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Vehicular Ad-hoc networks (VANETs) which is regarded to be a major component in the 

intelligent transportation systems, have the defined target of assuring safe delivery of 

information between the vehicles. These networks consist of several essential elements, 

such as dynamic changing nodes, scattered networks, sensors, road-side components 

(RSC) and self-organizing topologies. But these networks are more vulnerable to the 

contentious attacks, security breaches and data privacy problems persist as a crucial threat 

in spite of the recent advancement of VANET. To overcome this challenge, an effective 

and high secured framework is mandatorily demanded. Consequently, this research 

introduces a novel routing framework that integrates the attack detection and hybrid 

encryption units. The cluster head (CH) is determined utilising novel gated sway 

networks, which combine centrality-based feature extraction with a gated neural network 

to ensure trusted CH selection. This enhances resilience and improves interfacing 

throughout the data transmission process in the VANET framework. The hybrid 

encryption schemes contain sandwich Henon maps (SHM) coupled with the Advanced 

Encryption schemes (AES). This combination strives to strengthen the network's security 

and privacy The proposed protocols are analysed using SUMO-OMNET++ simulation 

environment. Nearly 2,50,000 data traces comprise of normal and attack data were 

simulated and attacks such as sybil and wormhole attacks are injected using python 3.19 

programming. Simulation results from the performance assessment demonstrate that the 

proposed framework has produced the 96.5% detection accuracy, 96.0% precision, 95.7% 

recall, 96.4% specificity, 97.5% F1-Score and it is apparent that the proposed framework 

has exhibited the better performance over other existing algorithms. Additionally, 

National Institute of Standard Technique (NIST) suite was performed to verify the 

randomness of the encrypted bits utilising the recommended method. The test outcomes 

demonstrated that the suggested encryption approach has produced the high randomness 

features capable of protecting the sybil and gray hole attacks. 
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1. INTRODUCTION

Recently, VANETS plays an inevitable role in building the 

intelligent transportation systems in offering end users with 

comfortable services encompassing traffic security, 

entertainment, navigation process, transport effectiveness, 

amusement and road traveling [1]. Due to the advantages of 

VANET, these networks are integrated in to public 

transportation entities and a range of automobile companies to 

facilitate the VANET establishment [2]. These networks 

depend on short-range communication to connect the vehicles 

[3]. 

In contrast to conventional wired frameworks, VANETs are 

vulnerable to threats and vulnerabilities. It may be affected by 

specific threats which focus on compromising safety and 

disseminating misleading data, along with traditional threats 

[4]. Among the foremost critical threats, currently impacting 

VANETs is the sybil threat [5]. When harmful vehicle nodes 

generate numerous counterfeit IDs, they can initiate sybil 

threats which directly influence service delivery for aspects 

including road security, traffic flow, multimedia services, and 

more. A strategic intruder aiming for personal gain and a 

malicious attacker intending to cause harm can both carry out 

a sybil attack. 

A sybil attack occurs when a single adversarial entity 

pretends to be several distinct identities, deceiving the network 

into believing that numerous distinct nodes exist. This 

manipulation can distort traffic density readings, disrupt 

routing decisions, and mislead applications dependent on node 

consensus, ultimately jeopardizing traffic safety and 

efficiency. In contrast, a wormhole attack involves at least two 

colluding nodes that create a private link—known as a 

tunnel—through which packets are transmitted between 

distant locations, bypassing the normal routing path. This false 
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perception of a shorter route can mislead nearby vehicles, 

diverting traffic and allowing attackers to monitor, drop, or 

alter data. Both attacks significantly impair the reliability, 

trustworthiness, and safety of VANET communications by 

undermining authentication, routing integrity, and real-time 

data accuracy. 

Numerous strategies have been suggested to shield vehicles 

from becoming targets of the aforementioned attacks. Key 

cryptographic methods such as digital signatures, rule-based 

detection, and encryption have been extensively employed as 

an initial defense to block various forms of external threats. 

However, these precautionary techniques are insufficient to 

protect VANET systems against internal threats. Given the 

collaborative nature of VANET, harmful nodes or attackers 

continue to perform malicious actions such as denial of service, 

vehicle hijacking, data leakage, tampering with information, 

spreading false data, and other similar activities. 

Several authentication techniques [6-9], intrusion detection 

mechanism [10-12] and cryptographic mechanism [13-16] 

were proposed to maintain the privacy and to overcome the 

security breaches against the growing attacks. Nevertheless, 

most of the strategies outlined above involve significant 

computational overhead, forming it complex to overcome the 

security breaches caused by the growing sybil and wormhole 

attacks. These complexity and drawbacks prevent these 

methods from being designing an intelligent detection system 

for VANET to protect the users against the sybil and 

wormhole attacks. 

Motivated by this drawback, this research article proposes 

the novel intelligent network named Enhanced Gated Sway 

Neural Network (EGSNN) which hybrids the intrusion 

detection system and high-end cryptographic system for 

detection and counterfeiting the sybil attacks in VANET 

environment. The proposed framework works on the principle 

of centrality-based feature extraction in which the feedforward 

gated units are used to detect the attacks [17]. In addition to 

the detection, strong encryption with the principle of Henon 

chaotic principles is designed to counterfeit the sybil and 

wormhole attacks. The major contribution of this research is 

outlined below: 

1. Introduces the enhanced gated sway recurrent units which 

for predicting the sybil and wormhole attacks in VANET 

environment. 

2. Proposes the High-End Cryptography technique based 

Chaotic Henon maps for counterfeiting the attacks. 

3. Extensive experimentation has been conducted and its 

performance was evaluated against other cutting-edge 

learning models. 

The remaining sections of the study are arranged as pursues: 

Section-2 introduces the reviews of different works regarding 

the security measures of the network. Section 3 outlines the 

system model utilised in the VANET scenario. The working 

mechanism of the recommended framework is detailed in 

Section 4. The experimentations, result evaluation, NIST tests 

and comparative studies are provided in Section 5. At last, the 

study wraps up with future enhancements in Section 6. 

 

 

2. RELATED WORKS 

 

El-Shafai et al. [18] developed an AI-based collective 

classifiers for identifying interference assaults in VANETs. 

The suggested framework combines machine learning and 

neural network classifiers to examine signal properties within 

VANET transmission pathways. Their ensemble classifier 

combines Random Forest, Extra Tree, and fine-tuned 

Convolutional Neural Network, achieving an impressive 

detection accuracy of 99.8125%, outperforming individual 

classifiers. This approach significantly enhances VANET 

security frameworks to counteract jamming assaults, 

strengthening the overall protection and dependability of 

VANET communication in smart city infrastructures. 

However, the model needs further validation in real-world 

dynamic VANET scenarios. 

Bayan et al. [19] constructed a Deep Learning-driven 

intrusion recognition framework for detecting position 

falsification threats in VANETs. Their system employs Multi-

Layer Perceptron (MLP) algorithm that considers RSSI 

aggregation of first-hop neighbors and Time Difference of 

Arrival (TDoA) as new detection features. Trained offline 

using the VeReMi dataset, the model can be deployed at a 

vehicle's Onboard Unit (OBU), reducing computational 

complexity and execution time. Their DL-IDS model 

demonstrates high accuracy and F1-score values, exceeding 

existing models by 2-7% with advantages in computational 

efficiency. However, the system may struggle with detecting 

complex hybrid attacks. 

Suman et al. [20] proposed an Improved LeeNET (I-

LeeNet) architecture to identify and mitigate various attacks 

including Botnet, sybil, DoS, wormhole, PortScan, Blackhole, 

and BruteForce. The architecture intelligently blends 

Convolutional Neural Networks (CNN) and Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) for real-time attack 

detection. Their approach includes KIDS module for known 

attack detection and UIDS module for learning previously 

unidentified attacks. Tested on three datasets (i-VANET, ToN-

IoT, and CIC-IDS 2017), the proposed method achieved 

average accuracies of 97.21%, 97.75%, and 96.66% 

respectively, demonstrating promising real-time application 

potential. But the computational demands may challenge 

implementation in resource-limited environments. 

Jabbar et al. [21] suggested the centrality relied clustering 

mechanism for the recognition of sybil and wormhole threats 

in VANET framework. The main idea is to maintain the 

network’s reliability by choosing the appropriate cluster head 

(CH) based on the centrality measures to cluster the vehicles 

for an effective data transmission. The findings demonstrated 

the excellent performance of the recommended model 

regarding network lifetime and computational cost. However, 

the suggested framework requires brighter light of analysis in 

deploying the intelligent system for the detection of multiple 

attacks. 

Rafsanjani et al. [22] proposed unmanned aerial vehicles 

(UAV) in the VANET environment to detect the malicious 

vehicles. A vehicle routing unit (VRU) has been introduced as 

a method to direct the data, thereby mitigating the malicious 

vehicles. The proposed framework has improved the packet 

delivery ratio by 16% and detection ratio by 7% evaluated 

against the other methods. However, these methods fail to 

throw the deeper light of counterfeiting the attacks especially 

sybil and wormhole attacks. 

Polat et al. [23] proposed a stacked sparse autoencoder with 

Softmax classifier neural network architecture for identifying 

DDoS assaults aimed at SDN-powered VANET. Their 

approach dimensionally reduced features using SSAE to 

extract the important features, which are then utilised as input 

for the Softmax categorizer. Evaluation outcomes 

demonstrated that their recommended approach attained 
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96.9% precision, surpassing other models in identifying DDoS 

intrusions in SDN-driven VANET. However, the model's 

effectiveness against new attack patterns needs further testing. 

Wang et al. [24] suggested a lightweight and effective 

authentication system for safe VANET transmission (LESPP) 

that preserves privacy. The proposed technique only requires 

the construction of a fast MAC re-generation and a lightweight 

symmetric encryption and message authorization code (MAC) 

for message signing. To safeguard security and conditional 

tracking, such strategy employs a self-created phony identity. 

The suggested approach significantly reduces calculation costs. 

Alfadhli et al. [25] demonstrated the application of genetic 

hashing function to resolve the issues of unsafe driving 

sequences. Furthermore, the vehicle authorization is 

performed exclusively one time by the VANET framework 

manager thereby increasing the authentication process. To 

mitigate the attacks, the framework offers the confidentiality 

to maintain safety of the vehicles. The framework offers the 

more superior performance in maintaining the privacy of the 

vehicles against the multiple attacks. But the framework needs 

improvisation in detecting the attacks which will be occurring 

in unknown occasions. 

Fatemidokht et al. [26] introduced a cluster-based routing 

protocol termed QoS-based Monitoring of Malicious Activity 

(QMM-VANET) to improve network QoS. The protocol 

comprises of three components: CH identification, optimal 

neighbor identification, and gateway renewal method. The 

experiment is carried out using NS2 in the highway situation. 

Packet delivery ratio, latency, and network reliability are the 

key metrics focused on in the result performance analysis. 

However, characteristics such as detection ratio and high-end 

privacy are overlooked. 

Guo et al. [27] presented the game-theoretic-relied incentive 

framework for collaborative recognition of multiple –threats 

in the VANET framework. These algorithms combine the 

different machine learning models. But fails to improve the 

safety measures and confidentiality breaches in the VANET 

framework. 

 

 

3. SYSTEM MODEL  

 

The primary elements comprise in VANET are on-board 

unit (OBU), road-side unit (RSU), trusted authority (TA) and 

application units (AU). These modules help in implementing 

the vehicular network. 

 

3.1 OBU 

 

Each and every conveyance in the vehicular network will be 

equipped with OBU to support the ITS. Once OBU is fixed on 

the conveyances it helps in exchanging the data with the other 

conveyances OBUs or RSUs. All the information about 

conveyances is collected by Electrical Control Unit (ECU) and 

send to the AU. This AU process the collected data and 

generates the message based on collected data and shares that 

message to the other conveyances in the network. The OBU 

will be connected to the internet through RSU or hotspot or 

DSRC. Figure 1 depicts the secure and intelligent VANET 

framework. 
 

 

3.2 RSU 

 

RSU is a base station or a gateway for the conveyances in 

the network and the services on the road furnished by the 

VANET. RSU is a static and the ranges are fixed for the 

conveyance to memorandum with that particular RSU. 

Depending on the utilization of communication protocols, the 

distribution and frequency is made for RSUs. The 

communication from legitimate nodes to malicious nodes can 

be revoked by the TA that are assisted by the RSUs. 

 

 
 

Figure 1. VANET communication framework 

 

 

4. SYSTEM OVERVIEW 

 

Figure 2 illustrates the recommended system consist of four 

components including Dataset Collection, Data-Preprocessing 

unit (DPU), Centrality (Sway) Extraction (CFU) and Modified 

Gated Recurrent learning network (MGRLN). In the event of 

classification, proposed model detects the two important 

parameters such as type of attack (TA) and malicious node 

provide in the VANET framework. The comprehensive 

explanation of the recommended framework is provided in the 

previous section. 

 

4.1 Dataset collection 

 

For an efficient data collection, powerful integration of the 

SUMO [28], VEINS [29] and OMNET [30] are used in this 

research. To induce the attacks in the networks, python-based 

attack injection module has been introduced. Nearly 4,00,000 

data are collected, with 70% allocated for training and 30% for 

testing. The complete description of data generation process is 

depicted in Algorithm-1. 

 

Algorithm-1 /Data Generation Process 

Step 1: Start process 

Step 2: Initialization of road traffic scenarios from 

source to destination 

Step 3: Introduce the vehicles on the road scenarios 

Step 4:  Induce the attacks in the created road scenario 

Step 5: Store the data in the SQL databases  

Step 6: End process 

 

4.2 Data pre-processing unit  

 

The data gathered in the preceding phase may contain the 

misleading or null values, hence data prep-processing 

technique is needed before implementing to the proposed 

learning model. The pre-processing stage involves the data 

labelling and data normalization. Labeling the dataset is a 

crucial phase in data preprocessing. Based on the events 
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gathered from the prior phase, all traffic was classified as 

normal (0-label) and attack (1-sybil, 2-wormhole, 0-Normal) 

according to the information like source address, destination 

address, time, and duration. After categorizing the data, a min-

max normalization method was applied to scale the features to 

a uniform range, typically between 0 and 1. This guarantees 

that every attribute plays an equal role in the training model 

and prevents bias towards attributes with greater ranges. The 

min-max normalization formula is expressed as: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
  (1) 

 

where, Min denotes Minimum data, Max indicates maximum 

data and x is the collected raw data.  

After normalizing the data, these data feed to the 

recommended DL model for the further identification of 

various threats. 

 

 
 

Figure 2. Proposed framework for the deep sway networks 

and hybrid encryption process 

 

4.3 Centrality feature extractor 

 

The major purpose of this research is to design an effective 

feature database capable of classifying normal and influential 

nodes. Numerous centrality measure detection techniques 

have been introduced in existing research to quantify node 

importance. However, this paper highlights the application of 

an expanded set of centrality metrics to attain the precise 

categorization of significant nodes. 

To capture both the structural and functional traits of the 

nodes, the subsequent centralities are evaluated, as detailed 

below. 

 

4.3.1 Degree centralities 

It reflects the count of connections associated with the 

nodes. It consists of two variations: indegree and outdegree 

centrality. These measures can be computed utilising the 

subsequent formulas. 

i) Indegree centrality 

 

𝐷𝑖𝑛(𝑃𝑖) =  |𝑃𝑗𝑖  ∈  𝑃|, 𝑗 ≠  𝑖 (2) 

 

𝑃𝑗𝑖  represents the connection extending from 𝑃𝑖  node to the 

assessed node P. 

ii) Outdegree centrality 

 

𝐷𝑜𝑡(𝑃𝑖) =  |𝑃𝑖𝑗  ∈  𝑃|, 𝑖 ≠  𝑗 (3) 

 

𝑃𝑖𝑗  represents the connection strength (i.e., edge) from the 

assessed unit 𝑃𝑖  to all another units 𝑃𝑗 in the system. 

 

4.3.2 Betweenness centralities 

It signifies the proportion of all shortest routes traversing 

the nodes. The numerical representation for this measure is 

presented by: 

 

𝐷𝐵(𝑃𝑖) =  ∑
𝜇𝑃𝑚,𝑃𝑛(𝑃𝑖)

𝜇𝑃𝑚,𝑃𝑛
𝑃𝑚≠𝑃𝑖≠𝑃𝑛

  (4) 

 

where, 𝜇𝑃𝑚,𝑃𝑛
(𝑃𝑖)  represents the count of minimal routes 

among nodes 𝑃𝑚  and 𝑃𝑛  that traverse through 𝑃𝑖  and 𝜇𝑃𝑚,𝑃𝑛
 

denotes the count of all shortest paths among 𝑃𝑚 and 𝑃𝑛. 

 

4.3.3 Closeness centralities 

It represents the interval of nodes within the systems and its 

mathematical formulations provided below: 

 

𝐷𝑐(𝑃𝑖) =  
𝑁

∑ 𝑑(𝑃𝑦,𝑃𝑖)𝑃𝑦
  (5) 

 

where, N represents the count of vertices in the network and d 

(Py, Pi) denotes the interval among Py and Pi nodes. 

 

4.3.4 Eigen vector centralities 

It is utilized for computing the centrality of other nodes in 

the network. The equation to calculate this is presented below: 

 

𝐸𝑣(𝑃𝑖) =  1  ⁄ 𝛼 ∑ 𝛾𝑃𝑘 ,𝑃𝑖
∗  𝐸𝑣(𝑃𝑘)𝑘   (6) 

 

where, A= 𝛼(𝑘, 𝑖) represents the adjacent matrix of a graph 

and 𝛾 is a constant. 
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4.3.5 PageRank centralities 

This calculates the node ranking according to their 

centrality within the systems. Its mathematical formulation is 

determined as: 

 

𝑅𝑝(𝑃𝑖) =  𝜌 ∑
𝐴𝑃𝑘,𝑃𝑖

𝑑𝑘

∗ 𝑅𝑝(𝑃𝑘)

𝑘

+  𝛽 (7) 

 

where, ρ and β represent constants, and dk signifies the out-

degree of Pk, where this degree is positive, or dk is 1 if the out-

degree of Pk is zero. Furthermore, A = (ai,j) denotes the 

adjacent graph matrix, where A = α(k,i) is the adjacency 

matrix. 

 

4.3.6 Position centrality 

It is regarded as the major significant metric, representing 

the placement of the nodes in relation to the key nodes, that 

are computed using the Pagerank algorithm. 

 

Hc(Pi) =  β ∑ γPi,Pkk  ∗ 𝑅𝑝(𝑃𝑖)  (8) 

 

where, A = (ai,j) denotes the adjacent graph matrix, and 

𝑅𝑝(𝑃𝑖) represents the node PageRank, with β being a constant. 

 

4.3.7 Clustering co-efficient 

It signifies the proportion of triangles which are available 

within the total possible triangles in the neighborhood of the 

nodes. The numerical formula to calculate the clustering 

coefficient is expressed as: 

 

Cc = 2MP,i/Ki(Ki-1) (9) 

 

where, MP,i is the count of neighbor sets related to the hub pi. 

Within the expression, it is integrated to the count of potential 

neighbor sets of hub pi, where kpi = (kpi-1)/2, with kpi being 

the degree of hub pi. Figure 3 illustrates the representation of 

centrality measures used to analyze node importance within 

the VANET communication network. 

 

 
 

Figure 3. Representation of centrality measures in a VANET 

topology 

 

Table 1 provides the summary of feature vectors employed 

for classification. 

 

 

Table 1. Overview of features utilised for the suggested 

classification 

 
Sl. 

No. 

Centrality Features Importance 

01 In degree Centrality Denotes the count of links 

integrated to the nodes. 02 Out degree Centrality 

03 Betweenness Centrality Represents the proportion 

of shortest paths 

traversing through the 

nodes 

04 Closeness Centrality Depicts the spatial interval 

of nodes in the network 

05 Eigen Vector Centrality Utilized to calculate the 

centrality values of 

another nodes 

06 PageRank Centrality Evaluates the rank of 

nodes by considering their 

centrality 

07 Position Centrality Represents the nodes' 

position in relation to 

significant nodes 

08 Clustering Co-efficient Reflects the ratio of 

triangles present in the 

node's neighbourhood 

09 K-shell Centrality Represents the K value 

representing the 

disintegration of the 

network 

10 K-Score Centrality Calculates the count of 

pruned nodes (K) in the 

network 

11 Time Stamp Centrality Measures the time interval 

among the transmission 

and reception of messages 

12 Transmitted 

Neighborhoodvariability 

(TNV) 

Takes into account a 

group of neighbors for 

message transmission 

 

4.4 MGRU network based classification  

 

It is regarded as the most captivating form of Long Short-

Term Memory (LSTM). This concept was introduced by 

Chung et al. [31], that seeks to integrate the forget gate and 

input array into a unified vector. This architecture 

accommodates extended sequences and prolonged memory. 

The intricacy is significantly minimized in contrast to the 

LSTM network. 

The subsequent equations were defined by Chung to 

describe the features of GRU. 

 

ℎ𝑡 = (1 − 𝑥𝑡) ⨀ ℎ𝑡−1 + 𝑥𝑡  ⨀ ℎ𝑡 (10) 

 

ℎ�̃� = 𝑔(𝑊ℎ𝑥𝑡 +  𝑈ℎ(𝑟𝑡  ⨀ ℎ𝑡−1) + 𝑏ℎ (11) 

 

Two gates of GRU are presented as  

 

𝑧𝑡 = 𝜎(𝑊ℎ𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (12) 

 

𝑟𝑡 = 𝜎(𝑊ℎ𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (13) 

 

The complete GRU defining formula is expressed by: 

 

𝑃 = 𝐺𝑅𝑈(∑ [𝑥𝑡,
𝑛
𝑡=1 ℎ𝑡,𝑧𝑡,𝑟𝑡(𝑊(𝑡), 𝐵(𝑡), 𝜂(𝑡𝑎𝑛𝑛ℎ))]  (14) 

 

where, 𝑥𝑡  is the input attribute at the present state, 𝑟𝑡  is the 

resultant state, and ℎ𝑡 is the output of the element at the current 
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time step. 𝑧𝑡 and 𝑟𝑡 are the update and reset gates, while 𝑊(𝑡) 

and 𝐵(𝑡) represent the parameters and bias coefficients at the 

current point in time. To minimize the intricacy, each gate in 

the GRU is calculated using only the prior latent state and 

offset, thus reducing the overall count of variables by 2 times 

nm, compared with the established GRU model. Based on this 

modification, Eqn. (12) and (13) is modified as  

 

𝑧𝑡 = 𝜎(𝑈𝑧ℎ𝑡−1 +  𝑏𝑧) (15) 

 

𝑟𝑡 = 𝜎(𝑈𝑟ℎ𝑡−1 +  𝑏𝑟) (16) 

 

Again, the overall GRU characteristics is modified and 

expressed mathematically in Eq. (17) 

 

𝑃 = 𝐺𝑅𝑈(∑ [𝑥𝑡,
𝑛
𝑡=1 ℎ𝑡,𝑧𝑡,𝑟𝑡(𝐵(𝑡), 𝜂(𝑡𝑎𝑛𝑛ℎ))]  (17) 

 

4.5 Modified AES encryption and decryption 
 

The proposed uses the same operations of the original AES 

with some modifications. DNA encoding is adopted instead of 

the traditional permutation and shifting technique. This 

alteration aims in minimizing the duration for encryption and 

decryption procedure while maintaining commands with 

strong defense properties. Dual-level Henon chaotic maps are 

employed in the creation of robust encryption. To begin with, 

the VANET data is divided into two separate units depends on 

the byte positioning. Firstly, Henon maps are utilized to 

generate the S1 box. Using the outcomes from the first phase, 

the initial conditions of the Henon maps are set and utilised to 

create the hybrid S2 box. These two S-boxes are then 

encrypted with DNA processing to produce the combined S3 

box. At last, the information is enciphered utilising the 

recently generated S3 box. All such process aims to make AES 

lightweight by reducing its encryption/decryption time 

simultaneously, still strength to avoid VANET attacks. The 

detailed description of henon chaotic maps and DNA encoding 

process is provided below  
 

4.5.1 Key generation process  

To eliminate the intricacy involved in using matrices within 

the encryption method, the first positions of the sensor input 

bytes are considered. Initially, Henon maps are generated at 

random as described in Algorithm-2. These created logistic 

maps are utilized to construct the intermediate S1 box. The 

intermediate S1 box is developed by combining the Henon 

maps (H) and the input data (K). Instead of traditional 

permutations and diffusions, DNA addition encoding is 

employed to produce a highly secure intermediate S1-Box 

sequence. The process for generating S1 is illustrated in 

Algorithm-2. 
 

H= 𝐻𝑒𝑜𝑛 𝑚𝑎𝑝𝑠(𝐾) For K= Input data Bytes (18) 
 

𝑆1 = 𝑚𝑜𝑑(𝑏𝑦𝑡𝑒{ (𝐻)𝐷𝑁𝐴 𝐾(𝑖𝑛𝑝𝑢𝑡)) (19) 
 

Steps Algorithm-2//Formulation of Intermediate S1-Box 

1 Input: Input Series of henon maps/VANET data K 

2 Output: S1-box with dimensions (16*16) 

3 Begin 

4 Develop random sequences as the starting criteria for 

Henon maps 

5 Construct Henon maps utilising Eq. (18) 

6 

7 

Construct the intermediate S1-box utilising the Eq. (19) 

Stop 

 

In the subsequent phase, Henon maps are once again 

generated, utilizing the outcome series from S1-box. The 

intermediate S2-box is formed utilising VANET inputs (O) 

and Henon maps (H). During this process, all permutations are 

substituted with DNA-based addition encrypting for 

developing a lightweight and easily deployable system, which 

still retains its robust defense capabilities resisting any threats.  

 

H= 𝐻𝑒𝑜𝑛 𝑚𝑎𝑝𝑠(𝐾) For K= Input data Bytes (20) 

 

𝑆2 = 𝑚𝑜𝑑(𝑏𝑦𝑡𝑒{ (𝐻)𝐷𝑁𝐴 𝐾(𝑖𝑛𝑝𝑢𝑡)) (21) 

 

4.5.2 Encryption process 

Ultimately, the intermediate variables (S1 and S2) are 

merged to generate the new hybrid S-boxes. Upon being 

processed repeatedly, the input data, along with the hybrid S-

box keys, undergo the DNA XOR operation, as outlined in 

Algorithm 3. Consequently, it produces robustly encrypted 

bytes that vary separately with every iteration. The entire 

encryption process involving the S-box is depicted in 

Algorithm-3. 

 

𝑆 = 𝑆1 𝐷𝑁𝐴 − 𝑋𝑜𝑅 − 𝑆2 (22) 

 
Steps Algorithm-3// Entire Encryption Procedure 

1 Input: Input sensor data saved in the central processing 

unit (CPU) 

2 Output : Encrypted information 

3 Begin 

4 Divide the data into K and O relied on the byte 

positions 

5 Create series at random for 3D logistic maps 

6 Construct the 3D logistic maps 

7 Construct the Intermediate S1-box 

8 Develop the 3D logistic maps utilising preceding 

parameters and outcome series of the S1-box 

9 Construct the Intermediate S2-box 

10 S-box (keys)= S1 combines S2 

11 Enciphered Information = S-box (DNA) Input sensor 

data 

12 Stop 

 

 

5. RESULTS AND DISCUSSIONS 

 

5.1 Implementation and evaluation mechanism 

 

All the experiments were implemented using SUMO 

OMENT++ and Python on a Windows 10 Pro Operating 

systems. The entire set of learning frameworks was executed 

utilizing the NVIDIA Tesla K40, powered by the TensorFlow 

v-4 infrastructure, alongside the Keras 5 advanced-level 

framework and CPU with 32GB RAM, 2TB hard disk, AMD 

Radeon CPU @3.0 GHZ. To assess the performance of the 

recommended approach and several existing learning 

classifiers on datasets, the following test scenarios were 

considered. 

1. Classifying the vehicular network connectivity as either 

normal type or attack type with all features. 

2. Categorizing the vehicular attacks into its different types 

will all features.  

3. Classifying the vehicular network connectivity as either 

normal or abnormal with different intensity of attacks. 

To analyse the efficiency of the suggested framework, 

indicators like precision, sensitivity, specificity, recall, and 

F1-score are calculated. Table 2 presents the numerical 

548



 

formulations for determining the measures applied to assess 

the efficiency of the suggested approach. To validate the 

excellence of the suggested approach, Modified CNN [32] and 

its variant LiNET [33] are taken for the consideration. 
 

Table 2. Performance measures utilized for evaluating the proposed framework 
 

S.No. Evaluation Measures Formulation 

01 Accuracy 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

02 Sensitivity or recall TP

TP+FN
 x100  

03 Specificity 𝑇𝑁

𝑇𝑁+𝐹𝑃
  

04 Precision 𝑇𝑁

𝑇𝑃+𝐹𝑃
  

05 F1-Score 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

TP indicates true positive, TN represents true negative, FP refers to false positive instances, and FN represents false negative instances. 
 

Table 3. Performance of the modified CNN models in recognizing the normal instances from the simulated datasets 
 

Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 75 73.4 72.5 73 72 

40 74.5 73.0 70.5 72 71.2 

60 73 72.0 69.5 70 70.4 

80 72 70.8 69.5 69 70 

 

Table 4. Performance of the modified CNN models in identifying the sybil attacks from the real time datasets 
 

Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 74 72.3 70.5 72 72 

40 72.1 71.3 69.3 71 71.2 

60 70.4 70.3 68.4 69 70.4 

80 69.2 68.4 67.8 68 70.3 

 

Table 5. Performance of the modified CNN models in recognizing the wormhole attacks from the real time datasets 
 

Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 75 73.4 72.5 73 72 

40 74.5 73.0 70.5 72 71.2 

60 73 72.0 69.5 70 70.4 

80 72 70.8 69.5 69 70 

 

Table 6. Performance of the LiNET models in identifying the normal instance from the real time datasets 
 

Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 82 79.3 78.4 78 78.4 

40 81 78.4 76.5 77.3 77.3 

60 80.5 77.3 75.5 76.4 75.5 

80 78.4 76.4 74.5 75.3 75.0 

 

Table 7. Performance of the LiNET models in identifying the sybil attacks from the real time datasets 
 

Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 80 78.4 76.5 73 77.5 

40 79.5 74.0 73.5 72 73.7 

60 77.7 72.0 68.5 70 70.2 

80 76.4 71.8 67.2 69 69.3 

 

Table 8. Efficiency of the LiNET models in identifying the wormhole attacks from the real time datasets 
 

Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 82 79.3 78.4 78 78.4 

40 81 78.4 76.5 77.3 77.3 

60 80.5 77.3 75.5 76.4 75.5 

80 78.4 76.4 74.5 75.3 75.0 
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Table 9. Performance of proposed models in detecting the normal instance from the real time datasets 

 
Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 96.3 96.0 95.7 96.1 96.2 

40 96 95.3 95.0 96.0 95.9 

60 96 95.3 95.0 96.0 95.9 

80 95.9 95.2 95 95.9 95.9 

 

Table 10. Performance of the suggested approach in identifying the sybil attacks from the real time datasets 

 
Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 96.3 96.0 95.7 96.1 96.2 

40 96 95.3 95.0 96.0 95.9 

60 96 95.3 95.0 96.0 95.9 

80 95.9 95.2 95 95.9 95.9 

 

Table 11. Performance of the suggested approach in identifying the wormhole attacks from the real time datasets 

 
Speed of the Vehicles 

(Km/hr) 

Evaluation Metrics (%) 

Accuracy Precision Recall Specificity F1-score 

20 96.3 96.0 95.7 96.1 96.2 

40 96 95.3 95.0 96.0 95.9 

60 96 95.3 95.0 96.0 95.9 

80 95.9 95.2 95 95.9 95.9 

 

 
 

Figure 4. AUC characteristics of the different model in predicting the normal data from the generated datasets 

 

 
 

Figure 5. AUC characteristics of the different model in predicting the sybil and wormhole attacks from the generated datasets 
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5.2 Performance analysis  

 

The collected datasets were utilised to analyze the efficiency 

of the existing techniques and recommended model to identify 

the attack in the vehicular scenario. 

 

5.2.1 Discussions 

Tables 3-11 illustrate the performance of the distinct 

techniques in identifying the sybil and wormhole threats with 

the changes in vehicle speed. Table 3-5 highlights the 

detection efficiency of the modified CNN. It is apparent that 

the efficiency degrades as the vehicles speed elevates in the 

road scenario. The efficiency decreases by 35% of CNN as the 

speed increases. The similar fashion of the performance is 

observed in LiNET which is observed from Table 6 to table 8. 

But in contrary, effectiveness of the recommended model 

remains the stable as there is an increase in speed of the 

vehicles [34-36]. Hence the proposed model finds its more 

suitability in detecting the sybil and wormhole attacks in a 

dynamic vehicular speed, as highlighted in Table 9-11. Figures 

4-5 illustrate AUC performance of the proposed framework 

and other models. It is evident that the loss is very less for the 

detection of malicious users in the dynamic environment. 
 

5.3 Security analysis 
 

In this experimentation, randomness of encrypted bits is 

evaluated and examined. NIST tests are performed to verify 

the randomness of the encrypted bits, which can be utilized for 

transmitting private models to central servers. The 12 essential 

tests from NIST were carried out, and the results are presented 

in Table 12. 

From Table 12, it is apparent that the encrypted bits 

demonstrate an increased randomness, making it significantly 

more challenging for an attacker to alter the medical data while 

transmitting. 
 

Table 12. NIST benchmark evaluation results of the 

suggested framework 
 

S.No NIST Evaluation Standards Test Results  

1 Frequency Test Approved 

2  Lempel-ZIV Compression Test Approved 

3  Block Frequency Test Approved 

4 Overlapping Template of all 

One’s Test 

Approved 

5 Random Excursion Test Approved 

6 Matrix Rank Test Approved 

7 DFT Test Approved 

8 Linear Complexity Test Approved 

9 Universal Statistical Test Approved 

10 Long Run Test Approved 

11 Frequency MonoTest Approved 

12 RunTest Approved 

 

5.4 Encryption time analysis 
 

Table 13. Encryption time analysis for the different 

encryption model 
 

Encryption Model Encryption Time (secs) 

[37] 50.45 

[38] 34.45 

[39] 45.89 

[40] 34.89 

[41] 33.90 

Proposed Encryption Schemes 18.89 

To calculate the communication cost of the recommended 

model, encryption time is evaluated for the recommended 

model and contrasted with the existing models including 

Homographic Encryption model and other hybrid encryption 

models [37-42]. 

Table 13 presents the encryption time analysis between the 

different schemes. From Table 13, it is evident that encryption 

time is 40% to 60% lesser than the exiting schemes used in 

VANET environments. 

 

 

6. CONCLUSION AND FUTURE SCOPE 

 

In this research, a hybrid intelligent detection and 

encryption schemes are proposed to increase the effectiveness 

of the VANET. The novelty of the proposed model is to 

introduce the centralities measures and enhanced gated 

recurrent units for the detection of sybil and wormhole attacks 

in the VANET topologies. Furthermore, Dual Henon chaotic 

encryption is integrated with the AES to formulate the strong 

counterfeiting mechanism to protect the VANET data against 

the attacks. These encryption algorithms are common for 

implementation in both OBUs as well as RSUs to safeguard 

personal data and vehicular data against threats. The 

comprehensive experimentation is conducted utilising the 

SUMO-OMNET++ datasets and effectiveness of the different 

models are calculated and analysed. The average performance 

of the model is found to be 96.5 % in detecting the sybil and 

wormhole attacks. The security tests were conducted using 

NIST test suites and encryption time was calculated. From the 

experimentation it was found that the proposed model 

consumes only 60% of encryption time than the other 

techniques. As a future enhancement, the method should be 

equipped with advanced optimization techniques such as 

lightweight evolutionary algorithms or energy-aware 

metaheuristics to reduce computational overhead and enable 

seamless deployment on resource-constrained embedded 

OBUs. Additionally, scalability toward large-scale datasets 

and real-time vehicular environments should be explored. 
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