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 Photovoltaic (PV) modules often suffer from various faults due to the harsh working 

environment. This paper proposes a PV fault diagnosis model based on probabilistic neural 

network (PNN), aiming to enhance the efficiency and reduce the maintenance cost of PV 

power stations. The influencing factors of PV faults were analyzed in details, and the output 

features of PV modules under fault states were simulated on MATLAB. Based on the 

simulation results, the fault types of PV modules were summed up, and a PNN-based PV fault 

diagnosis model was established. The effectiveness of our model was verified through 

simulation and experiment and compared with that of the diagnosis model based on 

backpropagation neural network (BPNN). The results show that our model can effectively 

detect four types of fault for PV modules, namely, short circuit, open circuit, abnormal 

degradation and partial shading, and enjoys high accuracy and robustness. 
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1. INTRODUCTION 

 

In recent years, the photovoltaic (PV) technology has 

become increasingly popular as a green and clean power 

generation method [1]. Many measures have been taken to 

reduce the cost of PV power stations, namely, implementing 

maximum power point tracking (MPPT), and improving the 

conversion efficiency of PV modules and power inverter [2]. 

Apart from these measures, the PV power generation cost 

could be further reduced through effective identification of the 

faults in PV modules [3]. 

The existing fault diagnosis methods for PV modules fall 

into two categories: online diagnosis and offline diagnosis. 

Typical online diagnosis approaches include infrared imagery 

[4] and multi-sensor detection [5, 6]. The infrared imagery 

makes use of the apparent temperature differences between 

normal and fault PV modules. In this method, infrared images 

of PV modules are taken by infrared cameras, and used to 

judge the type and location of faults. During multi-sensor 

detection, voltage and current sensors are installed on one or 

several PV modules, and then the fault types and locations of 

these modules are analyzed based on the data collected by 

these sensors. These online diagnosis methods are more 

suitable for small PV power stations. If the PV power station 

is too large, quite a few infrared cameras and sensors need to 

be set up, pushing up the cost of PV power generation. 

Moreover, the cameras and sensors may operate abnormally 

under the harsh environment, which affects the accuracy of 

fault diagnosis.  

The most representative offline diagnosis strategies are 

capacitance-to-ground (CTG) measurement [7] and time 

domain reflectometry (TDR) [8]. The former measures the 

CTG of the PV in series and thus locates the open circuit. The 

latter injects a pulse into the circuit of PV in series, analyzes 

the shape and delay of the return signal, and then identifies the 

type and location of faults. However, both CTG measurement 

and the TDR have a very limited scope of application, in that 

they must work offline and, on the site, require precision 

instruments to analyze waveforms, and only apply to PV 

modules in series rather than those in series-parallel 

connection.  

The faults of PV modules are varied, unpredictable and 

heavily influenced by external factors, and thus difficult to be 

diagnosed [9-12]. Fortunately, the neural network (NN) can 

characterize the relations between the states and causes of PV 

faults with structures, connection weights and thresholds [13]. 

The faults of PV modules could be identified and classified 

accurately, after inputting the measured data to the trained NN. 

One of the most suitable NNs for PV fault diagnosis is 

probabilistic neural network (PNN). This artificial neural 

network (ANN) is simple in structure and easy to train and 

implement [14]. The PNN-based fault diagnosis boasts a 

strong ability of nonlinear classification. During the diagnosis, 

the diagnosis spaces are mapped into fault modes, forming a 

diagnosis network with good fault-tolerance and an adaptive 

structure.  

This paper proposes a PNN-based diagnosis model for PV 

modules, and collects suitable samples to train the PNN, 

aiming to improve the correctness and adaptability of the 

model. The effectiveness of our model was verified through 

both simulation and experiment. 

The remainder of this paper is organized as follows: Section 

2 sets up the inputs of PV fault diagnosis; Section 3 identifies 

the defects of backpropagation neural network (BPNN), and 

puts forward a PNN-based PV fault diagnosis model; Section 

3 validates the proposed model through both simulation and 

experiment, and compares its diagnostic results with those of 

the BPNN; Section 4 wraps up this research with several 
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conclusions. 

 

 

2. INPUTS OF PV FAULT DIAGNOSIS 

 

The selection of inputs directly bears on the effect of NN-

based PV fault diagnosis. With appropriate inputs, the fault 

diagnosis model can obtain abundant information and make 

accurate diagnosis [15]. 

Firstly, short-circuit current Isc and open-circuit voltage Uoc 

were taken as the inputs of PV fault diagnosis model. The 

former increases with illumination intensity, and the latter 

decrease with the growth in ambient temperature. Since the 

output power of PV power station is promoted by illumination 

intensity and suppressed by ambient temperature, the two 

selected inputs cover the information on the illumination 

intensity and ambient temperature.  

Once PV modules fail, the output power of PV power 

station will not only decline, but also be affected by different 

types of faults to varied degrees. Figure 1 presents the voltage-

current (U-I) curves for various types of PV faults, when the 

illumination intensity and ambient temperature remain 

constant. 

 

 
 

Figure 1. U-I curves under various types of faults 

 

As shown in Figure 1, under the standard testing condition 

(STC: 1,000 W/m2, 25 ℃), the short-circuit current remained 

the same, while the open-circuit voltage dropped, in normal 

state and short-circuit state; the open-circuit voltage remained 

constant, whereas the short-circuit current declined, in normal 

and open-circuit state [16]. The variation of U-I curves for PV 

modules might be caused by fault, illumination intensity or 

ambient temperature, and cannot be used as the sole criterion 

to judge the fault type. 

It can also be seen from Figure 1 that, the open-circuit 

voltage of the PV power station plunged at short-circuit fault; 

the short-circuit current decreased deeply at open-circuit fault; 

the maximum power voltage Umpp and maximum power 

current Impp dropped significantly from the normal levels if a 

PV module suffered from abnormal degradation; the 

maximum power voltage Umpp remained at the short-circuit 

level, but the open-circuit voltage surpassed the short-circuit 

level, under the condition of partial shading. 

In addition, one or more outputs changed significantly with 

fault conditions. Therefore, this paper selects four parameters 

as the inputs of PV fault diagnosis model, namely, maximum 

power voltage Umpp, maximum power current Impp, short-

circuit current Isc and open-circuit voltage Uoc. 

3. PNN-BASED PV FAULT DIAGNOSIS MODEL 

 

The NN is a popular and desirable tool to diagnose faults, 

especially those with complex nonlinearity. Considering the 

nonlinear property of PV faults, it is suitable to implement the 

NN to solve PV fault diagnosis. 

 

3.1 Defects of the BPNN 

 

The BPNN, known for its strength in nonlinear mapping, 

can effectively handle nonlinear problems [13]. However, 

there are several defects with the BPNN: slow and inaccurate 

convergence, and proneness to fall into the local optimum trap 

(that is, the gradient descent method in the BPNN ensures that 

network weights could converge to a solution, but not 

necessarily the global minimum point of the error hyperplane). 

Many improved algorithms have been developed to 

overcome these defects, such as the additional momentum 

method, self-adaptive learning rate method, the resilient 

backpropagation (BP) method. But these improved algorithms 

still face long training time and low precision, if applied to 

diagnose PV faults. 

In this paper, the PNN is employed to eliminate the defects 

of the BPNN, that is, to speed up the convergence and improve 

the training accuracy [17]. 

 

3.2 Principle of the PNN 

 

The PNN is an NN specialized for pattern classification. 

Essentially a parallel algorithm, the PNN evolves from the 

classification rules of Bayesian function and probability 

density function (PDF) of Parzen window [18]. 

During network training, the PNN does not modify the 

vectors of the training sample, but saves them as the pattern 

sample. Then, the smoothing factor of Gaussian function will 

make estimation based on empirical statistics. Once the PNN 

starts working, the unknown sample X will be sent directly 

from the input layer to each class on the pattern layer, and the 

vector dot product of X and W (weights) will be taken in the 

unit of pattern layer. After the nonlinear processing completes, 

the values of dot product will be put into the summation layer. 

In the summation layer, each unit is only connected with the 

corresponding unit in the pattern layer, and the probability of 

various types is estimated by the Parzen summation method. 

In the output layer (a.k.a. the decision-making layer), the input 

vectors were assigned to the class with the maximum posterior 

probability by Bayesian classification rules, according to their 

probability statistics. 
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Figure 2. The structure of the PNN-based fault diagnosis 

model 
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Unlike the BPNN, the PNN is a feedforward NN extended 

from the radial basis function (RBF), drawing on structural 

risk minimization, i.e. Bayesian decision theory. It inherits the 

advantages of the RBF network in pattern classification. If the 

distribution density Spread is close to zero, the PNN becomes 

a neighbor classifier; if the Spread is relatively large, the 

network serves as a near classifier. In our research, the PNN-

based fault diagnosis model consists of such four layers as the 

input layer, the pattern layer, the summation layer and the 

output layer (Figure 2). 

The first layer is the input layer, in which the number of 

neurons equals the dimension of samples. This layer mainly 

receives the data from the training samples and passes the 

eigenvector to the network.   

The second layer is the pattern layer, in which the number 

of neurons equals the total number of samples in various 

classes. This layer computes the matching relationship 

between the input eigenvector and the sample of each fault 

mode. The output of each pattern layer neuron can be 

described as:  

 

2

( ) ( )
( , ) exp[ ]

2

T

i i

i

X W X W
f X W



− −
= −           (1) 

 

where Wi is the weight of the edge between the input layer and 

pattern layer; δ is the smoothing factor that determines the 

width of the bell-mouthed curves at the center of all sampling 

points. 

The third layer is the summation layer. As its name suggests, 

this layer adds up the probability of samples in the same fault 

mode, which is computed by (1), outputting the PDF of fault 

modes. Each class has only one neuron in the summation layer. 

Therefore, the number of neurons of this layer only depends 

on the number of pattern layer neurons belonging to their own 

type. In other words, the summation layer simply focuses on 

the output of pattern layer neurons of the same type. The 

output of summation layer is positively correlated to the PDF 

based on kernel functions. Then, the estimated probability for 

each type can be acquired by normalization in the output layer. 

The fourth layer is the output layer, which consists of 

threshold identifiers. The function of this layer is to choose the 

neurons with maximum posterior probability density, and 

output them as the estimated probability density of various 

fault types. Each output neuron describes a competitive level 

related to the data type (fault mode). The number of output 

layer neurons equals the number of classes of the training 

samples. Together, the output layer neurons receive all types 

of PDFs outputted by the summation layer. The output neuron 

with the largest PDF is 1 and the corresponding type is the 

pattern class to be identified. Meanwhile, all the other output 

neurons output zeros. 

The number of pattern layer neurons increases with that of 

fault samples. If there are more than two fault modes, the 

number of neurons in the summation layer will increase. As a 

result, with the accumulation of empirical knowledge, the 

PNN will expand horizontally and grow in the ability to 

diagnose faults. 

The PNN-based fault diagnosis is a very popular decision-

making method in probability statistics. Below is the 

mathematical description of this method. Given fault modes 

θA and θB, the sample features of fault X=(x1, x2, …, xn) can be 

judged in two separate cases: if hAlAfA(X) > hBlBfB(X), then X 

∈θA; if hAlAfA(X) < hBlBfB(X), then X ∈ θB. Note that hA and 

hB are the prior probabilities of fault modes θA and θB, 

respectively (hA=NA/N, hB=NB/N); NA and NB are the training 

samples of fault modes θA and θB, respectively; N is the total 

number of samples; lA is the cost of fault mode θA and error of 

fault mode θB; lB is the cost of fault mode θB and error of fault 

mode θA; fA and fB are the PDFs of fault modes θA and θB, 

respectively.  

In general, the PDF can be estimated accurately, and its 

statistic can only be derived from the existing fault samples. 

The PDF estimation can be conducted by the Parzen method 

[19]: 
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where P is the dimension of vector X and training vectors; Xai 

is the i-th training vector of a fault mode; m is the number of 

training samples of a fault mode; δ is the smoothing factor. 

 

Normalizing all training vectors and undiagnosed vectors, 

we have: 

 

( ) ( ) 2( 1)T T

ai ai aiX X X X X X− − = − −       (3) 

 

Considering that 

 

/A Ah N N=                                  (4) 

 

Substituting (2)~(4) to (1), the diagnosis rules of fault mode 

a will change as follows. If X belongs to a, then: 
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Then, the input layer receives and normalizes the input 

vector. Then, the response function of pattern layer can be 

expressed as: 

 

2

1
exp[ ]

T

ai
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X X
Y
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=                             (6) 

 

3.3 Model description and data normalization 

 

Figure 3 shows the flow chart of the PNN-based diagnosis 

model. 

As mentioned before, the inputs of the PNN-based 

diagnosis model include as Umpp, Impp, Isc and Uoc (Table 1) and 

the outputs are the fault states that can be distinguished by the 

model, namely, short circuit, open circuit, abnormal 

degradation and partial shading (Table 2). 

The four inputs have different units and orders of magnitude. 

If inputted directly, the PNN will perform poorly in 

convergence. Therefore, before PNN training, the input data 

were normalized into the interval [0, 1] by: 

 

min

max min

n

n

I I
P

I I

−
=

−
                                 (7) 

 

where In is the original input data; Imax and Imin are maximum 

and minimum of the input data, respectively; Pn is the 

normalized input data. The same Imax and Imin were adopted for 

training and testing after the normalization. 
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Table 1. Inputs of the PNN-based diagnosis model 

 
Input variable Name of input variable  

Umpp Maximum power voltage 

Impp Maximum power current 

Isc Short circuit current 

Uoc Open circuit voltage 

 

 

Table 2. Outputs of the PNN-based diagnosis model 

 
Number O1 O2 O3 O4 Fault mode 

1 0 0 0 0 Normal 

2 1 0 0 0 Short circuit 

3 0 1 0 0 Open circuit 

4 0 0 1 0 Abnormal degradation 

5 0 0 0 1 Partial shading 
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Figure 3. Flow chart of the PNN-based diagnosis model 

 

 

4. MODEL VERIFICATION 

 

To verify its effectiveness, our PNN-based fault diagnosis 

model was verified through both simulation and experiment. 

As shown in Figure 4, the PNN-based fault diagnosis model 

contains 3*3 PV modules connected in series and parallel, a 

U-I curve collection module and a PNN module. The outputs 

were displayed to alert the responsible person to locate the 

detected faults. 
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Figure 4. PNN-based fault diagnosis model 

 

4.1 Simulation verification 

 

Firstly, our model was verified through 

MATLAB/Simulink simulation. The PNN training data 

include the input data of Umpp, Impp, Isc and Uoc under the 

illumination intensity of 200~1,000 W/m2 and the ambient 

temperature of 25~45 ℃. The U-I curve collection module 

gathered 450 datasets. Among them, 400 datasets were taken 

as training samples and the others as testing samples. The 

Spread was set empirically to 0.8. The Gaussian function and 

Euclidean distance were respectively taken as the activation 

function and the weighting function, respectively. In addition, 

netprod and compet were selected as input and output 

functions, respectively.  

The results and errors of PNN training are displayed in 

Figures 5 and 6, respectively. Note that the red curves are 

actual faults, while the blue ones are the diagnosis results. 

After PNN training, the trained model was imported with the 

testing data.  

Based on 50 testing datasets, the trained PNN was applied 

to detect the fault types of PV modules. Figure 7 shows some 

of the diagnosis results. Note that the red curves are actual 

faults, while the blue ones are the diagnosis results. As shown 

in Figure 7, the PNN outputs were consistent with the 

predefined outputs under each type of fault, and the diagnosis 

accuracy reached 60.0 %, indicating that the PNN is feasible 

for PV fault diagnosis. 
 

  
 

Figure 5. Diagnosis results of PNN training 
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Figure 6. Errors of PNN training 

 

 
 

Figure 7. PNN-based diagnosis results 

 

Table 3. Fault test samples of PV modules 

 

Number Isc/A Impp/A Uoc/V Umpp/V 
Short  

circuit 

Open  

circuit 

Abnormal  

degradation 

Partial  

shading 

1 5.928 5.631 41.53 31.26 0 0 0 0 

2 3.140 2.537 27.51 20.30 1 0 0 0 

3 4.520 3.744 40.63 26.91 0 1 0 0 

4 1.917 1.581 40.33 29.79 0 0 1 0 

5 5.218 4.762 41.21 29.81 0 0 0 1 

 

Five typical fault test samples (Table 3) were selected for 

PNN-based fault diagnosis. The diagnosis results are 

presented in Table 4 below. 

 

Table 4. PNN-based diagnosis results 

 

Number 
Short 

circuit 

Open 

circuit 

Abnormal 

degradation 

Partial 

shading 

1 0 0 0 0 

2 1 0 0 0 

3 0 1 0 0 

4 0 0 1 0 

5 0 0 0 1 

 

According to the diagnosis results, the short circuit current 

Isc under the state of open circuit and the maximum power 

current Impp differed greatly from those under the other states. 

Similarly, the open circuit voltage Uoc under the state of short 

circuit and the maximum power voltage Umpp had marked 

differences from those under other states. Thus, the open 

circuit fault and short circuit fault could be classified easily by 

the trained model. Nonetheless, our model could not 

distinguish between other fault types easily, due to the 

complexity and the variability of partial shading and abnormal 

degradation [20]. 

(1) Analysis of abnormal degradation 

With the elapse of time, the PV modules gradually age and 

output an increasingly low power. This aging phenomenon is 

known as abnormal degradation. For example, the PV modules 

may be eroded by water vapor and thus have a lower output 

power [21]. The maximum power voltage Umpp is the most 

vulnerable parameter to abnormal degradation. 

The abnormal degradation is generally simulated by 

increasing the series resistance Rs or decreasing the parallel 

resistance Rsh [22]. The former strategy is relative more 

common. To determine the appropriate series resistance of 

abnormal degradation, the PV modules were simulated under 

the illumination intensity of 1,000W/m2. The resulting curves 

of Umpp at different series resistances are given in Figure 8. 

 

 
 

Figure 8. The Umpp at different series resistances 

 

As shown in Figure 8, the maximum power voltage Umpp 

plunged deeply with the increase in series resistance, which 

favors the PNN classification. It can also be found that the 

Umpp value minimized at the series resistance of 25Ω. 

Figure 9 compares the Umpp under normal state and that 

under abnormal degradation at different illumination 

intensities. It can be seen that the Umpp in abnormal degradation 

was almost the same with that in normal condition under a low 

illumination intensity. That is why PV faults may be 

misdiagnosed at a low illumination intensity. However, the 

fault of abnormal degradation can be identified easily when 

the illumination intensity is high. 

(2) Analysis of partial shading 
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In real-world cases, partial shading often occurs due to the 

shadow of various objects (e.g. trees, buildings and clouds), 

manufacturing defects, cracking, etc. [23] The wide presence 

of these objects complicate the analysis of partial shading in 

PV fault diagnosis. Under partial shading, the PV modules 

may have different output features, and the output power of 

the entire PV power station may be limited to the PV module 

with the smallest output power. In addition, partial shading 

will cause a huge variation in the maximum output power of 

PV modules.  

To describe partial shading, the parameter α was introduced 

as the rate of shadow blocked without considering temperature 

variation. If α = 0.1, then 10 % of irradiance is blocked and the 

transmission of irradiance is (1-α). Previous simulations have 

shown that the PNN detected the fault types correctly when α 

varied from 0.4 to 0.7, but failed to do so under the other 

conditions. Here, the value of α is set to 0.5. In this case, the 

misdiagnosis is mainly the result of the lack of training 

samples. To enhance the PNN performance, it is necessary to 

collect more output data under different α values for PV 

modules. 

 

 
 

Figure 9. The Umpp at different illumination intensities 

 

 

4.2 Experimental verification 

 

Our model was further validated on an experimental 

platform, consisting of a data acquisition module and a fault 

diagnosis module (Figure 10) [24]. The test object is a group 

of 3*3 PV modules with the same parameters and connected 

in series and parallel. 
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Figure 10. Block diagram of the experimental platform 

The data from the fault diagnosis module were transmitted 

wireless to the host. The transmission mode is described in 

Figure 11 below. 
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Figure 11. The wireless data transmission mode 

 

 
 

Figure 12. A photo of the experimental platform 

 

 
 

Figure 13. Diagnosis results of PNN training 

 

Figure 12 is a photo of the experimental platform. To test 

the effectiveness of our model in different environments, the 

operating data in sunny and cloudy days were both collected 

by the data acquisition module. Meanwhile, the parameter 

values of the PV modules were gathered at various 

illumination intensities and ambient temperatures [25]. A total 

of 500 datasets were obtained after repeated measurements. 

Among them, 400 datasets were taken as the training sample, 

and the remaining 100 as the testing sample. Five typical fault 

test samples (Table 5) were selected for the PV fault diagnosis 

by our model. The fault test samples, diagnosis results and 

errors of PNN training were displayed in Figures 13 and 14, 

respectively, and the PNN-based diagnosis results are shown 

in Figure 15. 
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Table 5. Fault test samples of PV modules 

 

Number Isc/A Impp/A Uoc/V Umpp/V 
Short  

circuit 

Open  

circuit 

Abnormal  

degradation 

Partial  

shading 

1 5.305 4.938 35.43 29.33 0 0 0 0 

2 4.831 2.963 30.21 25.46 1 0 0 0 

3 3.658 3.204 32.86 26.81 0 1 0 0 

4 3.510 2.979 33.92 24.85 0 0 1 0 

5 4.659 3.195 35.05 24.78 0 0 0 1 

 

 
 

Figure 14. Errors of PNN training 

 

 
 

Figure 15. PNN-based diagnosis results 

 

The results show that our model achieved an up to 90.0 % 

diagnosis accuracy, revealing the importance of parameters 

like Rs and α in PV fault diagnosis.  

Figure 16 shows the precision of fault diagnosis of our 

model at different fault states. It can be seen that our model 

successfully detected fault types like short circuit and open 

circuit. Some misdiagnoses still occurred in the states of 

normal, abnormal degradation and partial shading, owing to 

the complexity of the external environment. Overall, the 

experimental results are relatively satisfactory. 

The diagnosis accuracy can be greatly affected by Spread, 

the expansion coefficient of RBF. The default value of Spread 

is 1.0. If it is too small, the RBF neurons will not respond to 

the interval covered with the input vectors; If it is too large, 

the computing load will be too heavy. In generally, the greater 

the Spread, the smoother the outputs. The optimal Spread is 

less than the typical distance among the input vectors. The 

influence of Spread over diagnosis accuracy is described in 

Table 6. 

 

 
 

Figure 16. Precision of fault diagnosis 

 

Table 6. The influence of Spread over diagnosis accuracy 
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accuracy 

0.01 70.0 100 95.0 50.0 70.0 77.0 

0.1 70.0 100 100 55.0 70.0 79.0 

0.4 85.0 100 100 75.0 80.0 88.0 

0.8 95.0 100 100 85.0 90.0 94.0 

1.0 95.0 100 100 85.0 85.0 93.0 

 

4.3 Comparison between BPNN and PNN 

 

As shown in Table 7, the PNN has the following advantages 

than the BPNN. 

(1) The PNN has a simpler and faster convergence process 

than the BPNN. Despite having the same input and output, the 

BPNN and the PNN differ in many aspects. For instance, the 

number of hidden layers in the BPNN is empirical and selected 

non-deterministically through trial-and-error, while that in the 

PNN is basically fixed. Besides, the PNN does not need to 
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determine the number of hidden layer neurons. Furthermore, 

the BPNN’s learning algorithm converges slowly and often 

falls into the local optimum trap. By contrast, the PNN training 

avoids the local optimum trap and completes very quickly, 

because the training is a one-step process and the samples are 

directly assigned. 

 

Table 7. Experimental results of BPNN and PNN 

 

Algorithm 
Parameter 

Convergence time/s Precision/% 

BP 1.72 66.7 

PNN 0.75 85.0 

 

(2) The PNN consistently converges to the optimal solution 

of Bayesian rules. The BPNN classification rules are too 

ambiguous to output transparent results, while the PNN 

classifies the objects by the risk minimization rules of 

Bayesian and uses the prior knowledge. However complex the 

classification problem, the PNN can always converge to the 

optimal solution of Bayesian rules, provided that there are 

sufficient training samples. On the contrary, the BPNN may 

stop at a local optimal solution rather than converge to the 

global optimum. 

(3) The PNN works well with additional samples and even 

tolerates some wrong samples. This network only needs to 

increase or decrease the number of neurons in the pattern layer, 

in order to add new samples or remove old samples. The new 

samples can be added by assigning new connection weights 

between input and pattern layers. For the BPNN, however, the 

network must be trained again whenever the training samples 

are modified, and the connection weights must be reassigned. 

This is basically rebuilding the entire network. 

(4) The PNN can process abnormal data in real time. If it is 

applied to classify abnormal data, what is originally completed 

by nonlinear learning algorithm can be done by linear learning 

algorithm, such as to maintain the high diagnosis accuracy. 

Moreover, the PNN does not need to be trained again.  

In actual PV fault diagnosis, the fault samples of PV 

modules are constantly changing, which gives full play to the 

superiority of the PNN in handling additional samples. To sum 

up, the PNN-based model outperforms the BPNN in multiple 

aspects of fault diagnosis, including but not limited to fast 

diagnosis, high accuracy and the tolerance of new samples. 

 

 

5. CONCLUSIONS 

 

The PNN-based fault diagnosis makes full use of prior 

knowledge of faults and detects different types of faults 

deterministically under risk minimization of Bayesian rules. In 

this paper, a PV fault diagnosis model is proposed to detect 

four types of faults, namely, open circuit, short circuit, 

abnormal degradation and partial shading. Both simulation 

and experiment show that our model detected different types 

of PV modules effectively, enabling the responsible person to 

locate the faults and take countermeasures in time. The results 

analysis show that the PNN enjoys high training speed and is 

easy to implement in engineering. Moreover, the PNN-based 

fault diagnosis has strong robustness and high accuracy. With 

the accumulation of fault knowledge, our model requires no 

additional instruments, and supports the online detection. 

Compared with the BPNN-based diagnosis model, our model 

is obvious superior in convergence speed and precision. Future 

research will further improve our model to tackle the 

uncertainty and complexity of PV faults induced by 

environmental factors. 
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