
Parallel and GPU-Based Optimization of XGBoost and Neural Networks for Effective

Landmine Classification

Lesia Mochurad1 , Nataliya Shakhovska1,2 , Jamil Abedalrahim Jamil Alsayaydeh3* , Mohd Faizal Yusof4

1 Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv 79013, Ukraine
2 Brunel University, London UB8 3PH, UK
3 Department of Engineering Technology, Fakulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK), Universiti

Teknikal Malaysia Melaka (UTeM), Melaka 76100, Malaysia
4 Faculty of Resilience, Rabdan Academy, Abu Dhabi 22401, United Arab Emirates

Corresponding Author Email: jamil@utem.edu.my

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150315 ABSTRACT

Received: 10 February 2025

Revised: 20 March 2025

Accepted: 25 March 2025

Available online: 31 March 2025

The problem of mine clearance in both open and closed areas remains highly relevant in

the modern world, especially in the context of military conflicts, humanitarian crises, and

post-war reconstruction processes. Traditional mine detection methods require significant

human and technical resources, making the demining process costly, time-consuming, and

potentially dangerous for operators. Therefore, there is a need to develop automated

systems capable of ensuring high accuracy, efficiency, and speed in identifying explosive

objects, thereby enhancing the safety of those conducting the operations. Existing

landmine classification methods face limitations in speed, scalability, and deployment

feasibility due to computational constraints and lack of optimization. This paper presents

a mine classification method based on a combination of neural networks and gradient

boosting, aimed at improving the accuracy and speed of the recognition process. Two

main optimization strategies are proposed: (1) data-driven and algorithmic parallelization,

which improve training speed and computational efficiency; and (2) GPU-accelerated

model training to leverage parallel processing capabilities. A series of experiments were

conducted, and the results confirmed the effectiveness of the proposed methods. For open

environments, the classification accuracy reached 94.32% for gradient boosting and

93.89% for neural networks, while for closed environments, the accuracy was 93.25%

and 92.75%, respectively. The optimization allowed for a fivefold increase in model

training speed due to parallel computations and GPU data processing, making the

proposed method suitable for real-world applications. An analysis of the results indicates

the potential of this approach not only for further improvement of automated mine

clearance systems but also for solving other classification and object identification tasks

in complex environments.

Keywords:

mine clearance, classification, neural

networks, humanitarian demining, GPU

acceleration, parallel computing

1. INTRODUCTION

The presence of mines in any area threatens human life and

health and impedes movement and access to resources and

infrastructure. Mine clearance is a key step in restoring

peaceful life in affected areas and ensuring the safety of the

population. Mines are indiscriminate weapons with

unfortunate and far-reaching consequences even after conflicts

end. They have significant social, economic, and

environmental impacts as munitions and tactical barriers [1].

While relatively cheap and easy to deploy, they are time-

consuming, dangerous, and expensive to remove. According

to the 2022 report [2], sixty countries and territories remain

contaminated by anti-personnel landmines, with fifty

casualties reported in 2021. Of the 5,544 people killed in 2021,

4,200 were civilians. In Myanmar alone, since 2023, 1052

cases of landmines among civilians have been officially

recorded [3]. The publication [4] shows what types of

ammunition and explosives have been used in Ukraine since

the beginning of 24 February 2022. The article [5] describes

that since 2022 to date, about 1,000 injuries and fatalities have

been recorded with landmines and that about 1-2 million mines

are currently present on the territory of Ukraine.

Traditional demining methods [6], which involve the direct

use of people and animals - are slow, insufficiently effective,

and dangerous for rescue workers. It takes a long time to train

such a demining specialist. Also, do not forget the possibility

that a protective suit may not withstand an explosion and, as a

result, the deminer will be injured. The deminer also needs to

know the exact location of the mine, and in today's warfare,

these weapons are increasingly being camouflaged so that the

human eye will not be able to recognize the mine among the

grass, mounds of earth, etc. To solve this problem, artificial

intelligence methods can be applied [7]. Their use can

significantly improve demining processes and reduce risks to

human life and health. With the growing threat of mines

International Journal of Safety and Security Engineering
Vol. 15, No. 3, March, 2025, pp. 563-572

Journal homepage: http://iieta.org/journals/ijsse

563

mailto:jamil@utem.edu.my
https://orcid.org/0000-0002-4957-1512
https://orcid.org/0000-0002-6875-8534
https://orcid.org/0000-0002-9768-4925
https://orcid.org/0000-0001-8464-3932
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150315&domain=pdf

around the world [8], as well as the rapid development of

artificial intelligence technologies, this research is extremely

relevant and important for improving the efficiency and safety

of the demining process.

This paper examines the application of artificial intelligence

methods to mine action, in particular, the classification of

different types of mines based on magnetometer data. The

analysis covers both theoretical aspects and practical

implementations, which makes it possible to assess the

advantages and limitations of using artificial intelligence in

this area, as well as outline the prospects for further research

and technology development. Particular attention is paid to the

optimization of the model training process, including the

implementation and comparison of different approaches [9-

11]. Special emphasis is placed on the importance of parallel

computing techniques, which significantly accelerate the

training and inference phases, enabling real-time or near-real-

time classification [12-14]. A description of the implemented

methods, their results, and an analysis of the feasibility of their

application are presented. Additionally, quantitative metrics

are provided, demonstrating that optimization of the training

process has a minimal impact on the quality of the results. At

the same time, parallelization ensures computational

efficiency without compromising accuracy, keeping the

differences within the limits of permissible errors.

The purpose of this paper is to investigate the effectiveness

of machine learning models, in particular neural networks and

XGBoost, for classifying mines or their absence in open and

closed environments, as well as to analyze the impact of

optimization methods (computational parallelization, data

distribution, GPU usage) on the learning speed and accuracy

of the models. The proposed approaches demonstrate the

advantages of using modern computing architectures in

machine learning tasks.

The main contribution of the work:

•An optimized neural network architecture is proposed that,

due to thread parallelization, provides a significant reduction

in training time by a factor of five compared to standard

methods. This allows for efficient use of available computing

resources without reducing the accuracy of the model, making

the proposed approach competitive in tasks requiring rapid

processing of large amounts of data.

•A combined XGBoost optimization approach is developed

and implemented, integrating thread parallelization and GPU

computing. This results in a significant acceleration of the

training process, up to 5-6 times compared to the standard

implementation, while maintaining high accuracy of the

results.

•A comparative analysis of the performance of the neural

network and XGBoost for classification tasks in both open and

closed environments is carried out. The results show that

although XGBoost provides faster training, the neural network

has a greater potential for adaptation and improvement,

especially in tasks requiring work with heterogeneous data.

•For the first time, a comprehensive study of the impact of

optimization approaches on models for classifying open and

closed environments is performed. The proposed solutions

have demonstrated efficiency and competitiveness compared

to existing methods, opening up new opportunities for their

application in real-world environment analysis.

The article consists of several main sections: the “Related

Works” section analyses existing research in the field of mine

classification and model optimization, while the “Problem

Statement” section identifies the main challenges faced by

current methods. In the “Proposed Methodology” section, we

propose an approach that includes a detailed description of the

datasets used, the neural network architecture, parallelization,

and optimization tasks for XGBoost. In the “Analysis of

Numerical Experiments” section, we present the results of

experiments with both approaches, comparing the accuracy

and training time. The final section “Discussion” presents the

interpretation of the results and recommendations for further

research. Handle more complex data, and integration with XAI

methods.

2. RELATED WORKS

Barnawi et al. [15] used data collected by a UAV equipped

with a magnetic magnetometer. This data contains information

about the earth's magnetic field, which can be used to detect

mines. To analyze the data, the authors use deep learning

methods, in particular, neural networks. These models are

trained to recognize the characteristics of mine objects based

on magnetic data. Data processing is performed at the edges of

the network, which reduces latency and preserves bandwidth.

This is especially important for real-time mine detection tasks.

The downside is the cost of this application and

implementation. However, the proposed approach provided an

accuracy of 97.8%, which is a significant result for mine

signature recognition.

Article [16] is devoted to the research and development of

methods for detecting and classifying mines based on ground

penetrating radar (GPR) data [17, 18] using multimodal

feature fusion. The authors describe the support vector method

used to solve the problem for a dataset with multimodal feature

fusion. The authors achieved an accuracy of 91.1% on the

validation data.

Šipoš and Gleich [19] described the process of radar

development and construction, including the materials used,

characteristics, and principles of operation. An important part

is the description of methods for optimizing energy

consumption and reducing equipment weight. This study

achieved a detection accuracy of 92.5%.

Jiao et al. [20] proposed a cellular decomposition extraction

method for planning a coverage path in a polygonal area. The

proposed method divides a complex polygon into different

subregions, and then a path is determined for each subregion.

The value of this work is to optimize the drone's route, thereby

covering the maximum scanning area to collect data that will

be used for training. The proposed approach was able to cover

98.5% of the test area.

Recent advances in drone-based remote sensing using

lightweight multispectral and thermal infrared sensors allow

for the rapid detection of landmine contamination at long

distances. The methodology was proposed to detect dispersed

plastic mines that use liquid explosives packed in a plastic or

plastic case [21]. This makes it impossible to detect such

explosives with a metal detector. Therefore, image processing

techniques were used to show search results in a specific area.

The authors used Faster R-CNN, which showed an accuracy

of 99.3% for the test set and 71.5% for the validation set.

Pryshchenko et al. [22] described an approach to object

detection and classification using a special set of ultra-

wideband (UWB) pulsed GPR systems. The authors used a

GPR system with one transmitting and four receiving

antennas, which allowed them to collect signals received at

different angles. The sums and differences of the signals

received by two of the four antennas were merged into one

564

long signal, which increased the number of reflections and

improved the accuracy of object detection. After that, an

artificial neural network was used to classify the detected

objects as mines or other objects [23]. The results showed that

the proposed approach improved the accuracy of mine

detection and classification compared to traditional methods.

During the work, the authors achieved an accuracy of 90% for

the validation data. The accuracy of mine detection was

98.5%, and the accuracy of classification of mines and other

objects was 96.5%. In addition, the proposed approach

reduced the number of false positives by 30%.

Vivoli et al. [24] presented a deep learning approach to

detecting surface mines using real-time optical imagery. The

authors used a dataset of optical images of mines and non-

mines and trained a deep convolutional neural network (CNN)

to classify the images as mines or non-mines. The results

showed that the proposed approach achieved a high mine

detection accuracy of 98.5% and a low false positive rate of

1.5%. The approach also enabled real-time mine detection,

with a processing time of less than 100 milliseconds per image.

The authors conclude that the proposed approach has the

potential to significantly improve the efficiency and accuracy

of mine detection and can be used for real-time mine detection

in a variety of environments.

The study [25] analyses the effectiveness of pre-trained

CNN models for classifying B-scan GPR images, particularly

for detecting objects below the surface. Experimental results

on the DECKGPRHv1.0 dataset showed that ResNet achieves

the highest accuracy, demonstrating high transfer learning

efficiency without fine-tuning. This research can be useful for

demining applications where GPR images are used to identify

underground objects, including mines, through automated

signal classification using deep learning. At the same time, the

work has certain limitations, including the use of only one

dataset, the lack of comparison with newer architectures, and

the lack of analysis of model performance and robustness to

real-world conditions.

The authors of the study [26] focused on improving the

analysis of sonar images for detecting objects in the

underwater environment using CNN (VGG-16) with a

weighted feature fusion technique, which allows achieving an

accuracy of 86-91%. However, this approach has several

limitations: it is focused exclusively on underwater conditions,

does not include computational optimization to speed up the

model, and is inferior in accuracy to other methods such as

gradient boosting and neural networks used in the second

study. In addition, the lack of GPU acceleration and parallel

computing may make it difficult to use the method in real-

world settings where the speed and adaptability of the

algorithm are important [27].

In summary, this research is relevant due to the need for

effective, cost-efficient, and scalable approaches to mine

classification in open and closed environments, which is an

important task for ensuring the security and reconstruction of

territories in the post-conflict period [28]. Existing methods

often have limitations in speed, accuracy, or adaptability to

heterogeneous conditions, and their implementation may be

impractical due to the high costs or complexity of reproduction

[29]. In this context, our optimized approaches based on

modern artificial intelligence methods and computing

architectures can significantly improve the efficiency of model

training, ensuring their accuracy and reducing costs, which

opens up prospects for the widespread use of such

technologies in humanitarian demining.

3. PROBLEM STATEMENT

The task of mine detection and classification based on

numerical data from GPR is to find the optimal function f that

minimizes the penalty for incorrect mine predictions. This can

be achieved by training the model on existing data and

validating its performance on new data. Formally, the problem

can be formulated as follows.

Let X = {x1, x2, ..., xn} be a vector of numerical features

obtained from GPR, and Y = {y1, y2, ..., yn} be a set of

corresponding labels, where yi > 0 if there is a mine at location

xi and yi = 0 if there is not. The task is to find a function f: XR

that minimizes the loss function L(f), which measures the

average number of classification errors:

𝐿(𝑓) =
1

𝑛
∑(𝑓(𝑥𝑖) − 𝑦𝑖)

2

𝑛

𝑖=1

+ 𝜆 ∗ 𝑅(𝑓)

where,
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2𝑛
𝑖=1 is the classification error loss

function, where 𝑓(𝑥𝑖) is the model prediction for the i-th

feature vector, yi is the corresponding label. n is the total

number of samples in the training set, λ is the regularisation

coefficient, which determines the balance between minimizing

classification errors and limiting model complexity, and 𝑅(𝑓)
is a regularisation function that usually measures model

complexity. The purpose of regularisation is to prevent

overfitting of the model by reducing its complexity.

4. PROPOSED METHODOLOGY

4.1 Dataset overview

In the course of analyzing the available datasets, we found

datasets containing the results of GPR scanning [30]. The first

one describes the results of scanning an open area from above,

and the second one describes the results of a robot or drone

(not precisely described) in an enclosed area. The data is a

feature vector with the target characteristic M - the type of

mine or its absence. In total, there are 4 types of mines (anti-

personnel, anti-tank, etc.) and 5 types of mines. The data

distribution is shown in Figure 1 and Table 1.

The features described are distance, voltage, and surface

type, which were collected from the GPR scan. A more

detailed description is not possible because the data sample

was already provided normalized, without a description of the

data before normalization [31]. No description of other

features is provided, it can be assumed that these may be the

time of the electromagnetic wave acquisition and the

frequency at which the radar operates or other characteristics

obtained during the scan [32]. There are about 300,000 records

in each dataset - for open and closed spaces.

Figure 1. Class distribution: Open space and enclosed space

565

Table 1. Class distribution in percentages

Class

Number

Distribution (Open

Space)

Distribution (Enclosed

Space)

0 21 23

1 20.71 18.71

2 19.526 14.52

3 19.526 24.52

4 19.23 19.23

Among the disadvantages of both datasets is the lack of

primary data and the absence of coordinates. The latter is

especially important for integrating this model into real

systems, so recording exactly where any non-standard signal

was found is a mandatory requirement for these systems.

All input features in both datasets were already normalized

using min-max scaling to the [0,1] range. To improve training

efficiency and reduce noise, redundant features were excluded

based on low variance analysis. Feature vectors were

additionally standardized to ensure uniform contribution to

model training. Class imbalance was handled by applying

stratified sampling during training set generation, ensuring

proportional representation of each class in parallelized

subsets.

4.2 Proposed neural network

To solve this problem - classification of mines (or their

absence, which is also a separate class) - a neural network of

the following architecture was used (see Figure 2).

Input layer - 5 neurons - the number of features in the

dataset;

FCL = Dense(64, activation=‘LeakyReLU’);

Dropout layer = 0.2 to avoid overfitting by discarding

random weights;

FCL = Dense(64, activation=‘LeakyReLU’ ,

kernel_regulariser = regularizers.L1L2(l1=1e-5, l2=1e-4));

Dropout layer = 0.3;

FCL = Dense(16, activation = ‘LeakyReLU’,

kernel_regulariser=regularizers.L1L2(l1=1e-5, l2=1e-4));

Dropout layer = 0.3;

FCL = Dense(8, activation = ‘LeakyReLU’,

kernel_regulariser=regularizers.L1L2 (l1=1e-5, l2=1e-4));

Dropout layer = 0.3;

Output layer - 5 neurons, according to the number of

classes, activation - softmax.

Figure 2. Network architecture

Batch normalization is applied after each layer to improve

both training speed and result quality. LeakyReLU activation

functions were used in the hidden layers to prevent gradient

vanishing during training. ReLU was not used because the

input contains values less than zero, which would lead to a

large number of inactive neurons. LeakyReLU addresses this

issue by allowing a small gradient for negative values. If ReLU

were used, the sum of all neurons would be equal to 1, which

is not a good practice as it constrains the layer's total output.

The final layer utilizes softmax, which produces class

probabilities, ensuring their sum equals 1. Tangent and

sigmoid activation functions were not considered since they

are primarily suited for binary classification, which does not

align with the given task.

Regularization is implemented to enhance the model's

generalization and prevent overfitting. This feedforward

neural network architecture was proposed because, with

additional loss functions such as

sparse_categorical_crossentropy and the dataset's limited

number of features, the classification task can be effectively

solved. In contrast, convolutional networks would not be able

to extract patterns from such a small number of input features.

A residual network could be considered with an increased

number of layers; however, this would significantly

complicate the architecture and increase training time.

Moreover, both residual and convolutional networks are

primarily used for image processing, which is not the focus of

this study.

4.3 Parallelization tasks

This paper implements two approaches to parallelization:

data-driven and algorithmic parallelization. The general

concept is shown in the diagram below (see Figure 3). Data-

driven parallelization involves dividing the training set into 𝑛

equal parts and gradually training each of them. Upon

completion of the training, the results are summarised and the

output is a decision on whether the sample belongs to the mine

class or not.

Algorithmic parallelization involves the independent

training of several models on different subsets of data

corresponding to separate classes. Each model specializes in

detecting the characteristics of objects of a particular class.

After the parallel training is completed, the results of the

models are aggregated, and the class of the object is

determined by the maximum value of the corresponding

function. Since the number of classes in this task is 5, the

corresponding number of separate processes is used.

Depending on the distribution of data in the dataset, the speed

of model training may vary due to the uneven number of

samples in different classes. Therefore, the total execution

time is determined by the upper bound, i.e., until all processes

are completed.

To implement parallel training of neural networks, separate

processes are used, each of which is responsible for training

its own model and generating results. Processes operate in

isolation, have their own memory area, and execute

independently of each other. Unlike threads, each process can

contain several threads, which can significantly improve

performance. Threads are high-level primitives that provide

asynchronous computing and data handling.

Figure 3 shows a visualisation of the approach using

multiple neural networks. It is worth noting that it does not

represent a single continuous network, but rather individual

566

models, of which five are used in this paper, with the

architecture described above.

Figure 3. Algorithmic parallelization representation

To clearly differentiate the data-driven and algorithmic

parallelization strategies, the following pseudocode (see

Algorithm 1) outlines the respective workflows. It reflects the

two types of parallelization implemented in this study.

Algorithm 1: Pseudocode for data-driven vs. algorithmic

parallelization workflow

BEGIN

 SELECT parallelization_strategy

 IF strategy == "Data-Driven Parallelization" THEN

 SPLIT dataset into n equal chunks

 FOR each chunk IN parallel:

 Train identical model on chunk

 END FOR

 Aggregate all model outputs (e.g., majority vote or

averaging)

 ELSE IF strategy == "Algorithmic Parallelization"

THEN

 FOR each class c IN parallel:

 Extract data for class c

 Train model specific to class c

 END FOR

 Aggregate outputs from all class-specific models using

max-confidence selection

 END IF

END

The data-driven strategy uniformly splits the dataset and

trains identical models independently, aggregating their

predictions at the end. The algorithmic strategy trains distinct

models, each specialized in one class, and then combines their

outputs using the class with the highest prediction score.

4.4 The сase of XGBoost

To evaluate the effectiveness of the proposed neural

network, its performance was compared with XGBoost

(eXtreme Gradient Boosting), a gradient boosting algorithm

that uses decision tree ensembles [33, 34]. The main

characteristics of XGBoost are boosting with sequential model

training, where each subsequent model corrects the errors of

the previous one, gradient descent to minimize the loss

function by updating the model in the direction of decreasing

the gradient, regularisation using the built-in L1 (Lasso) and

L2 (Ridge) methods, that control the coefficient values and

eliminate redundant features, processing of missing values by

taking into account missing data when generating splits in

decision trees, and optimization of speed and performance

through special optimizations for fast learning on large

amounts of data. The XGBoost algorithm is based on an

ensemble of decision trees added in stages to improve

forecasting. Each new tree generates a partitioning based on

the loss gradient of previous models, which helps to improve

forecast accuracy and reduce errors. Thus, comparing

XGBoost with a neural network allows us to evaluate the

effectiveness of the proposed approach in solving the mine

classification problem.

Algorithmically, you can split the training into several

threads. Each thread will receive a corresponding unoccupied

branch for computation, and when a branch ends with a leaf

and has no children, the thread is released and ready for the

next branch, if there are any unbuilt branches in the queue by

that time [35]. In this paper, we use the number of threads for

XGBoost = 8.

It is also proposed to use this algorithmic approach for

distributed data. Instead of training 1 XGBoost on the entire

sample, the data will be divided into n uniform sets and the

results of their training will be bagged. In this case, the use of

threads for branching is also used.

In comparison, XGBoost will be used with a histogram

algorithm. Instead of using an exact algorithm with a greedy

search for the best partition that uses CPU, which can be slow

for large datasets, gpu_hist uses a histogram-based algorithm

that is faster and requires less memory. For a detailed

description of the features of histogram computing, see study

[36]. Note that these manipulations are possible only for GPUs

from NVIDIA and CUDA 3.5+ installed, as their solutions

have tensor kernels, which are currently not available in AMD

and Intel GPUs.

When training the XGBoost model using gpu_hist, the data

is divided into groups using histograms. Each group contains

data with similar values. The algorithm then calculates the

average of each group and uses it to split the data into two

subgroups. This process is repeated until a decision tree is

created.

Since the histogram algorithm uses a grouping of data, it

requires less memory than the exact algorithm. In addition,

since the calculations are performed in parallel for each group,

the histogram algorithm can be much faster than the exact

algorithm, especially for large data sets.

4.5 Data parallelization

Both methods will use data-driven parallelization - the

dataset will be divided into equal n (2, 3, 4, ...) parts and used

in the models for training. In contrast to algorithmic

parallelization, we do not allocate specific classes to the

models, i.e. each model will receive the same amount of

training data as input, with the ratio of classes being arbitrary

- in some parts, records of one class will prevail due to the

distribution, in others, there will be a uniform distribution.

567

Thus, the output will be a number of models, depending on

how many parts the training data was divided into (see Figure

4).

Figure 4. Visualization of data distribution [37]

5. ANALYSIS OF NUMERICAL EXPERIMENTS

This section will gradually describe the results for each of

the datasets. First, for the outdoor area, then for the indoor

area.

To ensure the reproducibility of the experiments, all model

training and evaluation were conducted on a local machine

equipped with an Intel Core i7-12700K processor (12 cores,

20 threads), an NVIDIA GeForce RTX 3080 GPU with CUDA

Compute Capability 8.6, and 32 GB of DDR4 RAM. The

software environment included Python 3.10, TensorFlow 2.11

with the Keras API, CUDA Toolkit 11.7, cuDNN 8.4, and

XGBoost version 1.7.4. The operating system used was

Ubuntu 22.04 LTS. GPU memory management was handled

by enabling memory growth in TensorFlow, while model

training performance and GPU utilization were monitored

using NVIDIA System Management Interface (nvidia-smi).

The specified versions and hardware configurations were

selected to ensure compatibility and stability for GPU-

accelerated training, particularly when using the gpu_hist

algorithm in XGBoost, and for efficient multi-process

execution in neural network experiments.

5.1 Neural network

Initially, the network was trained in its standard form, after

which the aforementioned methods were applied. Training in

the standard form refers to using the standard dataset and a

single neural network with the architecture described above.

As shown in Figure 5, the parallelized algorithm

demonstrated the best performance, with a training time of

67.61 seconds. Compared to the standard approach, this

resulted in an approximately fivefold speedup.

Data-driven parallelization (splitting into 2 and 4 equal

parts) also provided a performance improvement, although

modest. However, when splitting into 2 parts, the training time

exceeded that of the standard approach. This may be attributed

to uneven resource distribution on the computer, where certain

processes may have received higher priority than the network

training. Nevertheless, the 2-second difference can be

considered as an experimental error.

The situation for indoor environments is similar, but the

total training time for each case has slightly increased (see

Figure 6). The distributed algorithm is still in the lead in terms

of performance, followed by the data-driven algorithm. For

this dataset, the speedup was 4 times, which is a significant

optimization. As for the obtained metrics, all results for both

cases are presented in Tables 2 and 3.

Figure 5. Training time of the network for the open space

dataset

Figure 6. Training time of the network for the closed space

dataset

Table 2. Results for the open space dataset

Model Type R² MSE MAE Training Time (s)

Standard 93.561 0.2106 0.0746 334.31

2 data chunks 93.456 0.2102 0.0734 336.79

Parallelized 93.892 0.2000 0.0698 67.61

4 data chunks 93.252 0.2120 0.0758 310.67

Table 3. Results for the closed space dataset

Model Type R² MSE MAE Training Time (s)

Standard 92.326 0.2232 0.0812 353.42

2 data chunks 92.421 0.2212 0.0804 335.86

Parallelized 92.758 0.2195 0.0783 82.48

4 data chunks 92.227 0.2251 0.0828 317.67

From Tables 2 and 3, it can be concluded that the accuracy

across the different approaches varies by approximately 0.5%,

which can be considered as experimental error. However, for

both datasets, the best results were achieved with parallel

568

training, with accuracy rates of 93.89% and 92.76%,

respectively. The same pattern is observed with the other

metrics as well.

5.2 XGBoost

Figures 7-10 present diagrams illustrating the results of

training speed evaluation. The metrics for both datasets are

provided in Tables 4-5. For the open terrain case, the best

results were achieved using an integrated optimization strategy

that combined thread-level parallelization with data-level

splitting. The first optimization stage involved parallelization

using threads, which resulted in an approximate 10%

performance improvement. The second stage involved

splitting the data into two parts and applying parallelization

again. The combination of both techniques led to a fourfold

increase in training speed compared to the standard approach.

Further splitting the data into four parts did not yield

significant performance benefits, so these results are not

discussed in detail.

Figure 7. Training time of the XGBoost for the open space

dataset

Figure 8 shows the results for the same dataset using similar

techniques but with GPU computing (except for the first

approach). The increase in efficiency is much greater: for the

parallelised approach, the training speed increased by a factor

of 6, and the combined method demonstrated particularly high

efficiency.

Figure 8. Training time of the XGBoost (gpu_hist) for the

open space dataset

For indoor environments, the trend remains the same, with

a combined approach for both cases - standard computing and

GPU - proving to be the best.

Figure 9. Training time of the XGBoost for the closed space

dataset

Figure 10. Training time of the XGBoost (gpu_hist) for the

closed space dataset

As for the metrics, the results are presented in Tables 4 and

5.

Table 4. Results for the open space dataset (XGBoost)

Model Type R² MSE MAE
Training

Time (s)

XGBOOST 94.2274 0.1975 0.0653 39.05

2 data chunks 94.2524 0.1963 0.0641 36.69

Parallelized 94.3266 0.1959 0.0628 20.56

Parallel + 2 data

chunks
94.2485 0.1967 0.0638 8.2

Table 5. Results for the closed space dataset (XGBoost)

Model Type R² MSE MAE
Training

Time (s)

XGBOOST 93.154 0.20021 0.0751 44.81

2 data chunks 93.142 0.20034 0.0758 38.6

Parallelized 93.258 0.20009 0.0743 22.16

Parallel + 2 data

chunks
93.145 0.20031 0.0749 7.86

569

Analyzing the obtained results, it can be noted that the

accuracy and other metrics did not experience significant

changes. The highest accuracy values were observed when

using the parallelized approach, reaching 94.32% and 93.25%

for the two datasets, respectively. Additionally, compared to

the neural network, the XGBoost model demonstrated slightly

higher values for all metrics, indicating the potential for

further improvement of the neural network architecture. The

highest training speed was achieved using a combined

optimization approach that integrated thread-level

parallelization and GPU-accelerated histogram-based training

(gpu_hist), which accelerated the process by 5-6 times without

sacrificing accuracy or other metrics. The results of training

using gpu_hist are presented below in Tables 6 and 7.

Table 6. Results for the open space dataset (GPU)

Model Type R² MSE MAE
Training

Time (s)

XGBOOST 94.2270 0.1969 0.0652 39.57

2 data chunks 94.2522 0.1960 0.0641 12.56

Parallelized 94.3268 0.1965 0.0627 6.47

Parallel + 2 data

chunks
94.2483 0.1962 0.0638 1.57

Table 7. Results for the closed space dataset (GPU)

Model Type R² MSE MAE
Training

Time (s)

XGBOOST 93.154 0.20021 0.0752 44.64

2 data chunks 93.141 0.20032 0.0754 13.63

Parallelized 93.259 0.20008 0.0745 7.26

Parallel + 2 data

chunks
93.144 0.20033 0.0749 2.51

As can be seen, in the worst case, the results changed by

only 0.001, which is not a critical deviation.

6. DISCUSSION

In this paper, a solution based on a neural network and the

XGBoost algorithm were proposed and implemented, which

was applied to the datasets of scanning open and closed

environments. The obtained results demonstrate the feasibility

of using the proposed approaches since the following accuracy

rates were achieved on the test data:

•Open environment: XGBoost - 94.32%, neural network -

93.89%.

•Closed environment: XGBoost - 93.25%, neural network -

92.75%.

Compared to other studies, the proposed methods provide a

significant improvement in classification accuracy - from 4%

to 20%, depending on the sources compared. The observed

superior performance of XGBoost over neural networks in

closed environments can be attributed to several factors. First,

XGBoost, being a tree-based ensemble method, handles sparse

or less informative features more efficiently. In closed

environments, the feature variance may be lower or the signal-

to-noise ratio less favorable due to reflections and structural

interferences. Neural networks, which rely heavily on pattern

abstraction and parameter tuning, may underperform when

faced with subtle class separations or overlapping

distributions. In contrast, XGBoost effectively captures such

conditional patterns through gradient-based tree boosting,

making it better suited for scenarios where feature importance

is highly localized or unevenly distributed. At the same time,

it is worth noting that the analyzed studies did not consider

classification in closed environments, while this paper takes

such scenarios into account, although the results for closed

spaces were slightly lower than for open spaces.

The obtained results can be improved by increasing

computational resources, since in this study the training was

performed on a local machine using 5 processes for the neural

network and 8 threads for XGBoost. Further experiments with

scalable configurations may help to improve the performance

of the models.

Optimizing the neural network by parallelizing the

processes significantly increased the training speed. As shown

in the graphs, the overall performance increase was 4-5 times

depending on the dataset. However, data partitioning as a

separate approach did not provide a significant improvement,

providing a speed increase of only ~10% compared to the

standard model. At the same time, the accuracy remained

stable at 92-93% for all the datasets under consideration.

For XGBoost, 8 threads were used to build decision trees

and distribute data. The proposed combination of these two

methods significantly accelerated the learning process. The

use of GPU acceleration (gpu_hist) provided an addition 5-

6 times speedup compared to the already parallelized

approaches, which confirms the importance of GPU

accelerators in the optimization process. Due to the GPU

architecture and the ability to efficiently perform vector

computations, they significantly outperform the CPU, which

processes operations on individual numbers. At the same time,

the classification accuracy remained unchanged (93-94%),

which confirms the stability of the proposed methods. The

same trend was observed for the MSE and MAE metrics.

The literature analysis has shown that most studies focus

exclusively on the task of classifying or identifying mines,

without focusing on optimizing the learning process. Thus, the

results of this work can be used to further develop methods for

optimizing and accelerating training processes in similar tasks.

The obtained accuracy rates (92-94%) are competitive with

existing solutions and can be applied to real-world testing

scenarios.

7. CONCLUSIONS

Although XGBoost performed better in terms of training

speed and metrics compared to the proposed neural network, a

network based on neural approaches has several potential

advantages. Firstly, it has better scalability to large and

unstructured data such as audio signals, images, or videos, as

it can automatically detect complex patterns that are difficult

to analyze with XGBoost methods. Secondly, the proposed

neural network is more adaptive to non-standard relationships

and nonlinearities in the data, which can produce noise or

complex features that are poorly handled by tree-based

models. Thirdly, the proposed neural network can be

integrated with explanatory artificial intelligence (XAI)

methods, which ensures transparency and explainability of

classification results. Thus, even though XGBoost is faster and

more accurate in many cases, the proposed neural network

offers significant advantages in scalability, adaptability,

ability to handle more complex data, and integration with XAI

methods.

Despite the promising results, the study has several

570

limitations. The datasets used are normalized and lack original

spatial coordinates, which poses a challenge for direct real-

world deployment where geospatial accuracy is critical.

Moreover, the absence of raw signal information limits the

generality of the models when applied to new sensor types or

different environmental conditions. The models were tested in

controlled settings with well-preprocessed data; hence, their

robustness in dynamic or noisy real-world scenarios requires

further validation. Future work should focus on evaluating

these models on raw, heterogeneous datasets and under real-

time constraints to ensure operational viability.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the

Department of Artificial Intelligence Systems at Lviv

Polytechnic National University for their valuable

contributions and collaboration. The authors also appreciate

the reviewers for their constructive and concise

recommendations, which helped improve the presentation of

the materials. Furthermore, the authors extend their

appreciation to Universiti Teknikal Malaysia Melaka (UTeM)

for its financial and institutional support and to the Ministry of

Higher Education of Malaysia (MOHE) for their support in

this research.

REFERENCES

[1] Deepak Raj, S., Ramesh Babu, H.S. (2022).

Identification of intelligence requirements of military

surveillance for a WSN framework and design of a

situation aware selective resource use algorithm. Revue

d’Intelligence Artificielle, 36(2): 251-261.

https://doi.org/10.18280/ria.360209

[2] Wen, Z., Shi, J., He, B., Chen, J., Ramamohanarao, K.,

Li, Q. (2019). Exploiting GPUs for efficient gradient

boosting decision tree training. IEEE Transactions on

Parallel and Distributed Systems, 30(12): 2706-2717.

https://doi.org/10.1109/TPDS.2019.2920131

[3] Al Jazeera. (2024). Myanmar deaths from mines,

ordnance tripled in 2023: UN.

https://www.aljazeera.com/news/2024/4/4/myanmar-

deaths-from-mines-ordnance-tripled-in-2023-un.

[4] Wen, Z., He, B., Kotagiri, R., Lu, S., Shi, J. (2018).

Efficient gradient boosted decision tree training on

GPUs. In 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS),

Vancouver, Canada, pp. 234-243.

https://doi.org/10.1109/IPDPS.2018.00033

[5] Farmer, B.M. (2024). Ukraine’s landmine crisis—CBS

News. https://www.cbsnews.com/news/ukraines-

landmine-crisis-60-minutes/.

[6] Camacho-Sanchez, C., Yie-Pinedo, R., Galindo, G.

(2023). Humanitarian demining for the clearance of

landmine-affected areas. Socio-Economic Planning

Sciences, 88: 101611.

https://doi.org/10.1016/j.seps.2023.101611

[7] Agrawal, R., Sharma, K. (2024). An extensive review on

significance of Explainable Artificial Intelligence

models in discrete domains for informed decisions

making. Revue d’Intelligence Artificielle, 38(3): 957-

968. https://doi.org/10.18280/ria.380321

[8] Anghel, A., Papandreou, N., Parnell, T., De Palma, A.,

Pozidis, H. (2018). Benchmarking and optimization of

gradient boosting decision tree algorithms. arXiv

preprint arXiv:1809.04559.

https://doi.org/10.48550/arXiv.1809.04559

[9] Mochurad, L., Shchur, G. (2021). Parallelization of

cryptographic algorithm based on different parallel

computing technologies. In IT&AS’2021: Symposium

on Information Technologies & Applied Sciences,

Bratislava, Slovakia, pp. 20-29.

[10] Trostianchyn, A.M., Izonin, I.V., Duriagina, Z.A.,

Tkachenko, R.O., Kulyk, V.V., Havrysh, B.M. (2022).

Boosting-based model for solving Sm-Co alloy’s

maximum energy product prediction task. Archives of

Materials Science and Engineering, 116(2): 71-80.

https://doi.org/10.5604/01.3001.0016.1191

[11] Izonin, I., Muzyka, R., Tkachenko, R., Dronyuk, I.,

Yemets, K., Mitoulis, S.A. (2024). A method for

reducing training time of ML-based cascade scheme for

large-volume data analysis. Sensors, 24(15): 4762.

https://doi.org/10.3390/s24154762

[12] Kovtun, V., Altameem, T., Al-Maitah, M., Kempa, W.

(2024). Simple statistical tests selection based parallel

computating method ensures the guaranteed global

extremum identification. Journal of King Saud

University - Science, 36(5): 103165.

https://doi.org/10.1016/j.jksus.2024.103165

[13] Mochurad, L. (2024). Implementation and analysis of a

parallel kalman filter algorithm for lidar localization

based on CUDA technology. Frontiers in Robotics and

AI, 11: 1341689.

https://doi.org/10.3389/frobt.2024.1341689

[14] Mochurad, L., Solomiia, A. (2020). Optimizing the

computational modeling of modern electronic optical

systems. In Lecture Notes in Computational Intelligence

and Decision Making: Proceedings of the XV

International Scientific Conference “Intellectual Systems

of Decision Making and Problems of Computational

Intelligence” (ISDMCI'2019), Ukraine, pp. 597-608.

https://doi.org/10.1007/978-3-030-26474-1_41

[15] Barnawi, A., Kumar, K., Kumar, N., Alzahrani, B.,

Almansour, A. (2024). A deep learning approach for

landmines detection based on airborne magnetometry

imaging and edge computing. Computer Modeling in

Engineering & Sciences, 139(2): 2117-2137.

https://doi.org/10.32604/cmes.2023.044184

[16] Genç, A. (2024). Multi-feature fusion for GPR-based

landmine detection and classification.

https://open.metu.edu.tr/handle/11511/28093.

[17] Yu, S., Yang, S., Chen, W., Mao, W. (2019). An

electromagnetic detection method for grain silos based

on finite difference time domain and ground penetration

radar. Instrumentation Mesure Métrologie, 18(2): 159-

164. https://doi.org/10.18280/i2m.180210

[18] Qiao, X., Yang, F., Zheng, J. (2019). Ground penetrating

radar weak signals denoising via semi-soft threshold

empirical wavelet transform. Ingénierie Des Systèmes d

Information, 24(2): 207-213.

https://doi.org/10.18280/isi.240213

[19] Šipoš, D., Gleich, D. (2020). A lightweight and low-

power UAV-borne ground penetrating radar design for

landmine detection. Sensors, 20(8): 2234.

https://doi.org/10.3390/s20082234

[20] Jiao, Y.S., Wang, X.M., Chen, H., Li, Y. (2010).

571

Research on the coverage path planning of UAVs for

polygon areas. In 2010 5th IEEE Conference on

Industrial Electronics and Applications, Taichung, pp.

1467-1472.

https://doi.org/10.1109/ICIEA.2010.5514816

[21] Baur, J., Steinberg, G., Nikulin, A., Chiu, K., De Smet,

T.S. (2020). Applying deep learning to automate UAV-

based detection of scatterable landmines. Remote

Sensing, 12(5): 859. https://doi.org/10.3390/rs12050859

[22] Pryshchenko, O.A., Plakhtii, V., Dumin, O.M.,

Pochanin, G.P., Ruban, V.P., Capineri, L., Crawford, F.

(2022). Implementation of an artificial intelligence

approach to GPR systems for landmine detection.

Remote Sensing, 14(17): 4421.

https://doi.org/10.3390/rs14174421

[23] Alsayaydeh, J.A.J., Indra, W.A., Khang, W.A.Y.,

Shkarupylo, V., Jkatisan, D.A.P.P. (2019). Development

of vehicle ignition using fingerprint. ARPN Journal of

Engineering and Applied Sciences, 14(23): 4045-4053.

[24] Vivoli, E., Bertini, M., Capineri, L. (2024). Deep

learning-based real-time detection of surface landmines

using optical imaging. Remote Sensing, 16(4): 677.

https://doi.org/10.3390/rs16040677

[25] Dikmen, M. (2022). Investigating transfer learning

performances of deep learning models for classification

of GPR b-scan images. Traitement du Signal, 39(5):

1761-1766. https://doi.org/10.18280/ts.390534

[26] Wang, Z., Huang, F. (2024). Evaluating the adaptability

of deep learning-based multi-feature sonar image

detection algorithms. Traitement du Signal, 41(3): 1223-

1230. https://doi.org/10.18280/ts.410312

[27] Alsayaydeh, J.A.J., Khang, W.A.Y., Hossain, A.K.M.Z.,

Shkarupylo, V., Pusppanathan, J. (2020). The

experimental studies of the automatic control methods of

magnetic separators performance by magnetic product.

ARPN Journal of Engineering and Applied Sciences,

15(7): 922-927.

[28] Shkarupylo, V., Blinov, I., Chemeris, A., Dusheba, V.,

Alsayaydeh, J.A., Oliinyk, A. (2021). Iterative approach

to TLC model checker application. In 2021 IEEE 2nd

KhPI Week on Advanced Technology (KhPIWeek),

Kharkiv, Ukraine, pp. 283-287.

https://doi.org/10.1109/KhPIWeek53812.2021.9570055

[29] Khan, A.A., Laghari, A.A., Baqasah, A.M., Bacarra, R.,

Alroobaea, R., Alsafyani, M., Alsayaydeh, J.A.J. (2025).

BDLT-IoMT—A novel architecture: SVM machine

learning for robust and secure data processing in Internet

of Medical Things with blockchain cybersecurity.The

Journal of Supercomputing, 81(1): 271.

https://doi.org/10.1007/s11227-024-06782-7

[30] Parsa, P. (2025). Land Mines (Normalized Data)

[Dataset].

https://www.kaggle.com/datasets/parsapzadeh/land-

mines.

[31] Afifie, N.A., Khang, A.W.Y., Amin, A.F.B.M.,

Alsayaydeh, J.A.J., Indra, W.A., Herawan, S.G., Ramli,

A.B. (2021). Evaluation method of mesh protocol over

ESP32 and ESP8266. Baghdad Science Journal, 18(4S):

1397-1397.

https://doi.org/10.21123/bsj.2021.18.4(Suppl.). 1397

[32] Alsayaydeh, J.A.J., bin Yusof, M.F., Halim, M.Z.B.A.,

Zainudin, M.N.S., Herawan, S.G. (2023). Patient health

monitoring system development using ESP8266 and

Arduino with IoT platform. International Journal of

Advanced Computer Science and Applications, 14(4):

617-624.

http://doi.org/10.14569/IJACSA.2023.0140467

[33] Tarwidi, D., Pudjaprasetya, S.R., Adytia, D., Apri, M.

(2023). An optimized XGBoost-based machine learning

method for predicting wave run-up on a sloping beach.

MethodsX, 10: 102119.

https://doi.org/10.1016/j.mex.2023.102119

[34] Chen, T., Guestrin, C. (2016). Xgboost: A scalable tree

boosting system. In 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

San Francisco, California, USA, pp. 785-794.

https://doi.org/10.1145/2939672.2939785

[35] Wen, H.T., Wu, H.Y., Liao, K.C. (2022). Using

XGBoost regression to analyze the importance of input

features applied to an artificial intelligence model for the

biomass gasification system. Inventions, 7(4): 126.

https://doi.org/10.3390/inventions7040126

[36] Lindskog, W., Prehofer, C., Singh, S. (2023). Histogram-

based federated XGBoost using minimal variance

sampling for federated tabular data. In 2023 Eighth

International Conference on Fog and Mobile Edge

Computing (FMEC), Tartu, Estonia, pp. 182-189.

https://doi.org/10.1109/FMEC59375.2023.10306242

[37] Li, X., Zhang, G., Li, K., Zheng, W. (2016). Deep

learning and its parallelization. In Big Data, pp. 95-118.

https://doi.org/10.1016/B978-0-12-805394-2.00004-0

572

