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 This paper attempts to disclose how the varying cold season temperature affects the 

performance of asphalt mixture i=n cold regions, and create a model to predict the flexural-

tensile strength under cyclic thermal stress. For this purpose, the author investigated the 

influencing factors of asphalt mixture performance in cold regions, such as temperature level 

and variation in temperature difference, and employed the backpropagation neural network 

(BPNN) to learn, train and verify 120 samples of SBS AC-13 database. On this basis, a 

BPNN-based prediction model was established for the flexural-tensile strength of asphalt 

mixture under cyclic thermal stress. Next, the predicted results were compared with the 

actual results through regression analysis. The comparison shows that our model output a 

correlation coefficient (R) of 0.9706, an evidence for good prediction accuracy. This means 

our model can effectively predict the flexural-tensile strengths of asphalt mixture under 

cyclic thermal stress in cold regions. The research findings provide a good reference for 

similar studies on asphalt mixture. 
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1. INTRODUCTION 

 

In the cold regions of China, the annual average temperature 

is as low as -2 °C, and the highest temperature is not more than 

7 °C. The low temperature has brought a 7~8 month-long 

freezing period each year. In winter, the outdoor temperature 

often changes rapidly, exerting a great impact on asphalt 

concrete pavement. The impact is particularly prominent in 

northern China, where there is a big temperature difference 

between winter and summer. Under the rapid variation in 

temperature, the thin layers of the asphalt pavement will face 

a high thermal stress, and suffer from fatigue cracking induced 

by temperature. To evaluate the flexural-tensile performance 

of asphalt mixture in China’s cold regions, it is necessary to 

build a flexural-tensile strength prediction model for asphalt in 

such regions under cyclic thermal stress [1-3]. 

The neural network (NN) has been widely applied to 

analyze the performance of asphalt mixture. For example, Cui 

Pingde, Yang Fu et al. adopted the NN to forecast and discuss 

the shear strength of asphalt mixture. Liu Xiaoming et al. 

established an NN model to predict the elastic modulus of 

emulsified asphalt mixture. However, there is no report on the 

flexural-tensile strength changes of asphalt mixture in cold 

regions through the cold season [4]. 

This paper carries out in-depth learning and training of the 

existing experimental data with backpropagation neural 

network (BPNN), establishes a flexural-tensile strength 

prediction model under cyclic thermal stress, and measures the 

actual error between the predicted and actual results. Next, the 

flexural-tensile strength of asphalt mixture under cyclic 

thermal stress was subjected to multivariate regression 

analysis, and the error between the training sample and the 

training output was identified. The results show that the 

nonlinear mapping relationship of the established BPNN-

based prediction model can accurately simulate how the 

flexural-tensile strength of asphalt mixture varies with the 

multiple variables and forecast its future trend.  

 

 

2. INTRODUCTION TO THE BPNN 

 

The BPNN is a multi-layer feedforward network trained by 

the error backpropagation algorithm. It was proposed in 1986 

as an advanced NN. Since then, the BPNN has become the 

most popular NN, thanks to its excellence in solving problems 

like regression prediction and pattern recognition [5].  

The BPNN is made up of multiple adaptive simple neurons 

in parallel connection. During network training, the 

connection weights and biases are updated in real time 

according to a fixed number of relatively stable training 

samples, such that the error of the output continuously declines 

and converges to the desired output. The trained network will 

be able to predict the actual output of the test samples [6]. 

In general, a BPNN consists of an input layer, a hidden layer 

and an output layer. Each layer contains one or more nodes. 

For each node, the relationship between its input and output 

depends on connection weights and input/output threshold [3]. 

Suppose there are m input layer nodes (inputs) and k hidden 

layer nodes (outputs). Then, the input vectors and output 

vectors can be described as 𝑋 = (𝑥1,x2,...,x𝑗 ,...,x𝑚)
𝑇  and 𝑇 =

(𝑦1,y2,...,y𝑗 ,...,y𝑘)
𝑇 , respectively. Unlike the first two layers, 

the output layer has only one node. The computing results of 

this layer can be expressed as 𝑂 = (𝑜1,o2,...,o𝑗 ,...,o𝑛)
𝑇, while 

the desired results can be depicted as 𝐷 = (𝑑1,d2,...,d𝑗 ,...,d𝑛)
𝑇 

(n is the number of samples being trained). The weight of a 
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connection between the input and hidden layers can be 

formulated as 𝑉 = (𝑣𝑖𝑗)𝑚×𝑘  [7-9], where vij is a matrix 

element reflecting the weight of the connection between input 

layer node i and hidden layer node j.  

The internodal correspondence effectively characterizes the 

nonlinear mapping property of the BPNN, enabling the 

network to disclose the mechanism and principle of complex 

nonlinear problems [10]. 

 

 

3. MODEL CONSTRUCTION AND APPLICATION 

 

3.1 Sample sets 

 

To prevent the PNN from over-fitting, this paper attempts to 

control the number of sample trainings. Firstly, several 

samples were divided into a training set and a validation set. 

The former was used to correct the connection weights, adjust 

the input/output threshold and determine the suitable gradient, 

while the latter is responsible for regulating and training the 

error in real time [11]. Then, a program was designed to split 

the samples randomly into three parts, so that each part 

contains a reasonable number of samples. Among the three 

parts, the training set has 80 samples and the testing set has 40. 

 

3.2 Input and output indices 

 

The low-temperature ultimate flexural-tensile strain of 

small beams is affected by many complex factors. Among 

them, the asphalt property and mineral gradation are two key 

determinants of the magnitude of the strain [12]. Hence, these 

two factors were selected as the main research targets to ensure 

the computing accuracy and efficiency of the BPNN-based 

prediction model. In addition, the low-temperature ultimate 

flexural-tensile strain of small beams was defined as the output 

of the model.  

 

3.3 Network structure 

 

Being a type of topology model, a three-layer BPNN was 

selected for our research. In this network, the hidden layer 

nodes transmit the weights via hyperbolic tangent sigmoid 

function [8]. This function maps the range of each input layer 

node (-∞, +∞) to that of each hidden layer node (-1, +1). As a 

differentiable function, it is suitable for training the samples at 

the node [13]. The output layer uses the linear transfer function 

purelin to excite and transfer the m input vectors, yielding a 

prediction matrix. In addition, the gradient descent algorithm 

was selected to control the error rate to the required level. This 

algorithm has been proved through experiment to have better 

convergence and stability than the other algorithms. 

Table 1 lists the number of nodes in each layer. To control 

the input/output threshold within the interval of [0, 1], the 

tangent sigmoid function (tansig) was selected as the 

activation and transfer function between the input and hidden 

layers, and the linear function (logsig) as the activation of 

transfer function for output layer nodes [14]. Furthermore, the 

traingd function was employed to train our NN. This function 

is often used in negative gradient descent training, which is an 

accurate and rational way to train the NN. The training was 

terminated when the number of error cycles of the testing set 

reached 1,000. The number of input and hidden layer nodes 

were determined by trial and error [15]. 

 

 

Table 1. Functions of the BPNN-based prediction model 

 
Number 

of layer 

Number of 

input layer 

nodes 

Number of 

hidden layer 

nodes 

Number of 

output layer 

node 

Training 

step length 

Desired 

error 

Transfer 

function of the 

input layer 

Transfer 

function of the 

output layer 

Training 

function 

3 2 5 1 1,000 0.0003 tansig purelin traingd 

 

 

4. MODEL VERIFICATION AND RESULTS ANALYSIS 

 

The BPNN learns and analyzes specific problems through 

training, and adjusts adaptively to formulate reasonable 

mapping rules between the input and output of each problem. 

During this process, the weights of the network serve as the 

carriers of memory and storage. The BPNN can also express 

the new knowledge acquired through autonomous learning. In 

this paper, 40 training samples are selected randomly and used 

to train the NN. The prediction results thus obtained were 

compared with the actual experimental data. The fitness and 

error curves are shown in Figure 1 below. 

As shown in Figure 1, the predicted results on the 40 

samples differed slightly from the experimental results, 

revealing a high fitness and accuracy of our model in the 

prediction of flexural-tensile strength of asphalt mixture. 

To quantify the error between the predicted and 

experimental results, the error rate curve of our model was 

plotted (Figure 2), which shows that the error rate was rather 

small (20 %) for the testing samples. This means the BPNN-

based prediction model has a good fault tolerance, that is, the 

model can work normally despite local damage or injury of the 

system. 

If the input and output results fall in the interval [0, +1], then 

the BPNN must have reached the optimal performance. To 

obtain scientific and accurate simulation results, the sample 

data were normalized before training and the trained outputs 

were denormalized by the logarithmic algorithm with preset 

maximum and minimum. Taking the network output and the 

desired output as a pair of coordinates (x, y), the prediction 

effect is better if the value of x approaches that of y. The 

regression results are not significant unless the (x, y) pairs 

obtained by nonlinear mapping of the BPNN are distributed 

across the y=x line. Figure 3 presents the linear regression 

results of multiple (x, y) pairs in the training phase, the testing 

phase and the entire prediction period. 

It can be seen from Figure 3 that the regression results were 

significant in both the training phase and the testing phase. The 

correlation coefficient R of our model to training samples, 

testing samples and all samples was 97.05 %, 97.39 % and 

97.06 %, respectively. All of them were above the required 

level of 80 %. 

To sum up, our BPNN-based prediction model was proved, 

both quantitatively and qualitatively, as capable of predict the 

exact flexural-tensile strength of asphalt mixture under cyclic 

thermal stress. 
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Figure 1. The fitness and error between predicted and experimental results 

 

 
 

Figure 2. The error rate of our model 

 

 
 

Figure 3. The regression results of the prediction effect 
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5. CONCLUSIONS

This paper probes deep into the influencing factors of 

flexural-tensile strength of asphalt mixture under cyclic 

thermal stress in cold regions. Considering the two most 

significant influencing factors, the author established a BPNN-

based model to predict the flexural-tensile strength of asphalt 

mixture under cyclic thermal stress. The model enjoys a high 

fitness thanks to the training by a three-layer BPNN. The 

experimental results show that our model can preliminarily 

predict the flexural-tensile strength of asphalt mixture under 

cyclic thermal stress in the cold season, based on the huge 

amount of existing experimental data on asphalt mixture. The 

research findings effectively improve the working efficiency 

of personnel, the utilization rate of materials and the rationality 

of budget for asphalt concrete pavements.  
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