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Through this recent simulation, we investigated the effect of different physical parameters on 

the productivity of the greenhouse still coupled with a cylindro-parabolic solar concentrator 

and an autonomous photovoltaic generator that prolongs the distillation time during the 

night. An attempt has been made to determine the various parameters that improve the 

productivity of the hybrid distiller during the day and at night. We identify new 

modifications and thermal and electrical storage mechanisms to achieve results, which 

illustrate the advantage and disadvantage of physical parameters to have a solar-based 

distillation that lasts 24 hours. This study will be a research opening to increase the 

productivity of solar distillers. Until we reached the water fill for a long time possible in all-

weather cases by solar energy.  
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1. INTRODUCTION

Solar distillation is an effective technique that reduces 

water scarcity in isolated sites as well as is a safe way against 

pollution and damage to human health. Effective 

modifications to solar distillers to produce enough water for 

society. Many processes are carried out to produce low cost 

water and reduced energy consumption as well as 

environmental concerns. Hosseini et al. [1] developed an 

active solar distillation system integrated with a solar 

parabolic through the concentrator and a vacuum-type heat 

exchanger. They experimentally evaluated its performance 

during the five days of October 2015. In their study, the 

effect of the environmental variables as well as the 

operational parameters on the performance of the whole solar 

distillation system was investigated regarding the total daily 

production rate. Ibrahim et al. [2] presented an 

exergoeconomic investigation for an evacuated solar 

distillation system that composed of still (evaporation 

chamber) and an air-cooled condenser (fresh water chamber). 

Their study covered exergetic, economic and 

exergoeconomic assessments of the solar distillation system. 

Jareanjit et al. [3] reported three scenarios for recycling the 

ethanol waste solution left behind in the tanks in each stage 

of distillation in a solar distillation system. Miao et al. [4] 

developed a membrane distillation device, consisting of a 

carbon nanotube membrane as solar absorption layer, a 

qualitative filter paper as water transmission pipeline and an 

aerogel blanket as thermal insulator to achieve efficient solar 

harvesting and heat localization for enhancing water 

evaporation. Moore et al. [5] developed a non-steady process 

model to simulate a sweeping gas membrane distillation 

system powered by solar thermal and photovoltaic power for 

the desalination of drinking water. Panthalookaran et al. [6] 

described experiments conducted to improve the efficiency of 

the dehumidifier attached to the novel solar distillation unit 

by optimizing the design parameters. Ranjan and Kaushik [7] 

presented a comprehensive survey and review of the efforts 

made in solar distillation systems and technologies with 

focus on the energy and exergy efficiency of the system. 

Saldivia et al. [8] conducted a numerical model for a multi-

effect distillation (MED) plant driven by solar energy. Their 

model was based on mass, energy, and heat transfer 

equations applicable to the coupled MED and steam 

generation plants. Tan et al. [9] experimentally investigated 

the efficacy of MXene as a coating material on hydrophobic 

PVDF membranes to improve direct contact membrane 

distillation (DCMD) through the inherent photo-thermal and 

fouling mitigation functionalities. Tiwari et al. [10] 

performed an exergoeconomic and enviroeconomic analyses 

of partially covered photovoltaic thermal (PVT) flat plate 

collector (FPC) integrated solar distillation system known as 

PVT-FPC active solar distillation system. Their analysis was 

based on experimental studies for composite climatic 

condition of New Delhi. Tiwari and Sahota [11] highlighted 

an experimentally and theoretically detailed work done in 
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recent past on passive and active solar stills. Yousef and 

Hassan [12] energetically, exergetically and economically 

investigated an experimental performance assessment of 

solar still system combined with PCM (phase change 

materials) storage unit. They used two techniques for further 

enhancing the still performance with PCM which are: 

embedded copper hollow pin fins (PF) inside the PCM and 

using mesh steel wool fibers (SWF) in the basin of the solar 

still with the PCM.  

Zhu et al. [13] proposed and studied a novel light 

concentration and direct heating (LCDH) solar distillation 

device embedded underground in their analysis, to improve 

on the weakness of current solar distillers, especially 

complex structure, large floor space, inapplicability for large 

scale desalination. Other studies can be found in the literature 

as Li et al. [14], Wang et al. [15], Gopi et al. [16], 

Muraleedharan et al. [17], Parsa et al. [18], Miladi et al. 19], 

Hejazi et al. [20], Patel et al. [21], Afzal et al. [22], Al-Nimr 

et al. [23], An et al. [24], R. Bhardwaj et al. [25], Gupta et al. 

[26], Kiwan et al. [27], Ma et al. [28], Manchanda and 

Kumar [29], Reddy and Sharon [30], Reddy et al. [31], 

Tiwari et al. [32], Xu et al. [33], Zhang et al. [34], Zhou et al. 

[35], Sharan et al. [36], Shukla et al. [37], Al-Nimr et al. [38], 

Chafidz et al. [39], Chen et al. [40], Deshmukh and Thombre 

[41], Gakkhar et al. [42], Gil et al. [43], and Menni et al. [44-

48]. 

In this numerical analysis, we simulate the effect of 

different physical parameters on the productivity of the 

greenhouse still coupled with a cylindro-parabolic solar 

concentrator and an autonomous photovoltaic generator that 

prolongs the distillation time during the night.  

 

 

2. HYBRID DISTILLATION UNDER STUDY 

 

The considered physical model, reported in Figure 1, 

consists of a greenhouse still, its operation based on passive 

solar energy and a system for converting thermal energy via a 

cylindro-parabolic concentrator, an autonomous photovoltaic 

system or a wind generator. The latter feeds the system 

during the day and ensures the extension of operation in the 

night. The photovoltaic system has batteries for the purpose 

of storing electrical energy and reused during the absence of 

the radiant source, which is the sun. The duration of 

operation determines the sizing of the system. A long time 

increases the size of the photovoltaic system and increases 

the cost of installation. The high cost is a major disadvantage 

and pushes us to do some research to reduce the cost with a 

long distillation time during the night. 

 

 
 

Figure 1. Present hybrid distiller with a CCP and autonomous generator 
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3. MATHEMATICAL FOUNDATION 

 

3.1 Concentrator cylindro parabolic 

 

Energy balance for the fluid 

 

The energy balance for the coolant circulating in the 

absorber tube is: 
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Energy balance for the absorber 

 

The energy balance for the absorber is: 
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Energy balance of the glass 

 

The energy balance for the glass is: 
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3.2 Green house distiller 
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In the brine 
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In the absorbent tray 
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In the insulation 
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3.3 Hybrid distiller 
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3.4 Estimated consumption 
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3.5 Dimensioning of the photovoltaic generator 
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3.6 Autonomy 
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3.7 Sizing of the regulator 
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3.8 Dimensioning of the converter 
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3.9 Dimensioning of the wiring 
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3.10 Conversion of electrical energy to thermal energy 
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4. RESULTS AND DISCUSION 

 

Figure 2 shows the variation of the cost of installation 

according to the electrical resistance, the increase of the 

resistance causes the increase of the cost of the autonomous 

system. Figures 3, and 4, 5 show the irradiation effect during 

the day on the number of solar panels and the number of 

batteries, which increase when Ir = 5 kw/d and decrease when 

Ir = 8 kw/d, so solar irradiation causes an inversely 

proportional effect with photovoltaic sizing. 
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Figure 2. Effect of electrical resistance on installation cost 
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Figure 3. Solar irradiation effect on the number of solar 

panels depending on the distillation time 

 

Figure 6 shows the variation of the cost from 18h to 24h 

which increases with the increase of the production under the 

effect of the absence of the solar rays and the lowering of the 

outside temperature. Figures 7 and 8 Show the variation of 

the installation cost according to number of solar panels and 

number of storage batteries respectively. The increase of the 

two elements causes an increase in the cost of installation and 

the enlargement of the system. 
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Figure 4. Effect of irradiation on the cost of installation 
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Figure 5. Irradiation effect on the battery number 
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Figure 6. Variation of cost according to production 

 

Figure 9 shows the variation of the production according 

to the electrical resistance. The increase in resistance keeps 

production at average values according to the condition of 

autonomy. The resistance is increased to recover the lowering 

of the temperature, which decreases under the influence of 

external parameters, such as the outside temperature and the 

absence of solar rays.  
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Figure 7. Variation of cost according to the number of panels 
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Figure 8. Variation of cost with battery number. 
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Figure 9. Effect of resistance on production from 18h to 24h 

 

Figure 10 shows the variation of the water temperature 

according to the electrical resistance. The increase in 

resistance causes an increase in the temperature of the water 

and the opposite because of the thermal electrical conversion 

necessary for the system. 

Figure 11 shows the variation of the thermal power as a 

function of the temperature of the water. The increase in 

temperature increases the thermal power and the opposite 

because of the thermal characteristics of the water. 
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Figure 10. Variation of the water temperature according to 

the electrical resistance 
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Figure 11. Variation of thermal power in function the 

temperature of the water 

 

 

5. CONCLUSION 

 

Research shows that there are several possibilities for 

increasing the productivity of the solar distiller and reducing 

the effect of factors that reduce production. Production by 

improving the storage of thermal energy to electricity with a 

system of cogeneration of solar photovoltaic and thermal 

energy produced by solar concentrators. It exceeds the 

production of other distillers. However, this study allows us 

to propose new designs that can offer better performance, a 

large amount of production and an extension of the 

distillation time of a hybrid distiller. 

The increase in resistance causes the cost of the 

autonomous system to increase. 

Solar irradiation causes an effect inversely proportional 

with photovoltaic sizing. 

The cost of 18h to 24h which increases with the increase 

of the production under the effect of the absence of the solar 

rays and the lowering of the outside temperature. 

The increase in the number of solar panels and the number 

of storage batteries, causes an increase in the cost of 

installation and the enlargement of the system.  

The increase of the electrical resistance keeps the 

production at average values according to the condition of 

autonomy. The resistance increases to recover the lowering 

269



 

of the temperature which decreases under the influence of the 

external parameters like the outside temperature and the 

absence of the solar rays. The temperature increases the 

thermal power and the opposite because of the thermal 

characteristics of the water (proportional connection). 
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