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The problem of mine clearance in both open and closed areas remains highly relevant in 

the modern world, especially in the context of military conflicts, humanitarian crises, and 

post-war reconstruction processes. Traditional mine detection methods require significant 

human and technical resources, making the demining process costly, time-consuming, and 

potentially dangerous for operators. Therefore, there is a need to develop automated 

systems capable of ensuring high accuracy, efficiency, and speed in identifying explosive 

objects, thereby enhancing the safety of those conducting the operations. Existing 

landmine classification methods face limitations in speed, scalability, and deployment 

feasibility due to computational constraints and lack of optimization. This paper presents 

a mine classification method based on a combination of neural networks and gradient 

boosting, aimed at improving the accuracy and speed of the recognition process. Two 

main optimization strategies are proposed: (1) data-driven and algorithmic parallelization, 

which improve training speed and computational efficiency; and (2) GPU-accelerated 

model training to leverage parallel processing capabilities. A series of experiments were 

conducted, and the results confirmed the effectiveness of the proposed methods. For open 

environments, the classification accuracy reached 94.32% for gradient boosting and 

93.89% for neural networks, while for closed environments, the accuracy was 93.25% 

and 92.75%, respectively. The optimization allowed for a fivefold increase in model 

training speed due to parallel computations and GPU data processing, making the 

proposed method suitable for real-world applications. An analysis of the results indicates 

the potential of this approach not only for further improvement of automated mine 

clearance systems but also for solving other classification and object identification tasks 

in complex environments. 
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1. INTRODUCTION

The presence of mines in any area threatens human life and 

health and impedes movement and access to resources and 

infrastructure. Mine clearance is a key step in restoring 

peaceful life in affected areas and ensuring the safety of the 

population. Mines are indiscriminate weapons with 

unfortunate and far-reaching consequences even after conflicts 

end. They have significant social, economic, and 

environmental impacts as munitions and tactical barriers [1]. 

While relatively cheap and easy to deploy, they are time-

consuming, dangerous, and expensive to remove. According 

to the 2022 report [2], sixty countries and territories remain 

contaminated by anti-personnel landmines, with fifty 

casualties reported in 2021. Of the 5,544 people killed in 2021, 

4,200 were civilians. In Myanmar alone, since 2023, 1052 

cases of landmines among civilians have been officially 

recorded [3]. The publication [4] shows what types of 

ammunition and explosives have been used in Ukraine since 

the beginning of 24 February 2022. The article [5] describes 

that since 2022 to date, about 1,000 injuries and fatalities have 

been recorded with landmines and that about 1-2 million mines 

are currently present on the territory of Ukraine. 

Traditional demining methods [6], which involve the direct 

use of people and animals - are slow, insufficiently effective, 

and dangerous for rescue workers. It takes a long time to train 

such a demining specialist. Also, do not forget the possibility 

that a protective suit may not withstand an explosion and, as a 

result, the deminer will be injured. The deminer also needs to 

know the exact location of the mine, and in today's warfare, 

these weapons are increasingly being camouflaged so that the 

human eye will not be able to recognize the mine among the 

grass, mounds of earth, etc. To solve this problem, artificial 

intelligence methods can be applied [7]. Their use can 

significantly improve demining processes and reduce risks to 

human life and health. With the growing threat of mines 
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around the world [8], as well as the rapid development of 

artificial intelligence technologies, this research is extremely 

relevant and important for improving the efficiency and safety 

of the demining process. 

This paper examines the application of artificial intelligence 

methods to mine action, in particular, the classification of 

different types of mines based on magnetometer data. The 

analysis covers both theoretical aspects and practical 

implementations, which makes it possible to assess the 

advantages and limitations of using artificial intelligence in 

this area, as well as outline the prospects for further research 

and technology development. Particular attention is paid to the 

optimization of the model training process, including the 

implementation and comparison of different approaches [9-

11]. Special emphasis is placed on the importance of parallel 

computing techniques, which significantly accelerate the 

training and inference phases, enabling real-time or near-real-

time classification [12-14]. A description of the implemented 

methods, their results, and an analysis of the feasibility of their 

application are presented. Additionally, quantitative metrics 

are provided, demonstrating that optimization of the training 

process has a minimal impact on the quality of the results. At 

the same time, parallelization ensures computational 

efficiency without compromising accuracy, keeping the 

differences within the limits of permissible errors. 

The purpose of this paper is to investigate the effectiveness 

of machine learning models, in particular neural networks and 

XGBoost, for classifying mines or their absence in open and 

closed environments, as well as to analyze the impact of 

optimization methods (computational parallelization, data 

distribution, GPU usage) on the learning speed and accuracy 

of the models. The proposed approaches demonstrate the 

advantages of using modern computing architectures in 

machine learning tasks. 

The main contribution of the work: 

•An optimized neural network architecture is proposed that, 

due to thread parallelization, provides a significant reduction 

in training time by a factor of five compared to standard 

methods. This allows for efficient use of available computing 

resources without reducing the accuracy of the model, making 

the proposed approach competitive in tasks requiring rapid 

processing of large amounts of data. 

•A combined XGBoost optimization approach is developed 

and implemented, integrating thread parallelization and GPU 

computing. This results in a significant acceleration of the 

training process, up to 5-6 times compared to the standard 

implementation, while maintaining high accuracy of the 

results. 

•A comparative analysis of the performance of the neural 

network and XGBoost for classification tasks in both open and 

closed environments is carried out. The results show that 

although XGBoost provides faster training, the neural network 

has a greater potential for adaptation and improvement, 

especially in tasks requiring work with heterogeneous data. 

•For the first time, a comprehensive study of the impact of 

optimization approaches on models for classifying open and 

closed environments is performed. The proposed solutions 

have demonstrated efficiency and competitiveness compared 

to existing methods, opening up new opportunities for their 

application in real-world environment analysis. 

The article consists of several main sections: the “Related 

Works” section analyses existing research in the field of mine 

classification and model optimization, while the “Problem 

Statement” section identifies the main challenges faced by 

current methods. In the “Proposed Methodology” section, we 

propose an approach that includes a detailed description of the 

datasets used, the neural network architecture, parallelization, 

and optimization tasks for XGBoost. In the “Analysis of 

Numerical Experiments” section, we present the results of 

experiments with both approaches, comparing the accuracy 

and training time. The final section “Discussion” presents the 

interpretation of the results and recommendations for further 

research. Handle more complex data, and integration with XAI 

methods. 
 

 

2. RELATED WORKS 
 

Barnawi et al. [15] used data collected by a UAV equipped 

with a magnetic magnetometer. This data contains information 

about the earth's magnetic field, which can be used to detect 

mines. To analyze the data, the authors use deep learning 

methods, in particular, neural networks. These models are 

trained to recognize the characteristics of mine objects based 

on magnetic data. Data processing is performed at the edges of 

the network, which reduces latency and preserves bandwidth. 

This is especially important for real-time mine detection tasks. 

The downside is the cost of this application and 

implementation. However, the proposed approach provided an 

accuracy of 97.8%, which is a significant result for mine 

signature recognition. 

Article [16] is devoted to the research and development of 

methods for detecting and classifying mines based on ground 

penetrating radar (GPR) data [17, 18] using multimodal 

feature fusion. The authors describe the support vector method 

used to solve the problem for a dataset with multimodal feature 

fusion. The authors achieved an accuracy of 91.1% on the 

validation data. 

Šipoš and Gleich [19] described the process of radar 

development and construction, including the materials used, 

characteristics, and principles of operation. An important part 

is the description of methods for optimizing energy 

consumption and reducing equipment weight. This study 

achieved a detection accuracy of 92.5%. 

Jiao et al. [20] proposed a cellular decomposition extraction 

method for planning a coverage path in a polygonal area. The 

proposed method divides a complex polygon into different 

subregions, and then a path is determined for each subregion. 

The value of this work is to optimize the drone's route, thereby 

covering the maximum scanning area to collect data that will 

be used for training. The proposed approach was able to cover 

98.5% of the test area. 

Recent advances in drone-based remote sensing using 

lightweight multispectral and thermal infrared sensors allow 

for the rapid detection of landmine contamination at long 

distances. The methodology was proposed to detect dispersed 

plastic mines that use liquid explosives packed in a plastic or 

plastic case [21]. This makes it impossible to detect such 

explosives with a metal detector. Therefore, image processing 

techniques were used to show search results in a specific area. 

The authors used Faster R-CNN, which showed an accuracy 

of 99.3% for the test set and 71.5% for the validation set. 

Pryshchenko et al. [22] described an approach to object 

detection and classification using a special set of ultra-

wideband (UWB) pulsed GPR systems. The authors used a 

GPR system with one transmitting and four receiving 

antennas, which allowed them to collect signals received at 

different angles. The sums and differences of the signals 

received by two of the four antennas were merged into one 
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long signal, which increased the number of reflections and 

improved the accuracy of object detection. After that, an 

artificial neural network was used to classify the detected 

objects as mines or other objects [23]. The results showed that 

the proposed approach improved the accuracy of mine 

detection and classification compared to traditional methods. 

During the work, the authors achieved an accuracy of 90% for 

the validation data. The accuracy of mine detection was 

98.5%, and the accuracy of classification of mines and other 

objects was 96.5%. In addition, the proposed approach 

reduced the number of false positives by 30%. 

Vivoli et al. [24] presented a deep learning approach to 

detecting surface mines using real-time optical imagery. The 

authors used a dataset of optical images of mines and non-

mines and trained a deep convolutional neural network (CNN) 

to classify the images as mines or non-mines. The results 

showed that the proposed approach achieved a high mine 

detection accuracy of 98.5% and a low false positive rate of 

1.5%. The approach also enabled real-time mine detection, 

with a processing time of less than 100 milliseconds per image. 

The authors conclude that the proposed approach has the 

potential to significantly improve the efficiency and accuracy 

of mine detection and can be used for real-time mine detection 

in a variety of environments. 

The study [25] analyses the effectiveness of pre-trained 

CNN models for classifying B-scan GPR images, particularly 

for detecting objects below the surface. Experimental results 

on the DECKGPRHv1.0 dataset showed that ResNet achieves 

the highest accuracy, demonstrating high transfer learning 

efficiency without fine-tuning. This research can be useful for 

demining applications where GPR images are used to identify 

underground objects, including mines, through automated 

signal classification using deep learning. At the same time, the 

work has certain limitations, including the use of only one 

dataset, the lack of comparison with newer architectures, and 

the lack of analysis of model performance and robustness to 

real-world conditions. 

The authors of the study [26] focused on improving the 

analysis of sonar images for detecting objects in the 

underwater environment using CNN (VGG-16) with a 

weighted feature fusion technique, which allows achieving an 

accuracy of 86-91%. However, this approach has several 

limitations: it is focused exclusively on underwater conditions, 

does not include computational optimization to speed up the 

model, and is inferior in accuracy to other methods such as 

gradient boosting and neural networks used in the second 

study. In addition, the lack of GPU acceleration and parallel 

computing may make it difficult to use the method in real-

world settings where the speed and adaptability of the 

algorithm are important [27]. 

In summary, this research is relevant due to the need for 

effective, cost-efficient, and scalable approaches to mine 

classification in open and closed environments, which is an 

important task for ensuring the security and reconstruction of 

territories in the post-conflict period [28]. Existing methods 

often have limitations in speed, accuracy, or adaptability to 

heterogeneous conditions, and their implementation may be 

impractical due to the high costs or complexity of reproduction 

[29]. In this context, our optimized approaches based on 

modern artificial intelligence methods and computing 

architectures can significantly improve the efficiency of model 

training, ensuring their accuracy and reducing costs, which 

opens up prospects for the widespread use of such 

technologies in humanitarian demining. 

3. PROBLEM STATEMENT 
 

The task of mine detection and classification based on 

numerical data from GPR is to find the optimal function f that 

minimizes the penalty for incorrect mine predictions. This can 

be achieved by training the model on existing data and 

validating its performance on new data. Formally, the problem 

can be formulated as follows. 

Let X = {x1, x2, ..., xn} be a vector of numerical features 

obtained from GPR, and Y = {y1, y2, ..., yn} be a set of 

corresponding labels, where yi > 0 if there is a mine at location 

xi and yi = 0 if there is not. The task is to find a function f: XR 

that minimizes the loss function L(f), which measures the 

average number of classification errors: 
 

𝐿(𝑓) =
1

𝑛
∑(𝑓(𝑥𝑖) − 𝑦𝑖)

2

𝑛

𝑖=1

+ 𝜆 ∗ 𝑅(𝑓) 

 

where, 
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)

2𝑛
𝑖=1  is the classification error loss 

function, where 𝑓(𝑥𝑖)  is the model prediction for the i-th 

feature vector, yi is the corresponding label. n is the total 

number of samples in the training set, λ is the regularisation 

coefficient, which determines the balance between minimizing 

classification errors and limiting model complexity, and 𝑅(𝑓) 
is a regularisation function that usually measures model 

complexity. The purpose of regularisation is to prevent 

overfitting of the model by reducing its complexity. 
 

 

4. PROPOSED METHODOLOGY 
 

4.1 Dataset overview 
 

In the course of analyzing the available datasets, we found 

datasets containing the results of GPR scanning [30]. The first 

one describes the results of scanning an open area from above, 

and the second one describes the results of a robot or drone 

(not precisely described) in an enclosed area. The data is a 

feature vector with the target characteristic M - the type of 

mine or its absence. In total, there are 4 types of mines (anti-

personnel, anti-tank, etc.) and 5 types of mines. The data 

distribution is shown in Figure 1 and Table 1. 

The features described are distance, voltage, and surface 

type, which were collected from the GPR scan. A more 

detailed description is not possible because the data sample 

was already provided normalized, without a description of the 

data before normalization [31]. No description of other 

features is provided, it can be assumed that these may be the 

time of the electromagnetic wave acquisition and the 

frequency at which the radar operates or other characteristics 

obtained during the scan [32]. There are about 300,000 records 

in each dataset - for open and closed spaces. 
 

 
 

Figure 1. Class distribution: Open space and enclosed space 
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Table 1. Class distribution in percentages 

 

Class 

Number 

Distribution (Open 

Space) 

Distribution (Enclosed 

Space) 

0 21 23 

1 20.71 18.71 

2 19.526 14.52 

3 19.526 24.52 

4 19.23 19.23 

 

Among the disadvantages of both datasets is the lack of 

primary data and the absence of coordinates. The latter is 

especially important for integrating this model into real 

systems, so recording exactly where any non-standard signal 

was found is a mandatory requirement for these systems. 

All input features in both datasets were already normalized 

using min-max scaling to the [0,1] range. To improve training 

efficiency and reduce noise, redundant features were excluded 

based on low variance analysis. Feature vectors were 

additionally standardized to ensure uniform contribution to 

model training. Class imbalance was handled by applying 

stratified sampling during training set generation, ensuring 

proportional representation of each class in parallelized 

subsets. 

 

4.2 Proposed neural network 

 

To solve this problem - classification of mines (or their 

absence, which is also a separate class) - a neural network of 

the following architecture was used (see Figure 2). 

Input layer - 5 neurons - the number of features in the 

dataset; 

FCL = Dense(64, activation=‘LeakyReLU’); 

Dropout layer = 0.2 to avoid overfitting by discarding 

random weights; 

FCL = Dense(64, activation=‘LeakyReLU’ , 

kernel_regulariser = regularizers.L1L2(l1=1e-5, l2=1e-4)); 

Dropout layer = 0.3; 

FCL = Dense(16, activation = ‘LeakyReLU’, 

kernel_regulariser=regularizers.L1L2(l1=1e-5, l2=1e-4)); 

Dropout layer = 0.3; 

FCL = Dense(8, activation = ‘LeakyReLU’, 

kernel_regulariser=regularizers.L1L2 (l1=1e-5, l2=1e-4)); 

Dropout layer = 0.3; 

Output layer - 5 neurons, according to the number of 

classes, activation - softmax. 

 

 
 

Figure 2. Network architecture 

Batch normalization is applied after each layer to improve 

both training speed and result quality. LeakyReLU activation 

functions were used in the hidden layers to prevent gradient 

vanishing during training. ReLU was not used because the 

input contains values less than zero, which would lead to a 

large number of inactive neurons. LeakyReLU addresses this 

issue by allowing a small gradient for negative values. If ReLU 

were used, the sum of all neurons would be equal to 1, which 

is not a good practice as it constrains the layer's total output. 

The final layer utilizes softmax, which produces class 

probabilities, ensuring their sum equals 1. Tangent and 

sigmoid activation functions were not considered since they 

are primarily suited for binary classification, which does not 

align with the given task. 

Regularization is implemented to enhance the model's 

generalization and prevent overfitting. This feedforward 

neural network architecture was proposed because, with 

additional loss functions such as 

sparse_categorical_crossentropy and the dataset's limited 

number of features, the classification task can be effectively 

solved. In contrast, convolutional networks would not be able 

to extract patterns from such a small number of input features. 

A residual network could be considered with an increased 

number of layers; however, this would significantly 

complicate the architecture and increase training time. 

Moreover, both residual and convolutional networks are 

primarily used for image processing, which is not the focus of 

this study. 

 

4.3 Parallelization tasks 

 

This paper implements two approaches to parallelization: 

data-driven and algorithmic parallelization. The general 

concept is shown in the diagram below (see Figure 3). Data-

driven parallelization involves dividing the training set into 𝑛 

equal parts and gradually training each of them. Upon 

completion of the training, the results are summarised and the 

output is a decision on whether the sample belongs to the mine 

class or not. 

Algorithmic parallelization involves the independent 

training of several models on different subsets of data 

corresponding to separate classes. Each model specializes in 

detecting the characteristics of objects of a particular class. 

After the parallel training is completed, the results of the 

models are aggregated, and the class of the object is 

determined by the maximum value of the corresponding 

function. Since the number of classes in this task is 5, the 

corresponding number of separate processes is used. 

Depending on the distribution of data in the dataset, the speed 

of model training may vary due to the uneven number of 

samples in different classes. Therefore, the total execution 

time is determined by the upper bound, i.e., until all processes 

are completed. 

To implement parallel training of neural networks, separate 

processes are used, each of which is responsible for training 

its own model and generating results. Processes operate in 

isolation, have their own memory area, and execute 

independently of each other. Unlike threads, each process can 

contain several threads, which can significantly improve 

performance. Threads are high-level primitives that provide 

asynchronous computing and data handling. 

Figure 3 shows a visualisation of the approach using 

multiple neural networks. It is worth noting that it does not 

represent a single continuous network, but rather individual 
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models, of which five are used in this paper, with the 

architecture described above. 

 

 
 

Figure 3. Algorithmic parallelization representation 

 

To clearly differentiate the data-driven and algorithmic 

parallelization strategies, the following pseudocode (see 

Algorithm 1) outlines the respective workflows. It reflects the 

two types of parallelization implemented in this study. 

 

Algorithm 1: Pseudocode for data-driven vs. algorithmic 

parallelization workflow 

BEGIN 

    SELECT parallelization_strategy 

    IF strategy == "Data-Driven Parallelization" THEN 

        SPLIT dataset into n equal chunks 

        FOR each chunk IN parallel: 

            Train identical model on chunk 

        END FOR 

        Aggregate all model outputs (e.g., majority vote or 

averaging) 

    ELSE IF strategy == "Algorithmic Parallelization" 

THEN 

        FOR each class c IN parallel: 

            Extract data for class c 

            Train model specific to class c 

        END FOR 

        Aggregate outputs from all class-specific models using  

max-confidence selection 

    END IF 

END 

 

The data-driven strategy uniformly splits the dataset and 

trains identical models independently, aggregating their 

predictions at the end. The algorithmic strategy trains distinct 

models, each specialized in one class, and then combines their 

outputs using the class with the highest prediction score. 

 

4.4 The сase of XGBoost 

 

To evaluate the effectiveness of the proposed neural 

network, its performance was compared with XGBoost 

(eXtreme Gradient Boosting), a gradient boosting algorithm 

that uses decision tree ensembles [33, 34]. The main 

characteristics of XGBoost are boosting with sequential model 

training, where each subsequent model corrects the errors of 

the previous one, gradient descent to minimize the loss 

function by updating the model in the direction of decreasing 

the gradient, regularisation using the built-in L1 (Lasso) and 

L2 (Ridge) methods, that control the coefficient values and 

eliminate redundant features, processing of missing values by 

taking into account missing data when generating splits in 

decision trees, and optimization of speed and performance 

through special optimizations for fast learning on large 

amounts of data. The XGBoost algorithm is based on an 

ensemble of decision trees added in stages to improve 

forecasting. Each new tree generates a partitioning based on 

the loss gradient of previous models, which helps to improve 

forecast accuracy and reduce errors. Thus, comparing 

XGBoost with a neural network allows us to evaluate the 

effectiveness of the proposed approach in solving the mine 

classification problem. 

Algorithmically, you can split the training into several 

threads. Each thread will receive a corresponding unoccupied 

branch for computation, and when a branch ends with a leaf 

and has no children, the thread is released and ready for the 

next branch, if there are any unbuilt branches in the queue by 

that time [35]. In this paper, we use the number of threads for 

XGBoost = 8. 

It is also proposed to use this algorithmic approach for 

distributed data. Instead of training 1 XGBoost on the entire 

sample, the data will be divided into n uniform sets and the 

results of their training will be bagged. In this case, the use of 

threads for branching is also used. 

In comparison, XGBoost will be used with a histogram 

algorithm. Instead of using an exact algorithm with a greedy 

search for the best partition that uses CPU, which can be slow 

for large datasets, gpu_hist uses a histogram-based algorithm 

that is faster and requires less memory. For a detailed 

description of the features of histogram computing, see study 

[36]. Note that these manipulations are possible only for GPUs 

from NVIDIA and CUDA 3.5+ installed, as their solutions 

have tensor kernels, which are currently not available in AMD 

and Intel GPUs. 

When training the XGBoost model using gpu_hist, the data 

is divided into groups using histograms. Each group contains 

data with similar values. The algorithm then calculates the 

average of each group and uses it to split the data into two 

subgroups. This process is repeated until a decision tree is 

created. 

Since the histogram algorithm uses a grouping of data, it 

requires less memory than the exact algorithm. In addition, 

since the calculations are performed in parallel for each group, 

the histogram algorithm can be much faster than the exact 

algorithm, especially for large data sets. 

 

4.5 Data parallelization 

 

Both methods will use data-driven parallelization - the 

dataset will be divided into equal n (2, 3, 4, ...) parts and used 

in the models for training. In contrast to algorithmic 

parallelization, we do not allocate specific classes to the 

models, i.e. each model will receive the same amount of 

training data as input, with the ratio of classes being arbitrary 

- in some parts, records of one class will prevail due to the 

distribution, in others, there will be a uniform distribution. 
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Thus, the output will be a number of models, depending on 

how many parts the training data was divided into (see Figure 

4). 

 

 
 

Figure 4. Visualization of data distribution [37] 

 

 

5. ANALYSIS OF NUMERICAL EXPERIMENTS 

 

This section will gradually describe the results for each of 

the datasets. First, for the outdoor area, then for the indoor 

area. 

To ensure the reproducibility of the experiments, all model 

training and evaluation were conducted on a local machine 

equipped with an Intel Core i7-12700K processor (12 cores, 

20 threads), an NVIDIA GeForce RTX 3080 GPU with CUDA 

Compute Capability 8.6, and 32 GB of DDR4 RAM. The 

software environment included Python 3.10, TensorFlow 2.11 

with the Keras API, CUDA Toolkit 11.7, cuDNN 8.4, and 

XGBoost version 1.7.4. The operating system used was 

Ubuntu 22.04 LTS. GPU memory management was handled 

by enabling memory growth in TensorFlow, while model 

training performance and GPU utilization were monitored 

using NVIDIA System Management Interface (nvidia-smi). 

The specified versions and hardware configurations were 

selected to ensure compatibility and stability for GPU-

accelerated training, particularly when using the gpu_hist 

algorithm in XGBoost, and for efficient multi-process 

execution in neural network experiments. 

 

5.1 Neural network 

 

Initially, the network was trained in its standard form, after 

which the aforementioned methods were applied. Training in 

the standard form refers to using the standard dataset and a 

single neural network with the architecture described above. 

As shown in Figure 5, the parallelized algorithm 

demonstrated the best performance, with a training time of 

67.61 seconds. Compared to the standard approach, this 

resulted in an approximately fivefold speedup. 

Data-driven parallelization (splitting into 2 and 4 equal 

parts) also provided a performance improvement, although 

modest. However, when splitting into 2 parts, the training time 

exceeded that of the standard approach. This may be attributed 

to uneven resource distribution on the computer, where certain 

processes may have received higher priority than the network 

training. Nevertheless, the 2-second difference can be 

considered as an experimental error. 

The situation for indoor environments is similar, but the 

total training time for each case has slightly increased (see 

Figure 6). The distributed algorithm is still in the lead in terms 

of performance, followed by the data-driven algorithm. For 

this dataset, the speedup was 4 times, which is a significant 

optimization. As for the obtained metrics, all results for both 

cases are presented in Tables 2 and 3. 

 

 
 

Figure 5. Training time of the network for the open space 

dataset 

 

 
 

Figure 6. Training time of the network for the closed space 

dataset 

 

Table 2. Results for the open space dataset 

 
Model Type R² MSE MAE Training Time (s) 

Standard 93.561 0.2106 0.0746 334.31 

2 data chunks 93.456 0.2102 0.0734 336.79 

Parallelized 93.892 0.2000 0.0698 67.61 

4 data chunks 93.252 0.2120 0.0758 310.67 

 

Table 3. Results for the closed space dataset 

 
Model Type R² MSE MAE Training Time (s) 

Standard 92.326 0.2232 0.0812 353.42 

2 data chunks 92.421 0.2212 0.0804 335.86 

Parallelized 92.758 0.2195 0.0783 82.48 

4 data chunks 92.227 0.2251 0.0828 317.67 

 

From Tables 2 and 3, it can be concluded that the accuracy 

across the different approaches varies by approximately 0.5%, 

which can be considered as experimental error. However, for 

both datasets, the best results were achieved with parallel 
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training, with accuracy rates of 93.89% and 92.76%, 

respectively. The same pattern is observed with the other 

metrics as well. 

 

5.2 XGBoost 

 

Figures 7-10 present diagrams illustrating the results of 

training speed evaluation. The metrics for both datasets are 

provided in Tables 4-5. For the open terrain case, the best 

results were achieved using an integrated optimization strategy 

that combined thread-level parallelization with data-level 

splitting. The first optimization stage involved parallelization 

using threads, which resulted in an approximate 10% 

performance improvement. The second stage involved 

splitting the data into two parts and applying parallelization 

again. The combination of both techniques led to a fourfold 

increase in training speed compared to the standard approach. 

Further splitting the data into four parts did not yield 

significant performance benefits, so these results are not 

discussed in detail. 

 

 
 

Figure 7. Training time of the XGBoost for the open space 

dataset 

 

Figure 8 shows the results for the same dataset using similar 

techniques but with GPU computing (except for the first 

approach). The increase in efficiency is much greater: for the 

parallelised approach, the training speed increased by a factor 

of 6, and the combined method demonstrated particularly high 

efficiency. 

 

 
 

Figure 8. Training time of the XGBoost (gpu_hist) for the 

open space dataset 

For indoor environments, the trend remains the same, with 

a combined approach for both cases - standard computing and 

GPU - proving to be the best. 

 

 
 

Figure 9. Training time of the XGBoost for the closed space 

dataset 

 

 
 

Figure 10. Training time of the XGBoost (gpu_hist) for the 

closed space dataset 

 

As for the metrics, the results are presented in Tables 4 and 

5. 

Table 4. Results for the open space dataset (XGBoost) 

 

Model Type R² MSE MAE 
Training 

Time (s) 

XGBOOST 94.2274 0.1975 0.0653 39.05 

2 data chunks 94.2524 0.1963 0.0641 36.69 

Parallelized 94.3266 0.1959 0.0628 20.56 

Parallel + 2 data 

chunks 
94.2485 0.1967 0.0638 8.2 

 

Table 5. Results for the closed space dataset (XGBoost) 

 

Model Type R² MSE MAE 
Training 

Time (s) 

XGBOOST 93.154 0.20021 0.0751 44.81 

2 data chunks 93.142 0.20034 0.0758 38.6 

Parallelized 93.258 0.20009 0.0743 22.16 

Parallel + 2 data 

chunks 
93.145 0.20031 0.0749 7.86 
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Analyzing the obtained results, it can be noted that the 

accuracy and other metrics did not experience significant 

changes. The highest accuracy values were observed when 

using the parallelized approach, reaching 94.32% and 93.25% 

for the two datasets, respectively. Additionally, compared to 

the neural network, the XGBoost model demonstrated slightly 

higher values for all metrics, indicating the potential for 

further improvement of the neural network architecture. The 

highest training speed was achieved using a combined 

optimization approach that integrated thread-level 

parallelization and GPU-accelerated histogram-based training 

(gpu_hist), which accelerated the process by 5-6 times without 

sacrificing accuracy or other metrics. The results of training 

using gpu_hist are presented below in Tables 6 and 7. 

 

Table 6. Results for the open space dataset (GPU) 

 

Model Type R² MSE MAE 
Training 

Time (s) 

XGBOOST 94.2270 0.1969 0.0652 39.57 

2 data chunks 94.2522 0.1960 0.0641 12.56 

Parallelized 94.3268 0.1965 0.0627 6.47 

Parallel + 2 data 

chunks 
94.2483 0.1962 0.0638 1.57 

 

Table 7. Results for the closed space dataset (GPU) 

 

Model Type R² MSE MAE 
Training 

Time (s) 

XGBOOST 93.154 0.20021 0.0752 44.64 

2 data chunks 93.141 0.20032 0.0754 13.63 

Parallelized 93.259 0.20008 0.0745 7.26 

Parallel + 2 data 

chunks 
93.144 0.20033 0.0749 2.51 

 

As can be seen, in the worst case, the results changed by 

only 0.001, which is not a critical deviation. 

 

 

6. DISCUSSION 

 

In this paper, a solution based on a neural network and the 

XGBoost algorithm were proposed and implemented, which 

was applied to the datasets of scanning open and closed 

environments. The obtained results demonstrate the feasibility 

of using the proposed approaches since the following accuracy 

rates were achieved on the test data: 

•Open environment: XGBoost - 94.32%, neural network - 

93.89%. 

•Closed environment: XGBoost - 93.25%, neural network - 

92.75%. 

Compared to other studies, the proposed methods provide a 

significant improvement in classification accuracy - from 4% 

to 20%, depending on the sources compared. The observed 

superior performance of XGBoost over neural networks in 

closed environments can be attributed to several factors. First, 

XGBoost, being a tree-based ensemble method, handles sparse 

or less informative features more efficiently. In closed 

environments, the feature variance may be lower or the signal-

to-noise ratio less favorable due to reflections and structural 

interferences. Neural networks, which rely heavily on pattern 

abstraction and parameter tuning, may underperform when 

faced with subtle class separations or overlapping 

distributions. In contrast, XGBoost effectively captures such 

conditional patterns through gradient-based tree boosting, 

making it better suited for scenarios where feature importance 

is highly localized or unevenly distributed. At the same time, 

it is worth noting that the analyzed studies did not consider 

classification in closed environments, while this paper takes 

such scenarios into account, although the results for closed 

spaces were slightly lower than for open spaces. 

The obtained results can be improved by increasing 

computational resources, since in this study the training was 

performed on a local machine using 5 processes for the neural 

network and 8 threads for XGBoost. Further experiments with 

scalable configurations may help to improve the performance 

of the models. 

Optimizing the neural network by parallelizing the 

processes significantly increased the training speed. As shown 

in the graphs, the overall performance increase was 4-5 times 

depending on the dataset. However, data partitioning as a 

separate approach did not provide a significant improvement, 

providing a speed increase of only ~10% compared to the 

standard model. At the same time, the accuracy remained 

stable at 92-93% for all the datasets under consideration. 

For XGBoost, 8 threads were used to build decision trees 

and distribute data. The proposed combination of these two 

methods significantly accelerated the learning process. The 

use of GPU acceleration (gpu_hist) provided an addition 5-

6 times speedup compared to the already parallelized 

approaches, which confirms the importance of GPU 

accelerators in the optimization process. Due to the GPU 

architecture and the ability to efficiently perform vector 

computations, they significantly outperform the CPU, which 

processes operations on individual numbers. At the same time, 

the classification accuracy remained unchanged (93-94%), 

which confirms the stability of the proposed methods. The 

same trend was observed for the MSE and MAE metrics. 

The literature analysis has shown that most studies focus 

exclusively on the task of classifying or identifying mines, 

without focusing on optimizing the learning process. Thus, the 

results of this work can be used to further develop methods for 

optimizing and accelerating training processes in similar tasks. 

The obtained accuracy rates (92-94%) are competitive with 

existing solutions and can be applied to real-world testing 

scenarios. 

 

 

7. CONCLUSIONS 

 

Although XGBoost performed better in terms of training 

speed and metrics compared to the proposed neural network, a 

network based on neural approaches has several potential 

advantages. Firstly, it has better scalability to large and 

unstructured data such as audio signals, images, or videos, as 

it can automatically detect complex patterns that are difficult 

to analyze with XGBoost methods. Secondly, the proposed 

neural network is more adaptive to non-standard relationships 

and nonlinearities in the data, which can produce noise or 

complex features that are poorly handled by tree-based 

models. Thirdly, the proposed neural network can be 

integrated with explanatory artificial intelligence (XAI) 

methods, which ensures transparency and explainability of 

classification results. Thus, even though XGBoost is faster and 

more accurate in many cases, the proposed neural network 

offers significant advantages in scalability, adaptability, 

ability to handle more complex data, and integration with XAI 

methods. 

Despite the promising results, the study has several 
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limitations. The datasets used are normalized and lack original 

spatial coordinates, which poses a challenge for direct real-

world deployment where geospatial accuracy is critical. 

Moreover, the absence of raw signal information limits the 

generality of the models when applied to new sensor types or 

different environmental conditions. The models were tested in 

controlled settings with well-preprocessed data; hence, their 

robustness in dynamic or noisy real-world scenarios requires 

further validation. Future work should focus on evaluating 

these models on raw, heterogeneous datasets and under real-

time constraints to ensure operational viability. 
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