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 This paper attempts to solve the problems with linear regression-based collaborative filtering 

recommendation algorithm, namely, the difficulty in extracting eigenvalues, the low 

accuracy and the poor interpretability. For this purpose, the tag weights were introduced as 

eigenvalues and the prediction accuracy was improved by the principle of collaborative 

filtering recommendation algorithm, creating a personalized collaborative filtering 

recommendation algorithm based on linear regression (PCFLR). Firstly, the tag weights for 

users were computed by term frequency–inverse document frequency (TF-IDF), and taken 

as the eigenvalues of the linear regression model. Then, the linear regression model was 

constructed based on the users’ historical scores. After that, the cost function was set up by 

the least squares method, and regularized to prevent over-fitting. Next, the optimal value of 

the cost function was computed by gradient descent method, yielding the tag weights for 

items. On this basis, the predicted scores of all unrated items were obtained considering the 

linear relationship between the tag weights for users and those for items. The mean absolute 

error (MAE) between the predicted and actual scores was computed, and used to adjust the 

predicted scores into the final results. In addition, the set of recommendable items for the 

target user was produced based on the scores rated by all neighboring users, and coupled 

with the linearly regressed scores to make recommendations to the target user. The 

experimental results show that the PCFLR outperformed the traditional recommendation 

algorithms in accuracy and interpretability.  
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1. INTRODUCTION 

 

In the Internet era, the user demands are increasingly 

diverse with the information boom. The massive amount of 

data makes it difficult for users to acquire the specific 

information that satisfies their needs. The recommender 

system (RS) [1, 2] is one of the most promising methods to 

filter out redundant information. The RS searches for the items 

that might interest the users based on the historical behaviors 

of users or the similarity between items [3]. As the core of the 

RS, the recommendation algorithm calculates the 

recommendation level of each item, revealing the most 

interesting items for each user. 

The traditional recommendation algorithms are based on 

content, collaborative filtering or both. Among them, 

collaborative filtering recommendation algorithm has been 

widely applied, because it is simple, effective and easy to 

implement [4~6]. There are two types of collaborative filtering 

recommendation algorithms: those based on user or item, and 

those based on model. The former recommends items in the 

light of the neighbor set of the user or item, and the latter 

makes recommendations by setting up algorithm models. 

Despite its popularity, collaborative filtering recommendation 

algorithm also faces some problems in actual application [7], 

such as data sparsity and cold start. Data sparsity refers to the 

small ratio (<1%) of user evaluations to the huge number of 

items [8]. The extremely sparse data severely suppresses the 

recommendation effect. The cold start means it is difficult to 

make recommendations for new users or items, due to the lack 

of scores. Even if some items are recommended, no reason is 

given for making that recommendation, resulting in a poor 

user experience.  

The proliferation of the social media has brought plentiful 

of user generated contents, which provides the RS with more 

diverse resources. The main features of these contents are 

summed up by users as tags, based on their understanding of 

such information resources [9]. Therefore, many scholars have 

introduced tags into the RS to solve the problems with the 

recommendation algorithm. For example, some scholars 

integrate tags into the collaborative filtering recommendation 

algorithm, and improves the algorithm performance based on 

the similarity between users, items and tags [10~13]. Wen et 

al. and Li et al. [14, 15] proposes a recommendation algorithm 

based on tag and topic, and explores the potential semantic 

topics in the RS to realize personalized recommendation. If the 

users’ eigenvalues and scores are known, the collaborative 

filtering recommendation algorithm based on linear regression 

can set up a linear relationship to compute the eigenvalue of 

each item and predict the score of unrated items. But the linear 

regression-based algorithm has difficulty in extracting user 

features. 

In the light of the above, this paper puts forward a 

personalized collaborative filtering recommendation 

algorithm based on linear regression (PCFLR). The tag weight 

was introduced as a user feature in the linear regression model, 

aiming to solve the difficulty in feature extraction. The scores 

of all unrated items were predicted by the linear regression 

model. To further reduce the prediction error, the mean 

absolute error (MAE) between the predicted score and actual 

score were computed, and used to adjust the predicted score to 
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the final value. Next, the set of recommendable items was 

generated based on the scores rated by neighboring users, all 

the items in the set were ranked by the predicted score, and the 

top items were recommended to the target user. Compared 

with the traditional methods, the PCFLR can reduce the 

dimensionality of the matrices involved in the operations and 

overcome the matrix sparsity problem. Besides, the 

recommendations are interpretable, because they are 

generated based on tag weights to users. The experimental 

results show that the PCFLR clearly improved the accuracy of 

predicted scores from the level of traditional algorithms. 

 

 

2. ALGORITHM DESIGN 

 

With the linear regression model as the core, the PCFLR 

mainly identifies the linear relationship between the features 

of user preference and those of item attributes, and then 

predicts the item scores rated by users. Considering the 

difficulty to extract user and item features, the PCFLR treats 

the tag types of the items as the shared features of users and 

items [16], and derives the weights of user features by term 

frequency–inverse document frequency (TF-IDF), according 

to the users’ rating of the items and the tag distribution of the 

items. Meanwhile, the weights of item features were obtained 

in two steps: setting up the cost function by least squares 

method, and finding the optimal solution of the cost function 

using gradient descent algorithm. On this basis, the item scores 

were predicted based on the weights of user features and item 

features. After that, the MAE between the predicted scores and 

actual scores was calculated, and used to further adjust the 

predicted scores to the final value. Next, the set of 

recommendable items was generated based on the scores rated 

by neighboring users, further reducing the prediction error and 

enhancing the recommendation accuracy to the target user. 

 

2.1 TF-IDF weight calculation 

 

The PCFLR assigns weights to tags by the TF-IDF method 

[17]. According to the TF-IDF principle, the ability of a tag to 

distinguish the document content is positively correlated with 

its frequency in the document and negatively with the number 

of documents containing the tag in the document set [18]. Here, 

the users’ historical scores are combined with item tags into 

the score documents. Suppose user u1 has rated three items i1, 

i2 and i3, which contain the tags listed in Table 1. Then, the 

score documents can be expressed as du1= {a, c, a, b, b, c, d}. 

Meanwhile, each combination of the tags in all items was 

considered as an item document di (Table 1). Then, three item 

documents can be established: di1= {a, c}, di2= {a, b} and 

di3= {b, c, d}. Both documents du and di describe the item 

tags, and were thus called tag documents d. The collection of 

all score documents and item documents is denoted as the set 

of documents D. 

 

Table 1. The list of item tags 

 

Name of item The tag types in the items 

i1 a  c  

i2 a b   

i3  b c d 

 

The tag frequency TF (t, d) was defined as the frequency 

of tag t appearing in score document d. The higher the 

frequency, the stronger the correlation between tag t and user 

u, and the greater its weight to this user. It is assumed that 

the score documents of user u1 contain a total of n tags, in 

which tag t appears m times. Then, the frequency TF (t, d) of 

tag t in score document du1 can be defined as: 

 

( , )
m

TF t d
n

=                                 (1) 

 

In general, a tag frequently appearing in the score 

documents of a user is of great interest to that user. However, 

this might not be the case if the tag appears frequently in all 

documents. Suppose there are ten score documents, in which 

eight contain tag A and three contain tag B. If both tags 

appear three times in the score documents of user C, then it 

is wrong to conclude that user C has the same interest in tag 

A and tag B. After all, there are more tag as than tag Bs in all 

documents. To solve the problem, the inverse document 

frequency IDF (t, d) was introduced to describe the frequency 

of tag t in all documents d. The higher the IDF, the smaller 

the weight of the tag. Let |D| be the total number of 

documents and |dD: td| be the total number of documents 

d containing tag t within the set of documents |D|. Then, the 

IDF (t, d) can be expressed as: 

 

| |
( , ) lg

| : |

D
IDF t d

d D t d
=

 
                   (2) 

 

The following TF-IDF formula was adopted for the 

PCFLR: 

 

( , ) ( , )* ( , )TF IDF t d TF t d IDF t d− =           (3) 

 

The TF-IDF value of each tag to each user was computed, 

forming the tag weights Tu to all users. 

 

2.2 Construction of linear regression model 

 

Linear regression [19] analyzes the combinational 

relationships between given features and actual values, and 

then fits the actual values through linear combinations. Let 

U= {u1, u2, u3, ..., un} be the set of users, I={i1, i2, i3, ..., im} 

be the set of items, and rm, n be the score of im rated by user 

un. Then, the matrix R of item scores rated by the users can 

be described as: 

 

1,1 1,

,1 ,

n

m m n

r r

r r

 
 

=  
 
 

R  

 

The tag weights Tu= (tu1, tu2, ..., tuk) (k is the number of 

tags) of user u can be obtained by formula (3). Let Ti = (ti1, 

ti2, ..., tik) be the tag weights of item i. Then, the score of im 

rated by user un can be approximated by: 

 
( ) ( ) ( , )( ) * 'n T m m nr=Tu Ti                      (4) 

 

For example, 
(1,1) (1) (1)' ( ) *Tr = Tu Ti   and 

(1,2) (2) (1)' ( ) *Tr = Tu Ti  are the approximate scores of item i1 

rated by u1 and u2, respectively. The equations of the two 
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scores have solutions, if the number of times h the item is 

rated is greater than the number of tags k of the item.  

 

2.3 Construction of cost function 

 

Based on the all known tag weights Tu and the actual score 

matrix R, the cost function J can be established by the least 

squares method according to formula (4) as: 

 

( , )

( ) ( ) ( , ) 2 ( ) 2

1r 0

1
J min( (( ) * ) ( ) )

2 2m n

n
n T m m n m

k

k

r


=

= − + Tu Ti Ti  (5) 

 

To minimize the value of the cost function J, the 

approximate score r(m, n)’ of formula (4) should approach the 

actual score r(m, n) as much as possible. The latter term on the 

right side of formula (5) is regularization, i.e. adding a 

penalty term to the cost function. To minimize the value of 

the cost function, the penalty term must be very small. The 

value of parameter  should be determined properly. If the  

value is relatively large, the final value of parameter Ti will 

be very small, and the resulting curve will be smooth. In this 

case, there will be no over-fitting phenomenon. However, if 

the  value is too large, the value of parameter Ti will 

approach zero, leading to over-fitting problem. The  value 

is subsequently selected according to experimental data.  

 

2.4 Gradient descent algorithm 

 

To minimize the value of the cost function J, the gradient 

descent algorithm was adopted to find the partial derivative 

of the function to parameter Ti, and to update the parameter 

value: 

 

J
k k

k




= −


Ti Ti
Ti

                           (6) 

 

where k is the number of item tags. The above formula was 

executed iteratively to update all parameter values until the 

value of the cost function J no longer decreased. The value 

of  determines the rate of gradient descent. The larger the 

value of , the faster the rate and the more efficient the 

computation. But an excessively large  will impede the 

convergence of the gradient descent algorithm. 

 

2.5 Adjustment of predicted results 

 

The predicted scores were further adjusted based on the 

MAE between them and the actual scores. Table 2 shows the 

actual scores rated by user A. 

 

Table 2. The actual scores rated by user A 

 

Items 
Actual 

scores 

Predicted 

scores 

i1 3 3.9573 

i2 5 4.1247 

i3 ？ 3.5 

i4 ? 4 

 

As shown in Table 2, user A has rated items i1 and i2, but 

not i3 or i4. The predicted scores of i3 and i4 were computed 

as 3.5 and 4, respectively, by the linear model. Based on user 

A’s historical scores, the predicted score of i3 was adjusted as 

(3-3.9573)+(5-4.1247)
3.5 3.459

2
+ = . That of i4 was adjusted 

in a similar manner. The adjusted results are the final 

predicted scores. 

 

2.6 Selection of neighboring users 

 

The PCFLR uses cosine similarity to describe how similar 

two users are. Cosine similarity measures the likeliness 

between two vectors by the cosine of the angle between them, 

and distinguishes between the two vectors mainly by 

direction. The tag weights obtained by TF-IDF method 

provide the preference ratios of all tags. For example, the 

weights of tags A, B and C to users 1, 2 and 3 are shown in 

Table 3 below. 

 

Table 3. The tag weights of three users 

 
Tags A B C 

User 1 1 2 3 

User 2 3 4 5 

User 3 3 2 3 

 

As shown in Table 3, users 1 and 3 have the closest tag 

weights, but users 1 and 2 have the greatest cosine similarity. 

In the PCFLR, users 1 and 2 are considered as having the 

most similar interests. The similarity between two users was 

measured by the cosine of the angle between their vectors. 

The similarity between users u and v can be illustrated as: 

 

1

1 1

cos( , )

w

h h

h

w w

h h

h h

u v =

= =

=


 

Tu Tv

Tu Tv

                     (7) 

 

where Tu and Tv are the tag weights of users u and v, 

respectively; w is the dimensionality of each vector. 

 

 

3. ALGORITHM DESCRIPTION 

 

To construct the PCFLR, the set of tag documents was 

established based on the users’ historical scores and item tags. 

Then, the tag weights to all users were computed by the TF-

IDF method. Next, the linear regression model and cost 

function were set up, and the tag weights of items were 

computed by gradient descent algorithm. After that, the 

scores of the items not yet rated by the target user were 

predicted according to the tag weights to the user and the 

items. Finally, the set of recommended items was selected for 

the target user, in the light of the set of scores rated by the 

neighboring users. The workflow of the PCFLR is explained 

in Figure 1 below. 

The specific steps of the PCFLR are as follows: 

Algorithm: The PCFLR 

Inputs: User-item datasets, the number of top-N items 

Outputs: The set of top-N recommended items for the 

target user 

Step 1. Setting up the set of tag documents 

The users’ historical scores and item information were 

sorted to obtain the user-item-tag datasets. The item tags 

were sorted based on user ID, creating the tag documents for 
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users. The tags in each item were considered as the tag 

documents for that item. The tag documents for users and 

those for items were combined into the set of documents. 

Then, the following information were counted: the types of 

tags in the document set, the total number of different types 

of tags, the total number of tags in each user document, and 

the number of each type of tags in each user document. 

 

Initialize user-item-tag 

datasets, and the number 

of top-N items.

Initialize user-item-tag 

datasets, and the number 

of top-N items.

Compute the tag 

weights to users by 

the TF-IDF method.

Compute the tag 

weights to users by 

the TF-IDF method.

Construct the tag 

weight matrix for 

items.

Construct the tag 

weight matrix for 

items.

Determine the cost function 

J. 

Determine the cost function 

J. 

Update the tag weight matrix 

for items by gradient descent 

algorithm until convergence.

Update the tag weight matrix 

for items by gradient descent 

algorithm until convergence.

Predict the scores of unrated 

items based on the tag 

weight matrices for items 

and users. 

Predict the scores of unrated 

items based on the tag 

weight matrices for items 

and users. 

Output the top-N items as the 

recommendation results.

Output the top-N items as the 

recommendation results.

Adjust the forecast based on 

the average difference 

between the predicted score 

and the actual score

Adjust the forecast based on 

the average difference 

between the predicted score 

and the actual score

Determine the neighboring 

users based on the tag weight 

matrix for users.

Collect the scores of items 

rated by neighboring users 

and determine the set of 

recommendable items ID.

Rank the 

recommendable items 

by the predicted scores.

Determine the item set 

scored by the neighboring 

users

 
 

Figure 1. The workflow of the PCFLR 

 

Step 2. Computing the tag weights for users 

Based on the information acquired in Step 1, the TF and 

IDF values were computed by formulas (1) and (2), 

respectively. Then, the tag weights for each user were 

determined, forming a tag weight matrix for users. 

Step 3. Constructing the tag weight matrix for items 

The tag weight matrix for items was initialized randomly 

according to the number and types of known tags. 

Step 4. Determining the cost function for linear regression 

The predicted scores of terms were derived from the linear 

relationship between the tag weights for users and those for 

items. Then, the cost function was established by formula (5), 

considering the MAE between the predicted and actual 

scores. 

Step 5. Gradient descent 

The value of the cost function was minimized by gradient 

descent method. The parameter Ti in the cost function was 

updated iteratively by formula (6) until the function value no 

longer decreased. The parameter value at the termination was 

recorded as the tag weight for the corresponding item.  

Step 6. Generating and adjusting predicted scores 

The MAE between predicted and actual scores of the 

training set was computed, and then the predicted scores of 

the test set were adjusted to obtain the final results. 

Step 7. Determining the item set of neighboring users 

The neighboring users of the target user were identified 

based on cosine similarity, which was computed based on the 

tag weight matrix for users. The k users with the highest 

cosine similarities were selected as neighboring users. Then, 

the item IDs of all k users were obtained.  

Step 8. Outputting the recommended items 

Based on the item IDs of the neighboring users, the 

predicted scores of these items were obtained from the linear 

model and ranked in descending order. Next, the top-N items 

in the ranking were recommended to the target user. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

4.1 Experimental datasets 

 

To verify its performance, the PCFLR was tested on 

MovieLens, which was created by GroupLens Research at 

the University of Minnesota, in order to gather research data 

on personalized recommendations. The MovieLens contains 

millions of ratings for movies and tags on movie genres. In 

this paper, the MovieLens 100K dataset is selected for the 

experimental verification. This dataset involves the scores of 

1,682 movies rated by 943 users. Each user has rated 20 

movies at the least. The scores were rated against a five-point 

scale {1, 2, 3, 4, 5}. The higher the score, the more interested 

the user is in the movie. There are 19 tags in the dataset, 

including unknown, action, adventure, animals, children, 

comedy, crime, science fiction, etc. The sparsity of the user-

item scoring matrix is 1-(100000/(943*1682))=93.69%. 

 

4.2 Evaluation index 

 

The MAE was taken as the evaluation index for the 

PCFLR. This index measures the prediction accuracy by the 

error between the predicted and actual scores. The smaller 

the MAE, the better the recommendation. Let {p1, p2, ..., pn} 

be the set of predicted scores and {r1, r2, ..., rn} be the set of 

actual scores. Then, the MAE can be defined as: 

 
n

1
ri ii

p
MAE

n

=
−

=
                         (8) 

 

4.3 Determination of  value 

 

The experimental data were designed as in Table 3 to 

determine the  value in the cost function. 

 

Table 3. The division of the experimental dataset 

 
The Ratio of 

the Testing 

Set 

The Ratio of 

the 

Validation 

Set 

The Number 

of 

Neighboring 

Users 

10% 80% 10 
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The experimental results are shown in Figure 2. It can be 

seen that, with the increase of the  value, the MAE firstly 

exhibited a gradual decline, reached the ideal value at =8, and 

then gradually increased. Hence, the  value was selected as 

eight in the subsequent experiment. 

 

 
 

Figure 2. The relationship between the MAE and the  value 

 

4.4 The impacts of the number of neighboring users 

 

The experimental data were designed as in Table 4 to 

determine how the number of neighboring users influences 

the recommendation results. 

 

Table 4. The setting of the experimental data 

 
The Ratio 

of the 

Testing Set 

The Ratio 

of the 

Validation 

Set 

The Number of 

Neighboring 

Users 

The  

Value 

10% 80% 10-60 8 

 

The experimental results in Figure 3 show that the MAE 

increased with the number of neighboring users. This is 

because the neighboring users were selected based on the 

similarity. If there are many neighboring users, it is very likely 

for a user with low similarity to the target user to be identified 

as a neighbor. 

 

 
 

Figure 3. The relationship between the MAE and the number 

of neighboring users 

 

4.5 Comparative experiments 

 

The PCFLR, the collaborative filtering recommendation 

algorithm based on linear regression (CFLR), the user-based 

collaborative filtering (UserCF) algorithm, and the 

collaborative filtering based on item clustering and tag topics 

(ICFT) were tested with the same experimental dataset, 

parameter setting, and experimental environment. The 

recommendation results of the four algorithms are shown in 

Figure 5. It is clear that the PCFLR achieved the smallest error 

and the best prediction accuracy among the four algorithms. 

The results verify the effectiveness of our algorithm. 

 

 
 

Figure 4. The comparison of experimental results 

 

 

5.CONCLUSIONS 

 

This paper improves the linear regression-based 

collaborative filtering recommendation algorithm, aiming to 

solve the following problems: the difficulty in extracting 

eigenvalues, the low accuracy and the poor interpretability. 

The proposed algorithm, denoted as the PCFLR, was proved 

through experiments as effective in making accurate 

recommendations. In addition, the recommendation results 

can be interpreted based on the tag weights to the users. The 

future research will optimize the tag values based on the scores 

rated by users and further enhance the recommendation 

accuracy. 
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