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 The effects of the exponential space based heat source on quadratic convective flow of 

Casson fluid in a microchannel with an induced magnetic field is studied through a statistical 

approach. The flow is considered in vertical microchannel formed by two vertical plates. 

The solution for the governing equations has been obtained for the velocity, induced 

magnetic field and temperature field using Homotopy Perturbation Method (HPM). The 

current density, skin friction co-efficient and Nusselt number expressions are also estimated. 

The impact of various physical parameters on the velocity, temperature, induced magnetic 

field, current density, skin friction co-efficient and Nusselt number distributions have been 

discussed with the help of graphs. The results obtained by using HPM, are compared to those 

obtained by using the Runge-Kutta-Fehlberg 4-5th order method and an excellent agreement 

is found. The impact of Casson fluid parameter and the exponential heat source is 

qualitatively agreed for all flow fields. 
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1. INTRODUCTION 

 

The heating/cooling applications at engineering require 

high thermal performance to the thermal systems. As a result, 

it has attracted many researchers to find the technique to 

enhance the rate of heat transfer in the cooling and thermal 

engineering system. However, the enhancement of thermal 

energy is one of the challenges in these applications. The 

significant of the heat transfer enhancement can be obtained 

by developing compact devices that are small in size, 

reduction in equipment weight or light weight and having high 

efficiency. The transfer of energy due to the temperature 

difference is termed as a heat exchanger. In the field of energy 

conservation, conversion and recovery heat exchangers play a 

very important role. The heat exchanger can be found and used 

in many applications such as household air conditioning, 

automotive air conditioning system and manufacturing 

processes. In view of this, in 1981 Tuckerman and Pease [1] 

proposed a micro-channel heat exchanger for the first time. 

Later, Mehendale defined the micro-channel heat exchanger 

as hydraulic diameter less than 1mm. The heat exchange 

between two different fluids in a microchannel was first 

developed by Swift [2] in the year 1985. The natural 

convection in an open-ended micro-channel was investigated 

analytically by Chen and Weng [3]. They found that in the slip-

flow natural convection, rarefaction and fluid-wall interaction 

have significant effects on the flow. Taking suction/injection 

effect into account, later this work was extended by Jha et al. 

[4]. They concluded that skin friction coefficient and rate of 

heat transfer strongly depend on suction/injection parameter. 

Wang and Chiu-On [5] investigated the natural convection in 

a vertical microchannel influenced by no-slip condition. The 

main conclusion drawn from these studies is that the heat 

transfer enhancement can be done by accounting the micro-

channel.  

The above studies are concerned with natural convection 

involving various physical parameters like MHD, 

suction/injection velocity slip condition wherein linear 

Boussinesq approximation has been taken into account. Since 

density is directly proportional to the 

temperature/concentration difference as the temperature 

difference increases it is possible to have a nonlinearity 

fluctuation in the density which will affect the flow fields 

consequently. The nonlinear density variation with 

temperature was proposed by Vajravelu et al. [6] and is as 

follows  

 

𝜌(𝑇) = 𝜌(𝑇0) + (
𝜕𝜌

𝜕𝑇
)

0

(𝑇 − 𝑇0) +
1

2
(
𝜕2𝜌

𝜕𝑇2
)

0

(𝑇 − 𝑇0)
2 + ⋯ 

 

By following Vajravelu et al. [6], the three dimensional 

analysis of radiation and nonlinear convection for the flow of 

a non-Newtonian nanofluid was studied by Mahanthesh et al. 

[7]. They found that the temperature profile is stronger in the 

case of solar radiation. Hayat et al. [8] studied the effect of 

nonlinear convection in thixotropic fluid with magnetic field. 

Nonlinear convection of third grade fluid on stratified flow 

was investigated by Waqas et al. [9]. Gireesha et al. [10] 

studied the nonlinear convective flow of nanoliquid subjected 

to an exponential heat source and variable viscosity. However, 

the amount of literature done on nonlinear convection using 

microchannel is limited. Thus, this study is proposed to fill this 

gap in the literature. 

The Newtonian theory fails to explain the characteristics of 

many materials like paint, shampoos, printing ink, tomato 
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paste, etc., so the non-Newtonian theory was introduced. 

Among them, Casson liquid exhibits the stress, shear thinning 

characteristics along with high shear viscosity. The Casson 

fluid model was first introduced by Casson in the year 1959 

which describes the flow of viscoelastic fluids. Many 

researchers showed their interest to study the Casson fluid 

model due to the variety of applications of Casson fluid in the 

field of petrochemical, food processing and in the field of 

metallurgy, etc. The flow of Casson fluid over a stretching 

cylinder by considering magnetism was studied by Tamoor et 

al. [11]. Later, the numerical study on magneto Casson fluid 

with cross-diffusion effect was investigated by Pushpalatha et 

al. [12]. MHD flow of Casson fluid through porous 

microchannel subjected to thermal radiation was examined by 

Shashikumar et al. [13]. Makinde et al. [14-15] addressed the 

combined effect of thermal radiation, suction/injection, 

magnetic field and porous media in the forced convection flow 

of an electrically conducting Casson fluid in a horizontal and 

vertical microchannel with velocity slip and temperature jump 

condition.  

Magnetohydrodynamics deals with the movement of 

particles influenced by electromagnetic field. It is mainly 

focused on the particles in which currents are induced by 

induction. The novelty behind magnetohydrodynamics is that 

current in a moving convective field can be induced by a 

magnetic field. The induced magnetic field plays a significant 

role in the case of nuclear reactors, thermomagneto 

aerodynamics etc. The significance of induced magnetic field 

on natural convection in a vertical microchannel was 

investigated by Basant et al. [16]. Shivakumar et al. [17] 

studied the influence of induced magnetic field on the forced 

convection subjected to magnetic field. The role of induced 

magnetic field on a mixed convection flow in microchannel 

was addressed by Basant et al. [18]. In view of these, the study 

on transport of Casson fluid under nonlinear Boussinesq 

approximation in a microchannel in presence of induced 

magnetic field and exponential heat source is an open question. 

Therefore, the prime purpose of this study is to investigate the 

momentum and thermal behavior of Casson fluid in the 

presence of the induced magnetic field, exponential heat 

source under nonlinear Boussinesq approximation in a 

microchannel. The governing equations are treated 

analytically by using HPM under velocity slip and temperature 

jump boundary conditions. The following section illustrates 

the basic idea of HPM. 

 

 

2. IDEA OF HPM 
 

To explain the basic idea of HPM, consider the nonlinear 

differential equation of the form (see [19-20]): 

 

,0)()( =− lfuA Dl                          (1) 

 

with the boundary condition: 

 

,0, =












m

u
uB  Fl                          (2) 

 

where 𝐴, 𝐵, 𝑓(𝑙)  and 𝐹  are general differential operator, 

boundary operator, a known analytical function and boundary 

of the domain 𝐷 respectively. The operator 𝐴 can be divided 

into linear(𝐿) and nonlinear (𝐿) parts. Therefore Eq. (1) can 

be written as: 

 

,0)()()( =−+ lfuNuL  ,Dl                   (3) 

 

The HPM structure can be written as: 

 

,0)]()([)]()()[1(),( 0 =−+−−= lfvApuLvLppvH  (4) 

 

where 

 

𝑣(𝑙, 𝑝): 𝐷 × [0,1] → 𝑅. 
 

In Eq. (4), 𝑝 ∈ [0,1] is an embedding parameter, while 0u  

is an initial approximation that satisfies the boundary 

condition. The solution for the Eq. (4) can be expressed as a 

power series in p , as follows: 

 

...,2

2

10 +++= vppvvv                       (5) 

 

setting 𝑝 = 1 gives the approximate solution of Eq. (1) as 

 

....lim 210
1

+++==
→

vvvvu
p

                (6) 

 

 

3. MATHEMATICAL FORMULATION 
 

The physical configuration of the problem consisting of two 

infinite vertical plates which are separated by a distance 𝑏 is 

as shown in Figure 1. The quadratic convective flow of Casson 

fluid with exponential heat source is considered in a vertical 

microchannel. The flow is assumed to be non-transient, 

unidirectional. A coordinate system is considered in such a 

way that 
'x -axis is opposite to gravity and 

'y -axis is 

perpendicular to the vertical microchannel. The plates are 

heated asymmetrically with left plate is maintained at a 

temperature 𝑇1  and the right plate at a temperature 𝑇2  with 

𝑇1 > 𝑇2. Therefore, there exists a large temperature difference 

between the plates causing nonlinear convection in the 

microchannel.  

 

 
 

Figure 1. Physical arrangement of the problem 

 

Using nonlinear Boussinesq’s approximation the governing 

equations of momentum, magnetic field and energy are given 

below (see [16]): 
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The corresponding boundary conditions are (see [16, 21]): 
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where all the symbols are defined in the nomenclature section. 

Now introducing the following non-dimensional quantities 

(see [16]) 
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into the governing Eqns. (7)-(9) and boundary conditions (10) 

and (11) then one can get: 
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4. HPM SOLUTION 

 

On constructing a convex Homotopy on Eqns. (12)-(14) and 

applying the HPM to solve the governing equations one can 

have: 
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Assuming the solutions of Eqns. (12)-(14) to be written as 
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Substituting Eq. (20) into Eqns. (17)-(19) and simplifying, 

one can get 
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By comparing the coefficient of 𝑝0, 𝑝1, 𝑝2 and 𝑝3 of Eqns. 

(21)-(23) one can have 
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Subsequent boundary conditions are 
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Upon solving, above system one can have 
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𝜃3 = 𝑐7𝑦 + 𝑐8.                              (47) 

 

The approximate solution for the velocity, induced 

magnetic field and temperature can be obtained from the Eqns. 

(37)-(47) as 

 

...,3210 ++++= uuuuu                    (48) 

 

𝐻 = 𝐻0 + 𝐻1 + 𝐻2 + 𝐻3+. . .,                    (49) 

 

𝜃 = 𝜃0 + 𝜃1 + 𝜃2 + 𝜃3+. . .,                     (50) 

 

where, 

 

𝑎1 = 𝑎2 = 𝑏1 = 𝑏2 = 𝑏3 = 𝑏4 = 𝑏6 = 𝑐3 
= 𝑐4 = 𝑐7 = 𝑐8 = 0, 𝑎4 = 𝛽𝜈𝐾𝑛𝑎3, 
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The induced current density can be found by: 
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The volume flow rate (𝑄𝑚) in dimensionless is given by: 
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From Eq. (48) the skin friction co-efficient at y=0 and y=1 

in nondimensional form can be obtained as (see [16]): 
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Similarly, the Nusselt number is given below (see [16]) 
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5. VALIDATION OF THE SOLUTION 

 

In order to validate the accuracy of the solution obtained by 

the Homotopy perturbation method (HPM), a direct 

comparison is made for the values of 0  and 
1  obtained by 

HPM and Runge-Kutta-Fehlberg 4-5th order method. The 

comparison values are recorded in table 1 and an excellent 

agreement is found.  

 

 

Table 1. Comparison of HPM and Runge-Kutta-Fehlberg 4-5th order method solution for skin friction coefficient when 𝑃𝑚 =
𝛽 = 𝑛 = 𝛼 = 0.5, 𝑙𝑛 = 1.667,𝑀 = 5 and 𝜉 = 1 

 
Q 𝝉𝟎 𝝉𝟏 

 HPM RKFM HPM RKFM 

0. 1  0.263314607 0.263299381 -0.263162225   -0.263177451 

0.2 0.276891271 0.276860258 -0.276580954    -0.276611967 

0.3 0.290729992 0.290682629 -0.290256185   -0.290303548 

0.4 0.30483077 0.304766496 -0.304187919    -0.304252193 

0.5 0.319193605 0.319111858 -0.318376156    -0.318457902 

 

 

6. RESULTS AND DISCUSSION 
 

The main objective of this section is to examine the effect 

of exponential heat source parameter (𝑄), induced magnetic 

parameter (𝑀), the magnetic Prandtl number (𝑃𝑚), Casson 

parameter (𝛽) , nonlinear convection parameter (𝛼) , 

exponential index (𝑛) , Knudsen number (𝛽𝜈𝐾𝑛)  and fluid-

wall interaction parameter (ln) on velocity 𝑢(𝑦), temperature 

𝜃(𝑦), induced magnetic 𝐻(𝑦), induced current density 𝐽(𝑦), 

volume flow rate (𝑄𝑚) , skin friction co-efficient (𝜏)  and 

Nusselt number (𝑁𝑢) profiles under three case of the wall-

ambient temperature difference ratio ( = 1 for symmetrical 

heating,  = 0 for one heating and one not heating,  = −1 

for one heating and one cooling). The present study has 

performed in the continuum and slips flow regimes (𝐾𝑛 ≤
0.1) . Throught the numerical computation the other 

parameters are choosen as 𝑀 = 5, 𝑃𝑚 = 𝛼 = 𝛽 = 𝑛 =

0.5, 𝛽𝜈𝐾𝑛 = 0.05, 𝑙𝑛 =1.667and 𝑄 = 2 unless otherwise stated. 

Figure 2 (a & b) exhibits the effect of 𝑄 and  on 𝑢(𝑦) and 

𝐻(𝑦)  when 𝑀 = 5, 𝑃𝑚 = 𝛽 = 𝛼 = 𝑛 = 0.5,  𝛽𝜈𝐾𝑛 =
0.05 & 𝑙𝑛 = 1.667 . Here 𝑄  and   increases with enhancing 

the fluid velocity 𝑢(𝑦) and induced magnetic field 𝐻(𝑦), this 

is because of the contribution of more heat into the system as 

a result, fluid particles absorb heat and hence have a tendency 

to move faster. It also observed that there exists a point of 

intersection inside the microchannel which makes the induced 

magnetic field 𝐻(𝑦) to be independent of 𝑄.  

 

 
             

(a) 

 
(b) 

 

Figure 2. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of exponential heat source 

parameter Q 

 

Figures 3 (a) and 4 (a) illustrate the effect of 𝑀 and 𝑃𝑚, 

respectively on 𝑢(𝑦). Here as 𝑀 and 𝑃𝑚 increases reduction 

in fluid velocity occurs, due to the presence of Lorentz force 

which is an opposing force on the velocity field. It is further 

noticed that in the case of asymmetric heating ( = −1) there 

exists a point of intersection inside the microchannel, whereas 

the velocity field is independent of 𝑀 and 𝑃𝑚. The impact of 

𝑀  and 𝑃𝑚  on the microchannel slip velocity becomes 

significant as  increases. Figures 3 (b) and 4 (b) shows the 

variation of 𝑀 and 𝑃𝑚 on induced magnetic field respectively. 

It is noticed that near the microchannel wall at 𝑦 = 0  the 

induced magnetic field is directly proportional to the induced 

magnetic parameter and the magnetic Prandtl number whereas 

the inverse trend is observed near the microchannel wall at 

𝑦 = 1. In addition to this, inside the vertical microchannel 

there exists a point of intersection which makes the 𝐻 to be 

independent of 𝑀  and 𝑃𝑚 . The effect of 𝑀  and 𝑃𝑚  on the 

microchannel slip velocity becomes significant as  increases. 

Figures 5 (a & b) and 6 (a & b) exhibit the effect of 𝛽 & 𝛼 

on 𝑢(𝑦)  and 𝐻(𝑦)  respectively. Since 𝛼  is directly 

proportional to the buoyancy force, it is found that an increase 

in nonlinear convection parameter leads to an increase in the 

velocity profile because of strong buoyancy force. Also, it is 

worthwhile to note that the velocity increases with 𝛽 due to the 

decrease in the yield stress. It is also observed that the increase 
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in Casson fluid and nonlinear convection parameter causes an 

enhancement in the induced magnetic field near the 

microchannel wall at 𝑦 = 0  whereas reveres nature is 

observed at 𝑦 = 1. In addition to this, the induced magnetic 

field becomes independent of 𝛽  and 𝛼  due to the existence 

point of intersection inside the vertical microchannel. Figure 7 

(a & b) shows the effect of 𝑛 on 𝑢(𝑦) and 𝐻(𝑦). It is evident 

that an increase in 𝑛  causes a reduction in both the fluid 

velocity and the induced magnetic field. 𝐻(𝑦)  becomes 

independent of 𝑛 due to the existence of a point of intersection 

inside the vertical microchannel. The effect of 𝑛 on velocity 

becomes significant as  increases.  

Figures 8 (a) and 9 (a) illustrate the effects of 𝛽𝜈𝐾𝑛 & 𝑙𝑛 on 

𝑢(𝑦). An increase in 𝛽𝜈𝐾𝑛 , 𝑙𝑛 &  causes an enhancement in 

the fluid slip and hence fluid velocity increases. Also, the fluid 

velocity increases with increase in the fluid-wall interaction 

parameter. Further, the effect of 𝛽𝜈𝐾𝑛& 𝑙𝑛  on the velocity 

becomes significant as  increases. Figures 8 (b) and 9 (b) 

exhibit the effect of 𝛽𝜈𝐾𝑛 & 𝑙𝑛 on 𝐻(𝑦). It is found that 𝐻(𝑦) 

increases with increases in 𝛽𝜈𝐾𝑛 , 𝑙𝑛 & .  

 

 
(a) 

 
(b) 

 

Figure 3. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of induced magnetic parameter 𝑀 

 

 
(a) 

 
(b) 

 

Figure 4. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of magnetic Prandtl number 𝑃𝑚 

 

 
(a) 

 
(b) 

 

Figure 5. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of Casson fluid parameter 𝛽 

 

 
(a) 
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(b) 

 

Figure 6. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of nonlinear convection parameter 

𝛼 

 

 
(a) 

 
(b) 

 

Figure 7. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of exponential index 𝑛   
 

Figures 10 (a & b) and 11 (a & b) show the effect of 𝑄 & 𝑛 

on 𝜃(𝑦) and 𝐽(𝑦). It is observed that the temperature profile 

can be increased by increasing the value of heat source 

parameter. This is because dissipation of energy due to heat 

source aspect. Whereas the reduction in the temperature 

profile can be seen by increasing the value of 𝑛. Also, a similar 

nature can be seen in the induced current density. Figures 12 

(a) and 13 (a) present the variation of 𝛽𝜈𝐾𝑛 & 𝑙𝑛 on 𝜃(𝑦). It is 

seen that, an increase in the values of 𝛽𝜈𝐾𝑛 and 𝑙𝑛 causes an 

enhancement in the temperature profile because of the increase 

in the temperature jump. The influence of 𝛽𝜈𝐾𝑛  and 𝑙𝑛  on 

𝜃(𝑦) becomes significant as  increases. Figures 12 (b) and 13 

(b) shows the effect of 𝛽𝜈𝐾𝑛  and 𝑙𝑛 on 𝐽(𝑦). It is observed that, 

an increase in both 𝛽𝜈𝐾𝑛  and 𝑙𝑛  causes an enhancement in 

𝐽(𝑦) in the domain 𝑦 ∈ (0.2, 0.7) whereas the inverse trend is 

seen in the domain 𝑦 ∈ (0, 0.2) and 𝑦 ∈ (0.7, 1). For the wall 

ambient temperature difference ratio, the inverse effect of 

induced current density is seen. It is also found that the 

induced current density becomes independent of  𝛽𝜈𝐾𝑛 and 𝑙𝑛 

at two points due to the existence of points of intersection 

inside the microchannel. 

 

 
(a) 

 
(b) 

 

Figure 8. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of Knudsen number 𝛽𝜈𝐾𝑛 

 

 
(a) 

 
(b) 

 

Figure 9. Velocity profile 𝑢(𝑦) and induced magnetic field 

𝐻(𝑦) for different values of fluid-wall interaction parameter 

𝑙𝑛 
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(a) 

 
(b) 

 

Figure 10. Temperature profile 𝜃(𝑦) and induced current 

density 𝐽(𝑦) for different values of 𝑄 

 

 
(a) 

 
(b) 

 

Figure 11. Temperature profile 𝜃(𝑦) and induced current 

density 𝐽(𝑦) for different values of 𝑛 

 

 
(a) 

 
(b) 

 

Figure 12. Temperature profile 𝜃(𝑦) and induced current 

density 𝐽(𝑦) for different values of 𝛽𝜈𝐾𝑛 

 

 
(a) 

 
(b) 

 

Figure 13. Temperature profile 𝜃(𝑦) and induced current 

density 𝐽(𝑦) for different values of 𝑙𝑛 
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Figure 14 (a & b) shows the effect of 𝛽, 𝛼 &  on induced 

current density. Here an increase in 𝛽  and 𝛼  causes an 

enhancement in the induced current density at the central 

region of the vertical microchannel while reveres behavior is 

observed at the microchannel plates. Also, it is interesting to 

note that current density changes its behavior at two points 

inside the microchannel with 𝛽 and 𝛼. 

 

 
(a) 

 
(b) 

 

Figure 14. Induced current density 𝐽(𝑦) for different values 

of 𝛽 and 𝛼 

 

Figure 15 (a & b) presences the variations of 𝑄𝑚  with 

respect to 𝛽𝜈𝐾𝑛for different values of 𝑄 & 𝛼. It is seen that an 

increase in 𝑄 and 𝛼 causes an enhancement in volume flow 

rate(𝑄𝑚) for both symmetric and asymmetric heating. Also it 

is found that 𝑄𝑚 is an increasing function of  and 𝑙𝑛. Figures 

16 (a) and 17 (a) illustrate the effect of 𝑄, 𝛽𝜈𝐾𝑛 and  on the 

skin friction. It is found that the increase in the 𝑄 leads to an 

increase in the skin friction at the wall 𝑦 = 0 while reveres 

nature occurs at the microchannel wall 𝑦 = 1. Furthermore, it 

is evident that the skin friction 𝜏1  is more in the case of 

asymmetric heating in compare with symmetric heating 

whereas the reverse trend is seen for 𝜏0. Also, similar effects 

can be found in Figures 16 (b) and 17 (b) for different values 

of 𝛼.  

Figures 18 (a) and 19 (a) show the effect of 𝑄 on the Nusselt 

number. It is observed that the heat transfer rate increases with 

the increase in the value of 𝑄  at the wall 𝑦 = 0  while the 

reverse trend occurs at the microchannel wall 𝑦 = 1 . In 

addition, it is found that the heat transfer rate is higher in the 

case of asymmetric heating than that of the symmetric heating. 

Figures 18 (b) and 19 (b) depict the effect of the fluid-wall 

interaction parameter on the Nusselt number. It is seen that the 

heat transfer rate decreases by rising the values of 𝑙𝑛, 𝛽𝜈𝐾𝑛 & . 

 
(a) 

 
(b) 

 

Figure 15. Volume flow rate 𝑄𝑚for different values of 𝑄 and 

𝛼 

 

 
(a) 

 
(b) 

 

Figure 16. Skin friction 𝜏0 for different values of 𝑄 and 𝛼 

378



 

 
(a) 

 
(b) 

 

Figure 17. Skin friction 𝜏1 for different values of 𝑄 and 𝛼 

 

 
(a) 

 
(b) 

 

Figure 18. Nusselt number 𝑁𝑢0 for different values of 𝑄 and 

𝑙𝑛 

 

  
(a) 

 
(b) 

 

Figure 19. Nusselt number 𝑁𝑢1 for different values of 𝑄 and 

𝑙𝑛 

 

Table 2. Numerical values of volume flow rate(𝑄𝑚) for various values of 𝑀,𝑃𝑚, 𝛽, 𝑛, 𝑙𝑛 when 𝑄 = 2 and 𝛼 = 0.5 along with 

the slope of data points 

 
                    

  

𝑴 

  

 

𝑷𝒎 

 

 

𝜷 

 

 

𝒏 

 

 

𝒍𝒏 

              𝑸𝒎  

       = 𝟏      = 𝟎  

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟎𝟓 

𝜷𝝂𝑲𝒏 

= 𝟎.𝟏 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟎𝟓 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟏 

  1 0.5 0.5 2 1.667 0.0625 0.0802 0.0296 0.0387 

1.5 0.5 0.5 2 1.667 0.0624 0.0801 0.0295 0.0387 

  2 0.5 0.5 2 1.667 0.0622 0.0799 0.0295 0.0386 

Slope 

-0.0003 

-

0.0003 -0.0001 

-

0.0001 

 

  5 1 0.5 2 1.667 0.0568 0.0745 0.0272 0.0363 

  5 1.5 0.5 2 1.667 0.054 0.0716 0.026 0.0351 

  5 2 0.5 2 1.667 0.0511 0.0688 0.0247 0.0339 

Slope 

-0.0057 

-

0.0057 -0.0025 

-

0.0024 
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  5 0.5 1 2 1.667 0.0874 0.114 0.0417 0.0554 

  5 0.5 1.5 2 1.667 0.1034 0.1352 0.0494 0.0659 

 

  5 0.5 2 2 1.667 0.1137 0.1491 0.0544 0.0727 

Slope 0.0263 0.0351 0.0127 0.0173 

  5 0.5 0.5 1 1.667 0.1863 0.2106 0.3459 0.3265 

  5 0.5 0.5 1.5 1.667 0.0716 0.0899 0.0514 0.0587 

  5 0.5 0.5 2 1.667 0.0583 0.0761 0.0261 0.0356 

Slope 

-0.128 

-

0.1345 -0.3198 

-

0.2909 

5 0.5 0.5 2 1 0.0586 0.0747 0.0277 0.0357 

5 0.5 0.5 2 1.5 0.0595 0.0767 0.0282 0.0371 

  5  0.5 0.5   2    2  0603      0.788     0.0288   0.0386      

  Slope 0.0017 0.0041 0.0011 0.0029 

 

Table 3. Numerical values of skin friction(𝜏0) for various values of 𝑀,𝑃𝑚, 𝛽, 𝑛, 𝑙𝑛 when 𝑄 = 2, 𝛼 = 0.5 along with the slope of 

data points 

 
                    

  

𝑴 

  

 

𝑷𝒎 

 

 

𝜷 

 

 

𝒏 

 

 

𝒍𝒏 

               𝝉𝟎 

      = 𝟏       = 𝟎 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟎𝟓 

𝜷𝝂𝑲𝒏 

= 𝟎.𝟏 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟎𝟓 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟏 

1 0.5 0.5 2 1.667 0.288 0.3013 0.1035 0.1185 

1.

5 

0.5 0.5 2 1.667 

0.288 0.3013 0.1036 0.1187 

2 0.5 0.5 2 1.667 0.288 0.3013 0.1038 0.1189 

Slope 0 0 0.0003 0.0004 

5 1 0.5 2 1.667 0.288 0.3013 0.1099 0.125 

5 1.5 0.5 2 1.667 0.288 0.3013 0.1132 0.1283 

5 2 0.5 2 1.667 0.288 0.3013 0.1164 0.1316 

Slope 0 0 0.0065 0.0066 

5 0.5 1  2 1.667 0.4319 0.4519 0.1624 0.185 

5 0.5 1.5  2 1.667 0.5183 0.5423 0.1966 0.2238 

5 0.5 2  2 1.667 0.5759 0.6025 0.2198 0.25 

Slope 0.144 0.1506 0.0574 0.065 

5 0.5 0.5 1 1.667 -

0.2481 

-

0.2303 

-

0.4344 

-

0.4163 

5 0.5 0.5 1.

5 

1.667 

0.291 0.3068 0.1075 0.1244 

5 0.5 0.5  2 1.667 0.3064 0.3198 0.1251 0.1402 

Slope 0.5545 0.5501 0.5595 0.5565 

5 0.5 0.5   2 1 0.2825 0.2905 0.1016 0.1122 

5 0.5 0.5   2 1.5 0.2866 0.2985 0.1054 0.1193 

5 0.5 0.5   2 2 0.2907 0.3067 0.1091 0.1264 

Slope 0.0082 0.0162 0.0075 0.0142 

 

Table 4. Numerical values of skin friction(𝜏1) for various values of 𝑀,𝑃𝑚, 𝛽, 𝑛, 𝑙𝑛 when 𝑄 = 2, 𝛼 = 0.5 along with the slope of 

data points 

 

 

 

𝑴 

 

 

𝑷𝒎 

 

 

𝜷 

 

 

𝒏 

 

 

𝒍𝒏 

1  

 = 𝟏  = 𝟎 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟎𝟓 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟏 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟎𝟓 

𝜷𝝂𝑲𝒏 

= 𝟎. 𝟏 

1 0.5 0.5 2 1.667 -0.2831 -0.2954 -0.1678 -0.1697 

1.5 0.5 0.5 2 1.667 -0.2831 -0.2954 -0.1677 -0.1696 

2 0.5 0.5 2 1.667 -0.2831 -0.2954 -0.1674 -0.1693 

Slope 0 0 0.0004 0.0004 

5 1 0.5 2 1.667 -0.2831 -0.2954 -0.1614 -0.1632 

5 1.5 0.5 2 1.667 -0.2831 -0.2954 -0.1581 -0.1599 

5 2 0.5 2 1.667 -0.2831 -0.2954 -0.1548 -0.1566 

Slope 0 0 0.0066 .0066 

5 0.5 1 2 1.667 -0.4247 -0.443 -0.2445 -0.2473 

5 0.5 1.5 2 1.667 -0.5097 -0.5316 -0.2917 -0.295 

5 0.5 2 2 1.667 -0.5663 -0.5907 -0.3228 -0.3265 

Slope -0.146 -0.147 -0.073 -0.072 

5 0.5 0.5 1 1.667 -0.3024 -0.3212 -0.1804 -0.1875 

5 0.5 0.5 1.5 1.667 -0.2913 -0.3063 -0.1754 -0.1754 

5 0.5 0.5 2 1.667 -0.2831 -0.2954 -0.1647 -0.1665 

Slope 0.0193 0.0258 0.0157 0.021 

5 0.5 0.5 2 1 -0.2785 -0.2857 -0.1634 -0.1623 
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5 0.5 0.5 2 1.5 -0.282 -0.2929 -0.1643 -0.1654 

5 0.5 0.5 2 2 -0.2855 -0.3002 -0.1655 -0.169 

Slope -0.007 -0.0145 -0.0021 -0.0067 

 

The numerical values of 𝑄𝑚  for various values of 

𝑀,𝑃𝑚, 𝛽, 𝑛, and 𝑙𝑛 when 𝑄 = 2 and 𝛼 = 0.5 are recorded for 

the cases of 𝜉 = 1and 𝜉 = 0  in table 2. Also, the slope of 

linear regression using data points is estimated to know the 

amount of increase or decrease in the 𝑄𝑚. It is also seen that, 

the 𝑄𝑚 is a declining function of 𝑀,𝑃𝑚 and 𝑛 whereas 𝑄𝑚 is 

an increasing function of 𝛽 and 𝑙𝑛. Impact of 𝛽 on 𝑄𝑚 is more 

significant than that of 𝑙𝑛 . Tables 3 and 4 present the 

numerical values of skin friction coefficient at 𝑦 = 0 and 𝑦 =
1 respectively for various values of 𝑀,𝑃𝑚, 𝛽, 𝑛 and 𝑙𝑛 when 

𝑄 = 2 and 𝛼 = 0.5. It is found that, the 𝜏0  is an increasing 

function of 𝑀,𝑃𝑚, 𝛽, 𝑛, and 𝑙𝑛 . Impact of 𝑛  on 𝜏0 is more 

significant than that of 𝑀,𝑃𝑚, 𝛽, and 𝑙𝑛. From tables 4 it is 

noticed that 𝜏1  is an increasing function of 𝑀,𝑃𝑚  and 𝑛 

whereas it is a declining function of 𝛽 and 𝑙𝑛. 

 

 

7. STATISTICAL ANALYSIS 

 

7.1 Correlation coefficient and probable error 

 

The correlation coefficient (𝑟) and probable error (𝑃𝐸) are 

calculated for skin friction co-efficient and Nusselt number for 

various parameters. The nature of the relationship for variables 

considered was determined by the sign of 𝑟. The significance 

precision of the correlation coefficient is calculated by using 

probable error(𝑃𝐸). If 𝑟 > 6 ∙ 𝑃𝐸 then the correlation is said 

to be significant according to Fisher [22]. The probable error 

is given by: 

 

𝑷𝑬 = (
𝟏 − 𝒓𝟐

√𝒋
) 𝟎. 𝟔𝟕𝟒𝟓. 

 

where 𝑗 denotes the number of observations. 

 

Table 5. Correlation coefficient (r), Probable error (PE) and 

|
𝑟

𝑃𝐸
| values for 𝜏0with respect to the parameters 𝑄, 𝛽, 𝛼, 𝑛, 𝑙𝑛 

and 𝛽𝜈𝐾𝑛 

 
𝝉𝟎 

Parameter    𝒓    𝑷𝑬 |𝒓/𝑷𝑬| 
  𝑄 0.998274  0.001163182  858.2266 

  𝛽  0.999952  3.23752E-05 30886.34 

  𝛼  0.999964  2.42816E-05 41182.03 

  𝑛  -0.99838  0.001091132 914.996 

  𝑙𝑛   0.989949 0.00674533 146.7607 

𝛽𝜈𝐾𝑛  -0.99997 2.09092E-05  47824.41 

 

Table 5 illustrates that 𝜏0  is highly positively correlated 

with 𝑄, 𝛽, 𝛼  & 𝑙𝑛  while it is negatively correlated with 

𝛽𝜈𝐾𝑛 & 𝑛 . From table 6, it is observed that 𝜏1  is highly 

negatively correlated with 𝑄, 𝛽, 𝛼 , 𝑙𝑛  & 𝛽𝜈𝐾𝑛  whereas 

positively correlated with 𝑛. Table 7 shows that, 𝑁𝑢𝑜 is highly 

positively correlated with 𝑄  and negatively correlated with 

𝑛, 𝛽𝜈𝐾𝑛 & 𝑙𝑛. Similarly using table 8, it is observed that 𝑁𝑢1 

is highly negatively correlated with 𝑄, 𝑙𝑛  & 𝛽𝜈𝐾𝑛  and 

positively correlated with 𝑛. Finally in all the cases correlation 

obtained for 𝜏0, 𝜏1, 𝑁𝑢0  and 𝑁𝑢1  are significant because 

|
𝑟

𝑃𝐸
|  > 6. 

Table 6. Correlation coefficient (r), Probable error (PE) and 

|
𝑟

𝑃𝐸
| values for 𝜏1with respect to the parameters 𝑄, 𝛽, 𝛼, 𝑛, 𝑙𝑛 

and 𝛽𝜈𝐾𝑛 

 

𝝉𝟏 

Parameter    𝒓    𝑷𝑬  |𝒓/𝑷𝑬| 
 𝑄 -0.99827  0.001163182 858.2266 

 𝛽 -0.99995 3.23752E-05 30886.34 

 𝛼 -0.99996 2.42816E-05 41182.03 

 𝑛  0.984315   0.010496563 93.77499 

 𝑙𝑛 -0.98995 0.00674533  146.7607 

 𝛽𝜈𝐾𝑛 -0.99997 1.88857E-05  52948.53 

 

Table 7. Correlation coefficient (r), Probable error (PE) and 

|
𝑟

𝑃𝐸
| values for 𝑁𝑢0 with respect to the parameters 𝑄, 𝑛, 𝑙𝑛 

and 𝛽𝜈𝐾𝑛  
 

𝑵𝒖𝟎  

Parameter    𝒓     𝑷𝑬  |𝒓/𝑷𝑬| 
 𝑄 0.999989 7.41946E-06 134779.2 

 𝑛 -0.99998 1.61878E-05 61773.41 

 𝑙𝑛 -0.94388 0.036790787 25.65534 

 𝛽𝜈𝐾𝑛 -0.99976 0.000165232 6050.604 

 

Table 8. Correlation coefficient (r), Probable error (PE) and 

|
𝑟

𝑃𝐸
| values 𝑁𝑢1 for with respect to the parameters 

𝑄, 𝑛, 𝑙𝑛 and 𝛽𝜈𝐾𝑛 

 
𝑵𝒖𝟏  

Parameter    𝒓    𝑷𝑬  |𝒓/𝑷𝑬| 
 𝑄 -0.99999 1.01174E-05 98837.9 

 𝑛  0.928734 0.046356077 20.03478 

 𝑙𝑛 -0.94868 0.033725191 28.1298 

 𝛽𝜈𝐾𝑛 -0.99965 0.000233337  4284.171 

 

7.2 Regression analysis 

 

The regression analysis is made to estimate the skin friction 

co-efficient and Nusselt number by multivariable linear 

regression models. Since the curves of τ and Nu (see Figures 

16-19) are linear in nature the linear regression model is 

chosen specifically to estimate the same. The estimated 

models are given below: 

 

𝜏0𝑒𝑠𝑡 = 𝑏𝑄𝑄 + 𝑏𝑀𝑀 + 𝑏𝑃𝑚𝑃𝑚 + 𝑏𝛽𝛽 + 𝑏𝛼𝛼 + 𝑏𝑛𝑛 + 𝑏𝑙𝑛𝑙𝑛

+ 𝑏𝛽𝜈𝐾𝑛
𝛽𝜈𝐾𝑛 + 𝐶1, 

 

𝜏1𝑒𝑠𝑡 = 𝑏𝑄𝑄 + 𝑏𝑀𝑀 + 𝑏𝑃𝑚𝑃𝑚 + 𝑏𝛽𝛽 + 𝑏𝛼𝛼 + 𝑏𝑛𝑛 + 𝑏𝑙𝑛𝑙𝑛

+ 𝑏𝛽𝜈𝐾𝑛
𝛽𝜈𝐾𝑛 + 𝐶2, 

𝑁𝑢0𝑒𝑠𝑡 = 𝑏𝑄𝑄 + 𝑏𝑛𝑛 + 𝑏𝑙𝑛𝑙𝑛 + 𝑏𝛽𝜈𝐾𝑛𝛽𝜈𝐾𝑛 + 𝐶3,  
 

𝑁𝑢1𝑒𝑠𝑡 = 𝑏𝑄𝑄 + 𝑏𝑛𝑛 + 𝑏𝑙𝑛𝑙𝑛 + 𝑏𝛽𝜈𝐾𝑛𝛽𝜈𝐾𝑛 + 𝐶4, 

 

where, 𝑏𝑄 , 𝑏𝑀 , 𝑏𝑃𝑚 , 𝑏𝛽 , 𝑏𝛼 , 𝑏𝑛 , 𝑏𝑙𝑛  and 𝑏𝛽𝜈𝐾𝑛
are the estimated 

regression coefficient and 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are constants. 

The 𝜏0 values are estimated from 30 set of random values 

𝑜𝑓 𝑄,𝑀, 𝛽, 𝛼, 𝑛, 𝑙𝑛 & 𝛽𝜈𝐾𝑛 ∈ [0.1, 0.6] and 𝑃𝑚 ∈ [0.01,0.07] 

for regression model. It is found that all the physical 

parameters achieve significance value<0.05 for significant 
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regression coefficients except for the parameters 𝑄  and 𝑃𝑚 

(see Table 9).  

 

Table 9. Regression coefficients for the multiple linear 

regression model for 𝜏0 

 
 

Model 

Unstandardized Coefficients  

Significance 

 

   𝒃     Standard  

 Error 

 

 (Constant) -.111 .007 .000 

  𝑄 .029 .001 .000 

  𝑀 -.001 .001 .459 

  𝑃𝑚 -.003 .004 .438 

  𝛽 .440 .007 .000 

  𝛼 .264 .007 .000 

  𝑛 -.022 .005 .000 

  𝑙𝑛 .011 .001 .000 

  𝛽𝜈𝐾𝑛 .456 .005 .000 

 

The estimated 𝜏0 is given by: 

 

𝝉𝟎𝒆𝒔𝒕 = 𝟎. 𝟎𝟐𝟗𝑸 − 𝟎. 𝟎𝟎𝟏𝑴 − 𝟎. 𝟎𝟎𝟑𝑷𝒎 + 𝟎. 𝟒𝟒𝟎𝜷
+ 𝟎. 𝟐𝟔𝟒𝜶 − 𝟎. 𝟎𝟐𝟐𝒏
+ 𝟎. 𝟎𝟏𝟏 𝒍𝒏+𝟎. 𝟒𝟓𝟔𝜷𝝂𝑲𝒏 − 𝟎. 𝟏𝟏𝟏. 

 

The above equation implies that the parameters 

𝑄, 𝛽, 𝛼, 𝑙𝑛, 𝛽𝜈𝐾𝑛  and 𝑀,𝑃𝑚, 𝑛 have a positive and negative 

impact on 𝜏0  correspondingly. Similarly, 𝜏1  values are 

estimated from 30 set of random values of 

𝑄,𝑀, 𝛽, 𝛼, 𝑛, 𝑙𝑛, 𝛽𝜈𝐾𝑛& 𝑃𝑚  ∈  [0.1, 0.4] for the regression 

model. It is evident from table 10 that, all the physical 

parameters have the significance value<0.05 for significant 

regression coefficients except for the parameters 𝑄 and 𝑃𝑚.  

 

Table 10. Regression coefficients for the multiple linear 

regression model for 𝜏1 

 
 

 

 

Model 

Unstandardized Coefficients  

Significance 

 

  𝒃   Standard Error 

 

 (Constant) 0.125 0.009 0.000 

  𝑄 -0.031 0.001 0.000 

  𝑀 -0.001 0.001 .520 

  𝑃𝑚 -0.005 0.008 .544 

  𝛽 -0.452 0.008 .000 

  𝛼 -0.256 0.015 .000 

  𝑛 0.035 0.008 .000 

  𝑙𝑛 -0.013 0.002 .000 

  𝛽𝜈𝐾𝑛 -0.434 0.009 .000 

 

The estimated regression model of 𝜏1 is given by: 

 

𝝉𝟏𝒆𝒔𝒕 = −𝟎. 𝟎𝟑𝟏𝑸 − 𝟎. 𝟎𝟎𝟏𝑴 − 𝟎. 𝟎𝟎𝟓𝑷𝒎 − 𝟎. 𝟒𝟓𝟐𝜷
− 𝟎. 𝟐𝟓𝟔𝜶 + 𝟎. 𝟎𝟑𝟓𝒏
− 𝟎. 𝟎𝟏𝟑 𝒍𝒏−𝟎. 𝟒𝟑𝟒𝜷𝝂𝑲𝒏 + 𝟎. 𝟏𝟐𝟓. 

 

The above equation depicts that 

𝑄,𝑀, 𝑃𝑚, 𝛽, 𝛼, 𝑙𝑛, 𝛽𝜈𝐾𝑛 and 𝑛  have a negative and positive 

impact on 𝜏1 respectively. 

The 𝑁𝑢0 values are estimated from 30 set of random values 

of 𝑄, 𝑛, 𝑙𝑛 & 𝛽𝜈𝐾𝑛 ∈ [0.01, 0.08] for regression model. It is 

found that all the physical parameters achieve the significance 

value<0.05 for significant regression coefficients (see Table 

11).  

 

Table 11. Regression coefficients for the multiple linear 

regression model for 𝑁𝑢0 

 
 

 

 

 

 

M odel 

Unstandardized Coefficients  

 

Significance 

 

  𝒃 Standard Error 

 (Constant) .170 .001 .000 

  𝑄 .422 .000 .000 

  𝑛 -.309 .001 .000 

  𝑙𝑛 -.006 .000 .000 

  𝛽𝜈𝐾𝑛 -.153 .008 .000  

 

The estimated regression model for 𝑁𝑢0 is given by: 

 

𝑁𝑢0𝑒𝑠𝑡 = 0.422𝑄 − 0.309𝑛 − 0.006 𝑙𝑛 −0.153𝛽𝜈𝐾𝑛
+ 0.170. 

 

The above equation implies that the parameters 

𝑄, 𝑛, 𝑙𝑛 & 𝛽𝜈𝐾𝑛  have a negative impact on 𝑁𝑢0 . Similarly, 

𝑁𝑢1  values are estimated from 30 set of random values of 

𝑄, 𝑛, 𝑙𝑛 & 𝛽𝜈𝐾𝑛 ∈  [0.1, 0.8] for the regression model. It is 

evident from table 12 that, all the physical parameters have the 

significance value<0.05 for significant regression coefficients. 

 

Table 12. Regression coefficients for the multiple linear 

regression model for 𝑁𝑢1 

 
 

 

 

 

 

  Model 

Unstandardized Coefficients  

 

Significance 

 

   𝒃 Standard Error 

 (Constant) -7.913 1.790 .000 

  𝑄 -1.300  .451 .007 

  𝑛  20.486  2.350 .000 

  𝑙𝑛 -1.355 .639 .041 

  𝛽𝜈𝐾𝑛  1.824 .834 .035  

 

The estimated regression model for 𝑁𝑢1 is given by: 

 

𝑁𝑢1𝑒𝑠𝑡 = −1.300𝑄 + 20.486𝑛 − 1.355 𝑙𝑛 +1.824𝛽𝜈𝐾𝑛
− 7.913. 

 

The above equation depicts that the parameters 

𝑄 & 𝑙𝑛  have a negative impact on 𝑁𝑢1  whereas 𝑛 & 𝛽𝜈𝐾𝑛 

have a positive impact on 𝑁𝑢1. The outcomes of estimated 𝜏 

and 𝑁𝑢 are matching with actual 𝜏 and 𝑁𝑢 (see Figure 20). 

 

 
(a) 
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(b) 

 

Figure 20. Comparison of actual and estimated values of 𝜏0 

and 𝑁𝑢0 

 

 

8. CONCLUSIONS 

 

The role of the exponential heat source and quadratic 

convection in the flow of Casson fluid with an induced 

magnetic field under velocity slip and temperature jump is 

investigated analytically by using HPM. The following 

conclusions are drawn. 

(1) In the induced magnetic field profile there exists a 

point of intersection inside the vertical microchannel which 

makes the induced magnetic field to be independent of the 

parameters involved. 

(2) As similar to the induced magnetic field there exist 

two points of intersection inside the vertical microchannel for 

the induced current density. 

(3) The effect of 𝑀 and 𝑃𝑚 on velocity profile causes a 

point of intersection inside the microchannel for asymmetric 

heating ( = −1). 

(4) The nonlinear convection parameter is favorable for 

skin friction (𝜏0). 

(5) Impact of Casson fluid parameter and the exponential 

heat source is qualitatively agreed for all flow fields. 

(6) The Nusselt number and the skin friction 𝑆𝑓1 is more 

in case of asymmetric heating in compare with symmetric 

heating. 

(7) The impact of exponential index is more significant 

for 𝑆𝑓0. 

(8) The solution obtained for 𝑆𝑓  and 𝑁𝑢  from the 

calculation and the regression equations are superimposed. 
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NOMENCLATURE 

b Distance between the plate (𝑚) 

𝐶𝑝 Specific heat at constant pressure (𝐽/𝑘𝑔 𝐾) 

g Acceleration due to gravity (𝑚/𝑠2)

𝐻0
′ 

𝐻𝑥
 ′

𝐻 
𝑙𝑛 

𝐽 
𝑀 

𝑃𝑚 

𝑃𝑟 

𝑄𝑚

𝑇′

𝑇0

𝑢 

𝑢′

𝑄 

𝑛 

𝑘 

Applied magnetic field (𝑇) 

Dimensional induced magnetic field (𝐴/𝑚) 

Dimensionless induced magnetic field 

The fluid-wall interaction parameter 

Induced current density (𝐴/𝑚2)
Induced magnetic parameter 

Magnetic Prandtl number 

Prandtl number 

Dimensionless volume flow rate 

The temperature of the fluid (𝐾) 

Reference temperature (𝐾) 

The dimensionless velocity of the fluid 

The dimensional velocity of the fluid (𝑚/𝑠) 

Exponential heat source parameter 

Exponential index 

Thermal conductivity (𝑊/𝑚 𝐾) 

Greek symbols 

 Nonlinear convection parameter 

 Casson fluid parameter 

𝛽0, 𝛽1 Coefficient of thermal expansion 

𝛽𝑡 , 𝛽𝜈 Dimensionless variables 

𝛾 

𝜃 

𝜌 
𝜇𝑒

𝜈 

𝜎 


𝜎𝑡 , 𝜎𝜈

The ratio of specific heat 

Dimensionless temperature 

Density (𝑘𝑔/𝑚3)

Magnetic permeability (𝐻/𝑚) 

Kinematic viscosity (𝑚2/𝑠)

The electrical conductivity of the fluid 

(𝑆/𝑚) 

Molecular mean free path 

Thermal and tangential momentum 

coefficient, respectively 
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