

A Personalized Collaborative Filtering Recommendation Algorithm Based on Linear Regression

Chuping Xiong, Hua Sun*, Ding Pan, Yao Li

School of Software, Xinjiang University, Urumqi 830000, China

Corresponding Author Email: xj_sh@163.com

https://doi.org/10.18280/mmep.060307

ABSTRACT

Received: 4 May 2019

Accepted: 15 July 2019

 This paper attempts to solve the problems with linear regression-based collaborative filtering

recommendation algorithm, namely, the difficulty in extracting eigenvalues, the low

accuracy and the poor interpretability. For this purpose, the tag weights were introduced as

eigenvalues and the prediction accuracy was improved by the principle of collaborative

filtering recommendation algorithm, creating a personalized collaborative filtering

recommendation algorithm based on linear regression (PCFLR). Firstly, the tag weights for

users were computed by term frequency–inverse document frequency (TF-IDF), and taken

as the eigenvalues of the linear regression model. Then, the linear regression model was

constructed based on the users’ historical scores. After that, the cost function was set up by

the least squares method, and regularized to prevent over-fitting. Next, the optimal value of

the cost function was computed by gradient descent method, yielding the tag weights for

items. On this basis, the predicted scores of all unrated items were obtained considering the

linear relationship between the tag weights for users and those for items. The mean absolute

error (MAE) between the predicted and actual scores was computed, and used to adjust the

predicted scores into the final results. In addition, the set of recommendable items for the

target user was produced based on the scores rated by all neighboring users, and coupled

with the linearly regressed scores to make recommendations to the target user. The

experimental results show that the PCFLR outperformed the traditional recommendation

algorithms in accuracy and interpretability.

Keywords:

Tag; linear regression; collaborative

filtering; recommender system (RS)

1. INTRODUCTION

In the Internet era, the user demands are increasingly

diverse with the information boom. The massive amount of

data makes it difficult for users to acquire the specific

information that satisfies their needs. The recommender

system (RS) [1, 2] is one of the most promising methods to

filter out redundant information. The RS searches for the items

that might interest the users based on the historical behaviors

of users or the similarity between items [3]. As the core of the

RS, the recommendation algorithm calculates the

recommendation level of each item, revealing the most

interesting items for each user.

The traditional recommendation algorithms are based on

content, collaborative filtering or both. Among them,

collaborative filtering recommendation algorithm has been

widely applied, because it is simple, effective and easy to

implement [4~6]. There are two types of collaborative filtering

recommendation algorithms: those based on user or item, and

those based on model. The former recommends items in the

light of the neighbor set of the user or item, and the latter

makes recommendations by setting up algorithm models.

Despite its popularity, collaborative filtering recommendation

algorithm also faces some problems in actual application [7],

such as data sparsity and cold start. Data sparsity refers to the

small ratio (<1%) of user evaluations to the huge number of

items [8]. The extremely sparse data severely suppresses the

recommendation effect. The cold start means it is difficult to

make recommendations for new users or items, due to the lack

of scores. Even if some items are recommended, no reason is

given for making that recommendation, resulting in a poor

user experience.

The proliferation of the social media has brought plentiful

of user generated contents, which provides the RS with more

diverse resources. The main features of these contents are

summed up by users as tags, based on their understanding of

such information resources [9]. Therefore, many scholars have

introduced tags into the RS to solve the problems with the

recommendation algorithm. For example, some scholars

integrate tags into the collaborative filtering recommendation

algorithm, and improves the algorithm performance based on

the similarity between users, items and tags [10~13]. Wen et

al. and Li et al. [14, 15] proposes a recommendation algorithm

based on tag and topic, and explores the potential semantic

topics in the RS to realize personalized recommendation. If the

users’ eigenvalues and scores are known, the collaborative

filtering recommendation algorithm based on linear regression

can set up a linear relationship to compute the eigenvalue of

each item and predict the score of unrated items. But the linear

regression-based algorithm has difficulty in extracting user

features.

In the light of the above, this paper puts forward a

personalized collaborative filtering recommendation

algorithm based on linear regression (PCFLR). The tag weight

was introduced as a user feature in the linear regression model,

aiming to solve the difficulty in feature extraction. The scores

of all unrated items were predicted by the linear regression

model. To further reduce the prediction error, the mean

absolute error (MAE) between the predicted score and actual

score were computed, and used to adjust the predicted score to

Mathematical Modelling of Engineering Problems
Vol. 6, No. 3, September, 2019, pp. 363-368

Journal homepage: http://iieta.org/journals/mmep

363

the final value. Next, the set of recommendable items was

generated based on the scores rated by neighboring users, all

the items in the set were ranked by the predicted score, and the

top items were recommended to the target user. Compared

with the traditional methods, the PCFLR can reduce the

dimensionality of the matrices involved in the operations and

overcome the matrix sparsity problem. Besides, the

recommendations are interpretable, because they are

generated based on tag weights to users. The experimental

results show that the PCFLR clearly improved the accuracy of

predicted scores from the level of traditional algorithms.

2. ALGORITHM DESIGN

With the linear regression model as the core, the PCFLR

mainly identifies the linear relationship between the features

of user preference and those of item attributes, and then

predicts the item scores rated by users. Considering the

difficulty to extract user and item features, the PCFLR treats

the tag types of the items as the shared features of users and

items [16], and derives the weights of user features by term

frequency–inverse document frequency (TF-IDF), according

to the users’ rating of the items and the tag distribution of the

items. Meanwhile, the weights of item features were obtained

in two steps: setting up the cost function by least squares

method, and finding the optimal solution of the cost function

using gradient descent algorithm. On this basis, the item scores

were predicted based on the weights of user features and item

features. After that, the MAE between the predicted scores and

actual scores was calculated, and used to further adjust the

predicted scores to the final value. Next, the set of

recommendable items was generated based on the scores rated

by neighboring users, further reducing the prediction error and

enhancing the recommendation accuracy to the target user.

2.1 TF-IDF weight calculation

The PCFLR assigns weights to tags by the TF-IDF method

[17]. According to the TF-IDF principle, the ability of a tag to

distinguish the document content is positively correlated with

its frequency in the document and negatively with the number

of documents containing the tag in the document set [18]. Here,

the users’ historical scores are combined with item tags into

the score documents. Suppose user u1 has rated three items i1,

i2 and i3, which contain the tags listed in Table 1. Then, the

score documents can be expressed as du1= {a, c, a, b, b, c, d}.

Meanwhile, each combination of the tags in all items was

considered as an item document di (Table 1). Then, three item

documents can be established: di1= {a, c}, di2= {a, b} and

di3= {b, c, d}. Both documents du and di describe the item

tags, and were thus called tag documents d. The collection of

all score documents and item documents is denoted as the set

of documents D.

Table 1. The list of item tags

Name of item The tag types in the items

i1 a c

i2 a b

i3 b c d

The tag frequency TF (t, d) was defined as the frequency

of tag t appearing in score document d. The higher the

frequency, the stronger the correlation between tag t and user

u, and the greater its weight to this user. It is assumed that

the score documents of user u1 contain a total of n tags, in

which tag t appears m times. Then, the frequency TF (t, d) of

tag t in score document du1 can be defined as:

(,)
m

TF t d
n

= (1)

In general, a tag frequently appearing in the score

documents of a user is of great interest to that user. However,

this might not be the case if the tag appears frequently in all

documents. Suppose there are ten score documents, in which

eight contain tag A and three contain tag B. If both tags

appear three times in the score documents of user C, then it

is wrong to conclude that user C has the same interest in tag

A and tag B. After all, there are more tag as than tag Bs in all

documents. To solve the problem, the inverse document

frequency IDF (t, d) was introduced to describe the frequency

of tag t in all documents d. The higher the IDF, the smaller

the weight of the tag. Let |D| be the total number of

documents and |dD: td| be the total number of documents

d containing tag t within the set of documents |D|. Then, the

IDF (t, d) can be expressed as:

| |
(,) lg

| : |

D
IDF t d

d D t d
=

 
 (2)

The following TF-IDF formula was adopted for the

PCFLR:

(,) (,)* (,)TF IDF t d TF t d IDF t d− = (3)

The TF-IDF value of each tag to each user was computed,

forming the tag weights Tu to all users.

2.2 Construction of linear regression model

Linear regression [19] analyzes the combinational

relationships between given features and actual values, and

then fits the actual values through linear combinations. Let

U= {u1, u2, u3, ..., un} be the set of users, I={i1, i2, i3, ..., im}

be the set of items, and rm, n be the score of im rated by user

un. Then, the matrix R of item scores rated by the users can

be described as:

1,1 1,

,1 ,

n

m m n

r r

r r

 
 

=  
 
 

R

The tag weights Tu= (tu1, tu2, ..., tuk) (k is the number of

tags) of user u can be obtained by formula (3). Let Ti = (ti1,

ti2, ..., tik) be the tag weights of item i. Then, the score of im

rated by user un can be approximated by:

() () (,)() * 'n T m m nr=Tu Ti (4)

For example,
(1,1) (1) (1)' () *Tr = Tu Ti and

(1,2) (2) (1)' () *Tr = Tu Ti are the approximate scores of item i1

rated by u1 and u2, respectively. The equations of the two

364

scores have solutions, if the number of times h the item is

rated is greater than the number of tags k of the item.

2.3 Construction of cost function

Based on the all known tag weights Tu and the actual score

matrix R, the cost function J can be established by the least

squares method according to formula (4) as:

(,)

() () (,) 2 () 2

1r 0

1
J min((() *) ())

2 2m n

n
n T m m n m

k

k

r


=

= − + Tu Ti Ti (5)

To minimize the value of the cost function J, the

approximate score r(m, n)’ of formula (4) should approach the

actual score r(m, n) as much as possible. The latter term on the

right side of formula (5) is regularization, i.e. adding a

penalty term to the cost function. To minimize the value of

the cost function, the penalty term must be very small. The

value of parameter  should be determined properly. If the 

value is relatively large, the final value of parameter Ti will

be very small, and the resulting curve will be smooth. In this

case, there will be no over-fitting phenomenon. However, if

the  value is too large, the value of parameter Ti will

approach zero, leading to over-fitting problem. The  value

is subsequently selected according to experimental data.

2.4 Gradient descent algorithm

To minimize the value of the cost function J, the gradient

descent algorithm was adopted to find the partial derivative

of the function to parameter Ti, and to update the parameter

value:

J
k k

k




= −


Ti Ti
Ti

 (6)

where k is the number of item tags. The above formula was

executed iteratively to update all parameter values until the

value of the cost function J no longer decreased. The value

of  determines the rate of gradient descent. The larger the

value of , the faster the rate and the more efficient the

computation. But an excessively large  will impede the

convergence of the gradient descent algorithm.

2.5 Adjustment of predicted results

The predicted scores were further adjusted based on the

MAE between them and the actual scores. Table 2 shows the

actual scores rated by user A.

Table 2. The actual scores rated by user A

Items
Actual

scores

Predicted

scores

i1 3 3.9573

i2 5 4.1247

i3 ？ 3.5

i4 ? 4

As shown in Table 2, user A has rated items i1 and i2, but

not i3 or i4. The predicted scores of i3 and i4 were computed

as 3.5 and 4, respectively, by the linear model. Based on user

A’s historical scores, the predicted score of i3 was adjusted as

(3-3.9573)+(5-4.1247)
3.5 3.459

2
+ = . That of i4 was adjusted

in a similar manner. The adjusted results are the final

predicted scores.

2.6 Selection of neighboring users

The PCFLR uses cosine similarity to describe how similar

two users are. Cosine similarity measures the likeliness

between two vectors by the cosine of the angle between them,

and distinguishes between the two vectors mainly by

direction. The tag weights obtained by TF-IDF method

provide the preference ratios of all tags. For example, the

weights of tags A, B and C to users 1, 2 and 3 are shown in

Table 3 below.

Table 3. The tag weights of three users

Tags A B C

User 1 1 2 3

User 2 3 4 5

User 3 3 2 3

As shown in Table 3, users 1 and 3 have the closest tag

weights, but users 1 and 2 have the greatest cosine similarity.

In the PCFLR, users 1 and 2 are considered as having the

most similar interests. The similarity between two users was

measured by the cosine of the angle between their vectors.

The similarity between users u and v can be illustrated as:

1

1 1

cos(,)

w

h h

h

w w

h h

h h

u v =

= =

=


 

Tu Tv

Tu Tv

 (7)

where Tu and Tv are the tag weights of users u and v,

respectively; w is the dimensionality of each vector.

3. ALGORITHM DESCRIPTION

To construct the PCFLR, the set of tag documents was

established based on the users’ historical scores and item tags.

Then, the tag weights to all users were computed by the TF-

IDF method. Next, the linear regression model and cost

function were set up, and the tag weights of items were

computed by gradient descent algorithm. After that, the

scores of the items not yet rated by the target user were

predicted according to the tag weights to the user and the

items. Finally, the set of recommended items was selected for

the target user, in the light of the set of scores rated by the

neighboring users. The workflow of the PCFLR is explained

in Figure 1 below.

The specific steps of the PCFLR are as follows:

Algorithm: The PCFLR

Inputs: User-item datasets, the number of top-N items

Outputs: The set of top-N recommended items for the

target user

Step 1. Setting up the set of tag documents

The users’ historical scores and item information were

sorted to obtain the user-item-tag datasets. The item tags

were sorted based on user ID, creating the tag documents for

365

users. The tags in each item were considered as the tag

documents for that item. The tag documents for users and

those for items were combined into the set of documents.

Then, the following information were counted: the types of

tags in the document set, the total number of different types

of tags, the total number of tags in each user document, and

the number of each type of tags in each user document.

Initialize user-item-tag

datasets, and the number

of top-N items.

Initialize user-item-tag

datasets, and the number

of top-N items.

Compute the tag

weights to users by

the TF-IDF method.

Compute the tag

weights to users by

the TF-IDF method.

Construct the tag

weight matrix for

items.

Construct the tag

weight matrix for

items.

Determine the cost function

J.

Determine the cost function

J.

Update the tag weight matrix

for items by gradient descent

algorithm until convergence.

Update the tag weight matrix

for items by gradient descent

algorithm until convergence.

Predict the scores of unrated

items based on the tag

weight matrices for items

and users.

Predict the scores of unrated

items based on the tag

weight matrices for items

and users.

Output the top-N items as the

recommendation results.

Output the top-N items as the

recommendation results.

Adjust the forecast based on

the average difference

between the predicted score

and the actual score

Adjust the forecast based on

the average difference

between the predicted score

and the actual score

Determine the neighboring

users based on the tag weight

matrix for users.

Collect the scores of items

rated by neighboring users

and determine the set of

recommendable items ID.

Rank the

recommendable items

by the predicted scores.

Determine the item set

scored by the neighboring

users

Figure 1. The workflow of the PCFLR

Step 2. Computing the tag weights for users

Based on the information acquired in Step 1, the TF and

IDF values were computed by formulas (1) and (2),

respectively. Then, the tag weights for each user were

determined, forming a tag weight matrix for users.

Step 3. Constructing the tag weight matrix for items

The tag weight matrix for items was initialized randomly

according to the number and types of known tags.

Step 4. Determining the cost function for linear regression

The predicted scores of terms were derived from the linear

relationship between the tag weights for users and those for

items. Then, the cost function was established by formula (5),

considering the MAE between the predicted and actual

scores.

Step 5. Gradient descent

The value of the cost function was minimized by gradient

descent method. The parameter Ti in the cost function was

updated iteratively by formula (6) until the function value no

longer decreased. The parameter value at the termination was

recorded as the tag weight for the corresponding item.

Step 6. Generating and adjusting predicted scores

The MAE between predicted and actual scores of the

training set was computed, and then the predicted scores of

the test set were adjusted to obtain the final results.

Step 7. Determining the item set of neighboring users

The neighboring users of the target user were identified

based on cosine similarity, which was computed based on the

tag weight matrix for users. The k users with the highest

cosine similarities were selected as neighboring users. Then,

the item IDs of all k users were obtained.

Step 8. Outputting the recommended items

Based on the item IDs of the neighboring users, the

predicted scores of these items were obtained from the linear

model and ranked in descending order. Next, the top-N items

in the ranking were recommended to the target user.

4. EXPERIMENTS AND RESULTS ANALYSIS

4.1 Experimental datasets

To verify its performance, the PCFLR was tested on

MovieLens, which was created by GroupLens Research at

the University of Minnesota, in order to gather research data

on personalized recommendations. The MovieLens contains

millions of ratings for movies and tags on movie genres. In

this paper, the MovieLens 100K dataset is selected for the

experimental verification. This dataset involves the scores of

1,682 movies rated by 943 users. Each user has rated 20

movies at the least. The scores were rated against a five-point

scale {1, 2, 3, 4, 5}. The higher the score, the more interested

the user is in the movie. There are 19 tags in the dataset,

including unknown, action, adventure, animals, children,

comedy, crime, science fiction, etc. The sparsity of the user-

item scoring matrix is 1-(100000/(943*1682))=93.69%.

4.2 Evaluation index

The MAE was taken as the evaluation index for the

PCFLR. This index measures the prediction accuracy by the

error between the predicted and actual scores. The smaller

the MAE, the better the recommendation. Let {p1, p2, ..., pn}

be the set of predicted scores and {r1, r2, ..., rn} be the set of

actual scores. Then, the MAE can be defined as:

n

1
ri ii

p
MAE

n

=
−

=
 (8)

4.3 Determination of  value

The experimental data were designed as in Table 3 to

determine the  value in the cost function.

Table 3. The division of the experimental dataset

The Ratio of

the Testing

Set

The Ratio of

the

Validation

Set

The Number

of

Neighboring

Users

10% 80% 10

366

The experimental results are shown in Figure 2. It can be

seen that, with the increase of the  value, the MAE firstly

exhibited a gradual decline, reached the ideal value at =8, and

then gradually increased. Hence, the  value was selected as

eight in the subsequent experiment.

Figure 2. The relationship between the MAE and the  value

4.4 The impacts of the number of neighboring users

The experimental data were designed as in Table 4 to

determine how the number of neighboring users influences

the recommendation results.

Table 4. The setting of the experimental data

The Ratio

of the

Testing Set

The Ratio

of the

Validation

Set

The Number of

Neighboring

Users

The 

Value

10% 80% 10-60 8

The experimental results in Figure 3 show that the MAE

increased with the number of neighboring users. This is

because the neighboring users were selected based on the

similarity. If there are many neighboring users, it is very likely

for a user with low similarity to the target user to be identified

as a neighbor.

Figure 3. The relationship between the MAE and the number

of neighboring users

4.5 Comparative experiments

The PCFLR, the collaborative filtering recommendation

algorithm based on linear regression (CFLR), the user-based

collaborative filtering (UserCF) algorithm, and the

collaborative filtering based on item clustering and tag topics

(ICFT) were tested with the same experimental dataset,

parameter setting, and experimental environment. The

recommendation results of the four algorithms are shown in

Figure 5. It is clear that the PCFLR achieved the smallest error

and the best prediction accuracy among the four algorithms.

The results verify the effectiveness of our algorithm.

Figure 4. The comparison of experimental results

5.CONCLUSIONS

This paper improves the linear regression-based

collaborative filtering recommendation algorithm, aiming to

solve the following problems: the difficulty in extracting

eigenvalues, the low accuracy and the poor interpretability.

The proposed algorithm, denoted as the PCFLR, was proved

through experiments as effective in making accurate

recommendations. In addition, the recommendation results

can be interpreted based on the tag weights to the users. The

future research will optimize the tag values based on the scores

rated by users and further enhance the recommendation

accuracy.

ACKNOWLEDGEMENT

This paper is supported by the Natural Science Foundation

of Xinjiang Uygur Autonomous Region of China (Grant No.:

2015211C263).

REFERENCES

[1] Li, Y. (2018). Design and implementation of intelligent

travel recommendation system based on internet of

things. Ingénierie des Systèmes d’Information, 23(5):

159-173. https://doi.org/10.3166/ISI.23.5.159-173

[2] Adomavicius, G., Tuzhilin, A. (2005). Toward the next

generation of recommender systems: A survey of the

state-of-the-art and possible extensions. IEEE

Transactions on Knowledge and Data Engineering, 17(6):

734-749. https://doi.org/10.1109/TKDE.2005.99

[3] Huang, L.W., Jiang, B.T., Lv, S.Y., Liu, Y.B., Li, D.Y.

(2018). Survey on deep learning based recommender

systems. Chinese Journal of Computers, 41(7): 1619-

1647. https://doi.org/10.11897/SP.J.1016.2018.01619

[4] Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G. (2015).

Recommender system application developments.

Decision Support Systems, 74(C): 12-32.

https://doi.org/10.1016/j.dss.2015.03.008

[5] Bobadilla, J., Ortega, F., Hernando, A. (2013).

Recommender systems survey. Knowledge-based

Systems, 46(1): 109-132.

https://doi.org/10.1016/j.knosys.2013.03.012

[6] Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.

(2004). Collaborative filtering recommender systems.

Acm Transactions on Information Systems, 22(1): 5-53.

[7] Su, X.Y., Khoshgoftaar, T.M. (2009). A survey of

367

collaborative filtering techniques. Advances in Artificial

Intelligence, 1-19. https://doi.org/10.1155/2009/421425 ·
[8] Yang, X.Y., Yu, J., Ibrahim, T., Liao, B., Ying, C.T.

(2015). Collaborative filtering recommendation model

based on trust model filling. Computer Engineering, (5):

6-13.

[9] Ding, Y. Jacob, E.K., Zhang, Z.X., Foo, S., Yan, E.,

George, N.L., Guo, L.J. (2014). Perspectives on social

tagging. Journal of the Association for Information

Science & Technology, 60(12): 2388-2401.

https://doi.org/10.1002/asi.21190

[10] Deng, X.Y., Wang, C. (2018). A hybrid collaborative

filtering model with context and folksonomy for social

recommendation. Ingénierie des Systèmes d’Information,

23(5): 139-157. https://doi.org/10.3166/ISI.23.5.139-

157

[11] Zhang, J.L., Huang, M.X., Zhang, Y., Wu, Q.Z. (2018).

Collaborative filtering recommendation algorithm based

on tag optimization. Application Research of Computers,

35(10): 2916-2919.

https://doi.org/10.1109/ISCID.2015.91

[12] He, M., Yao, K.S., Yang, P., Zhang, J.L. (2018).

Collaborative filtering personalized recommendation

based on similarity of tag information feature. Computer

Science, 45(S1): 415-422.

[13] Kong, X.X., Su, B.C., Wang, H.Z., Gao, H., Li, J.Z.

(2017). Research on the modeling and related algorithms

of label-weight rating based recommendation system.

Chinese Journal of Computers, 40(6): 1440-1452.

https://doi.org/10.11897/SP.J.1016.2017.01440

[14] Wen, J.H., Yuan, P.L., Zeng, J., Wang, X.B., Zhou, W.

(2017). Research on collaborative filtering

recommendation algorithm based on topic of tags.

Computer Engineering, 43(1): 247-252, 258.

https://doi.org/10.3969/j.issn.1000-3428.2017.01.043

[15] Li, H.Y., Fu, Y.Q. (2018). Collaborative filtering

recommendation algorithm based on tag clustering and

item topic. Computer Science, 45(4): 247-251.

https://doi.org/10.11896/j.issn.1002-137X.2018.04.041

[16] Chen, J., Liu, X.J., Li, B., Zhang, W. (2017).

Personalized microblog recommendation based on

dynamic interests and social networking of users. Acta

Electronica Sinica, 45(4): 898-905.

https://doi.org/10.3969/j.issn.0372-2112

[17] Zhou, Y., Dai, M.H. (2013). News recommendation

technology combining semantic analysis with TF-IDF

method. Computer Science, 40(s2): 267-269.

https://doi.org/10.3969/j.issn.1002-137X.2013.z2.066

[18] Shi, C.Y., Xu, C.J., Yang, X.J. (2009). Study of TFIDF

algorithm. Journal of Computer Applications, 29(b06):

167-170, 180.

[19] Pang, H.L., Zhao, H., Li, W., Ma, Y., Cui, Y. (2019).

Linear regression recommendation algorithm with

collaborative filtering. Application Research of

Computers, 36(5): 1302-1304, 1310.

https://doi.org/10.19734/j.issn.1001-3695.2017.11.0732

368

http://dx.doi.org/10.1002/asi.21190
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

