ensure that the limit of on-

demand virtual machines is not exceeded before making a 

scale-up decision. If the limit is exceeded, the request for 

scale-up will be rejected, this is critical in adhering to set limits. 

Furthermore, once the on-demand has reached zero, all 

subsequent scaling requests will be deemed unnecessary and 

will not be fulfilled. In contrast, to execute dynamic resource 

management in the cloud, the algorithm is implemented in this 

phase using the techniques outlined below. 

It uses algorithms such as the POA to make intelligent 

resource allocation decisions. The POA will balance the 

exploration and exploitation phases to obtain the best virtual 

machines and their utilization in a way that allows for optimal 

resource allocation while respecting the limits and constraints 

of the cloud environment, avoiding unwanted scaling, and 

ensuring system efficiency. 

 

3.5 Knowledge phase 

 
This phase is centered on the knowledge capture, 

preservation, and application of lessons learned during the 

process loop to individuals. The preceding stage's 

responsibilities included collecting raw data during 

monitoring and completing evaluations. This process may 

yield findings, patterns, best practices, or, in some cases, 

identified errors. This knowledge must be organized in a way 

that makes it easily accessible to the people. This data can be 

stored on a collaborative platform, in project management 

tools, or in a centralized knowledge management system. The 

knowledge base should be searchable and well-structured, 

with efficient retrieval achieved by usable naming conventions, 

tagging, and categorization. 

In a CC setting, this entails applying algorithms to the data 

available. Some of the primary functions are performed by 

Hybrid Pelican Optimisation Algorithm and Long Short-Term 

Memory networks. POA, for example, can help with resource 

allocation optimization because pelicans prioritize seeking 

new resources over exploiting established ones. Instead, 

LSTM networks aid in data processing and sequential 

prediction, with the vanishing gradient issue well addressed by 

their long-term memory capability. 

At this stage, more collaboration is needed to help 

algorithms develop strength in decision support and overall 

efficacy in the cloud environment. These allow it to learn from 

previous data, adapt to changing conditions over time, and 
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make the best use of resources to guarantee the system 

performs optimally, all while adhering to service level 

agreements. 

 

 

4. RESULT AND DISCUSSION 

 

The configuration and simulation settings which include a 

range of scenarios meant to assess and analyse the outcomes 

are explained in the sections that follow. The suggested 

approach is compared against state-of-the-art methods such as 

RHAS [15], GRASP [18], and ADA-RP [19] and proposed. 

Evaluation metrics including Root-Mean-Square Error 

(RMSE) and Mean-Absolute-Percentage-Error (MAPE) also 

evaluated the CPU utilization and response time. 

The suggested approach has been applied to the usage of 

Python 3.10 on the Google Colab coding platform and 

simulated on an Intel Core i3 Processor strolling Windows 10 

with 8 GB of RAM. The configuration and simulation settings 

which consist of more than a few scenarios supposed to assess 

and analyse the results are defined in the sections that follow. 

The cautioned approach is compared to new techniques 

consisting of RHAS [15], GRASP [18], and ADA-RP [19] 

proposed. Evaluation metrics consisting of RMSE and MAPE 

additionally evaluated the CPU utilization and response time 

 

4.1 Performance metrics 

 

Evaluation metrics along with MAPE and RMSE 

additionally evaluated the CPU utilization and response time. 

• RMSE: The RMSE between the discovered and actual 

values is the size of the variation between the 2. 

 

𝑅𝑀𝑆𝐸 = √
∑ ‖𝑦(𝑖) − 𝑦̂(𝑖)‖2𝑁

𝑖=1

𝑁
 (20) 

 

where, 𝑖 is the variable, 𝑁 denotes the non-statistics lacking 

point, 𝑦(𝑖) is the actual remark time series, and 𝑦̂(𝑖) is the 

envisioned time series. 

• MAPE: A statistical forecasting technique's prediction 

accuracy is gauged by way of the MAPE. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑒(𝑖) − 𝑦𝑎(𝑖)

𝑦𝑎(𝑖)
| ∗ 100

𝑛

𝑖=1

 (21) 

 

where, 𝑦𝑒(𝑖) is the real cost, 𝑦𝑎(𝑖) is the forecast value. 

 

4.2 Performance analysis 

 

It provides an overall performance analysis that sets the 

suggested model against current ones in terms of RMSE, 

MAPE, CPU utilization, and response time.  

Table 1 is a comparison of the performance of four models 

(RHAS, GRASP, ADA-RP, and Proposed) with different VM 

machine configurations. With an increase in VM resources 

from 10 to 50, all models improve in RMSE, MAPE, and 

response time. For RHAS, RMSE goes down from 0.2738 to 

0.2498, MAPE from 0.2914 to 0.2575, and prediction 

accuracy improves from 97.26% to 97.53%. GRASP indicates 

RMSE from 0.3281 to 0.2818, MAPE from 0.3024 to 0.2710, 

and prediction accuracy from 96.67% to 96.8%. The RMSE of 

ADA-RP reduces from 0.3016 to 0.2815, MAPE from 0.2678 

to 0.2254, and prediction accuracy rises from 96.74% to 

96.85%. The Proposed Model performs better than all the rest, 

with RMSE reducing from 0.2078 to 0.1513, MAPE from 

0.1816 to 0.1556, and prediction accuracy increasing from 

98.05% to 98.45%. 

Figure 2 shows the RMSE values, which show accurate 

predictions, varied from 0.273874 to 0.251098. The MAPE 

values demonstrated remarkable prediction accuracy, ranging 

from 0.181694 to 0.291473, with the lowest value at 40 virtual 

machines. With 40 virtual machines, the CPU utilization 

reached a peak of 9.35% as machine size rose. The trade-off 

between accuracy and reaction time in auto-scaling systems is 

highlighted by the fact that response times increased with VMs, 

taking 148.54 seconds with 50VMs. 

Figure 3 shows MAPE values exhibit a range of 0.27104 to 

0.30245, indicating that 50 virtual machines yielded the best 

results. As the number of virtual machines rises, utilization 

numbers climb from 21.57% to 108.21%, demonstrating a 

trade-off between accuracy and resource utilization. In general, 

more virtual machines increase accuracy but also use more 

resources. 

 

Table 1. Overall performance analysis based on existing models 

 
Model VM Machine RMSE MAPE Utilization Response Time Prediction Accuracy (%) 

RHAS [15] 

10 0.2738 0.2914 0.0188 20.45 97.26 

20 0.2641 0.2574 0.021966 41.38 97.36 

30 0.2557 0.2334 0.020516 78.34 97.44 

40 0.2510 0.1816 0.0935 124.41 97.52 

50 0.2498 0.2575 0.01256 148.54 97.53 

GRASP [18] 

10 0.3281 0.3024 0.02424 21.57 96.67 

20 0.3110 0.2976 0.01474 42.42 96.69 

30 0.3004 0.2916 0.02096 75.28 96.7 

40 0.2981 0.2875 0.04096 98.15 96.72 

50 0.2818 0.2710 0.06096 108.21 96.8 

ADA-RP [19] 

10 0.3016 0.2678 0.03542 19.42 96.74 

20 0.2990 0.2543 0.056487 38.52 96.75 

30 0.2904 0.2447 0.02465 61.42 96.8 

40 0.2892 0.2389 0.025463 85.47 96.82 

50 0.2815 0.2254 0.036214 98.24 96.85 

Proposed 

10 0.2078 0.1816 0.003376 12.41 98.05 

20 0.1988 0.1743 0.004606 24.23 98.11 

30 0.1853 0.1712 0.0012462 30.52 98.21 

40 0.1626 0.1654 0.0010335 41.06 98.34 

50 0.1513 0.1556 0.009344 50.36 98.45 
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Figure 2. Graphical representation of the RMSE analysis 

 

 
 

Figure 3. Graphical representation of the MAPE analysis 

 

Figure 4 shows the algorithm's accuracy in estimating 

workload was indicated by the utilization time, which varied 

from 0.281581 to 0.301633. The algorithm's performance was 

illustrated in terms of percentage error by MAPE values, 

which varied from 0.22545 to 0.26789. The utilization 

numbers, which show the effective utilization of resources, 

ranged from 0.02465 to 0.056487. The response time ranged 

from 19.42 to 98.24, demonstrating the adaptability of the 

algorithm to varying demand scenarios. 

 

 
 

Figure 4. Graphical representation of the resource utilization 

analysis 

 

In comparison to the RHAS model, Figure 5 demonstrates 

the suggested approach shows considerable gains in workload 

prediction accuracy across a range of virtual machine 

configurations. It is regularly found that the suggested model 

produces better accurate workload projections. The MAPE 

values, which range from 0.174367 to 0.009344, likewise 

show excellent precision. Notably, the MAPE stays low at 

0.0010335, indicating small inaccuracy in percentage terms, 

while the RMSE lowers to 0.162614 for 40 virtual machines, 

indicating precise predictions. With a CPU utilization range 

from 0.003376 to 0.009344, it is evident that resources are 

being used efficiently. With 10VMs, reaction times grow 

progressively to 50.36 seconds for 50 VMs, indicating the 

anticipated trade-off between prediction accuracy and system 

response time in auto-scaling systems. Figure 6 shows the 

visual representation of the performance analysis for the 

prediction accuracy results. 

 

 
 

Figure 5. Graphical representation of the response time 

analysis 

 

 
 

Figure 6. Graphical representation of the prediction accuracy 

analysis 

 

The ANOVA test findings demonstrate that RMSE and 

MAPE differ significantly between groups, with incredibly 

low p-values (6.47E-09 and 4.66E-06, respectively) as shown 

in Table 2 and Figure 7. This suggests that the models or 

conditions assessed have a considerable impact on these 

measurements. Instead, there are no discernible variations in 

Response Time (p-value=2.12E-01) or Utilization (p-

value=7.97E-02), indicating that these variables do not 

significantly differ between the groups and ANOVA 

distribution plot is also shown in the Figure 8. 

 

Table 2. Performance analysis for the ANOVA test 

 
Metric F-Statistic P-Value 

RMSE 59.82962 6.47E-09 

MAPE 23.10992 4.66E-06 

Utilization 2.71018 7.97E-02 

Response Time 1.675569 2.12E-01 
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(d) 

 

Figure 7. Graphical representation of the boxplot 

comparison. (a) MAPE, (b) Response time, (c) RMSE, and 

(d) Utilization  

 
 

Figure 8. ANOVA test results for RMSE 

 

 

5. CONCLUSION 

 

For auto-scaling in web applications, a robust hybrid 

workload prediction model is developed using a 

comprehensive architecture that comprises phases for 

monitoring, analysis, planning, execution, and knowledge. 

With this approach, cloud computing companies can increase 

service sustainability, reduce operational costs, and better 

manage infrastructure resources. Time series forecasting, 

hybrid analysis techniques, and optimization algorithms such 

as H-PLA and ARIMA-OLSTM enable accurate workload 

prediction and dynamic auto-scaling decisions. This helps to 

maximize resource utilization, promote scalability, and 

improve compliance with SLAs while considering profit 

trade-offs. The assessment measures provide a robust 

validation framework for the prediction model's accuracy and 

the effectiveness of auto-scaling choices. The analysis of 50 

node findings showed effective resource management, with a 

MAPE of 0.151318, RMSE of 0.155692, utilization time of 

0.009344, and reaction time of 50.36 units. Future research 

will examine the application of the three novel models in a 

range of cloud contexts to assess the models' efficacy and 

presentation. Future studies might use Transformer-based 

models to identify temporal patterns more accurately, extend 

the model to edge-cloud hybrid systems, use reinforcement 

learning to make decisions in real-time, and evaluate 

performance across large, diverse datasets and workload 

profiles. 
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