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Cognitive Radio Networks (CRN) are pivotal in the 5G era, ensuring efficient spectrum 

usage for data-intensive applications while their cognitive abilities adapt to the 

environment, reducing interference and enhancing connectivity. However, amidst the 

promise of these advancements lies a critical challenge - the detection of malicious users 

(MUs) within CRNs. A dynamic and cooperative nature of CRNs, where unlicensed 

secondary consumers share spectrum with licensed primary consumers that opens door to 

potential vulnerabilities. Detecting and mitigating presence of MUs are vital for 

maintaining the reliability of network and preventing illegal spectrum access. To address 

these security challenges and enhance accuracy of decision-making within CRNs, this 

study introduces Self-improved Orca Predation Algorithm with Deep Learning Driven 

Malicious User Detection (SIOPA-DLMUC). This novel technique focuses on robust 

detection and classification of MUs. It operates in two distinct stages: in the first stage, 

the long short-term memory (LSTM) algorithm is employed for automated MU detection. 

LSTM, known for its ability to analyze temporal behavior and communication patterns of 

users within CRNs, plays a critical role in identifying deviations from normal behavior, 

thus improving the accuracy of MU detection. In the second stage, the SIOPA-based 

hyperparameter tuning process optimizes LSTM parameters to enhance detection 

performance further. To validate the effectiveness of the SIOPA-DLMUC algorithm, 

extensive testing has been performed on a diverse dataset, including four distinct types of 

attacks: Byzantine attacks, Jamming Attacks, Spectrum Sensing Data Falsification 

(SSDF) attacks, and Primary User Emulation (PUE) attacks along normal samples. The 

results consistently demonstrate superior performance of SIOPA-DLMUC algorithm 

when compared to other deep learning models, showcasing its potential to bolster security 

and reliability in CRNs operating within the 5G landscape. With its capacity to adapt to a 

wide range of threats and provide robust security, the SIOPA-DLMUC algorithm 

represents a promising solution for ensuring the integrity of 5G-assisted Cognitive Radio 

Networks. The proposed model achieves an impressive accuracy of 93.93% demonstrate 

an exceptional performance surpassing the traditional models. 
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1. INTRODUCTION

The emergence of 5G and Cognitive Radio Networks 

(CRNs) heralds a new era in wireless transmission, offering 

innovative solutions to the challenges of wireless connectivity. 

The fifth generation (5G) wireless technology brings with it 

the promise of ultra-low latency and blazing-fast data speeds, 

positioning it as the ideal choice for applications like 

augmented reality, autonomous vehicles, and the Internet of 

Things (IoT) [1]. Concurrently, CRNs introduce the concept 

of dynamic spectrum access, allowing devices to intelligently 

harness and adapt available spectrum resources. Integrating 

CRN into the architecture of 5G presents a compelling 

opportunity to address interference issues and optimize 

spectrum utilization, ensuring that the 5G network operates at 

its peak even in congested and dynamic environments. 

Moreover, the fusion of CRNs with 5G emphasizes resilience 

and adaptability. In an ever-evolving wireless landscape, CRN 

offers intelligent interference management, bolstering the 

overall robustness of the 5G network by dynamically 

allocating spectrum resources in real-time [2]. These 

technologies also promote spectrum sharing and facilitate 

greater cooperation among diverse wireless systems, fostering 

effective coexistence between different technologies. This 

collaborative synergy between 5G and CRNs holds the 

potential to create a more reliable, agile, and efficient wireless 

transmission system, essential for meeting the diverse 

demands of contemporary applications and services. For a 

visual representation of the general architecture of 5G-enabled 

CRNs, refer to Figure 1. 

Within the realm of Cognitive Radio Networks (CRNs), 

task of identifying accessible spectrum resources involves a 

method that employs secondary users (SUs). These SUs lack 

the necessary permissions but play a pivotal role in monitoring 
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and controlling the voluntary spectrum utilized by primary 

users (PUs) who possess valid permissions [3]. PUs, as 

licensed users, hold exclusive rights to specific spectrum 

bands. Attacks targeting PUs typically revolve around 

interference, unauthorized access, or disrupting their 

legitimate communications. On the other hand, SUs are 

opportunistic or unlicensed users that dynamically access 

spectrum resources not in use by PUs. The success of a CRN 

hinges on the network's ability to accurately detect presence or 

nonappearance of essential signal within licensed band, which 

is opportunistically utilized. To achieve this, Cooperative 

Spectrum Sensing (CSS) recognized for its capacity to deliver 

enhanced detection precision, particularly in environments 

with low signal-to-noise ratios (SNR). In context of 

infrastructure-based CRNs, CSS involves collecting detecting 

information from individual users (nodes) within the Fusion 

Center (FC). The FC employs aggregation rules like OR and 

AND to formulate the final detection decision [4]. This 

decision is subsequently disseminated to the individual nodes. 

Reporting can take two forms: (i) binary, where '0' indicates 

the absence of the essential signal and '1' denotes its presence, 

and ii) continuous, where distinct nodes transmit the freshly 

detected values (such as energy levels) to the FC for further 

processing [5]. 

 

 
 

Figure 1. Architecture of 5G enabled CRNs 

 

In the quest for more robust spectrum sensing capabilities, 

central and distributed collaborative networks have emerged 

as promising approaches [6]. In the central network, secondary 

users (SUs) work together by sharing their sensing information 

with a Fusion Center (FC) that aggregates sensing reports from 

all SUs to make an optimum decision regarding spectrum 

occupancy of primary users (PUs) [7]. Conversely, in the 

distributed network, SUs collaborates by sharing their sensing 

data amongst themselves, independently making final decision 

on PU spectrum occupancy without need for FC 

communication [8]. While collaborative networks offer 

significant advantages, they are liable to possible threats posed 

by malicious users (MUs), who may engage in unwanted 

intrusions among PUs and SUs, thereby compromising 

accurateness of spectrum sensing process. 

To address these challenges, recent advancements have seen 

the utilization of Machine Learning (ML) methods, which aim 

to mitigate some of the limitations associated with traditional 

approaches [9]. ML, a prominent area within Artificial 

Intelligence, empowers machines with ability to learn 

autonomously. ML models are supervised learning, which 

involves a training procedure with labeled input data, and 

unsupervised learning, where training occurs with unlabeled 

input data [10]. These ML methods offer promising avenues 

for enhancing spectrum sensing in collaborative networks, 

thereby improving the overall resilience and accuracy of the 

system. 

In this study, we develop a new Self‐Improved Orca 

Predation Algorithm with Deep Learning-Driven Malicious 

User Detection (SIOPA-DLMUC) technique for 5G assisted 

CRNs. The main goal of SIOPA-DLMUC system is to classify 

and detect occurrence of MUs in the CRN. The SIOPA-

DLMUC technique involves a long short-term memory 

(LSTM) model for detection of MUs in CRN. In addition, 

SIOPA-based hyperparameter tuning process can be executed 

to improve performance of LSTM approach. To observe 

outcome of SIOPA-DLMUC system, a comprehensive set of 

simulations is carried out on our database, comprising four 

kinds of attacks namely byzantine attack, jamming attack, 

SSDF attack, and Primary User Emulation (PUE) attack with 

normal samples. 
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2. RELATED WORK 

 

In reference [11], a combination of GRU and SVM 

algorithms was proposed for Cognitive Radio Networks. 

These models were utilized to train and test datasets 

comprising spectrum sensing results. GRU, a simplified 

variant of the Long Short-Term Memory (LSTM) network, 

was employed due to its lower computational complexity and 

higher efficiency when dealing with small datasets. SVM was 

applied at the output layer to classify users as either authorized 

or malicious within the cognitive radio environment. 

In reference [12], a hybrid approach integrating the Secure 

Hash Algorithm 1 (SHA-1) and Neural Networks (NN) was 

introduced. This model leverages Direction of Arrival (DoA) 

and Received Signal Strength (RSS) data to determine the 

positioning between primary and secondary users. The 

primary objective of this method is to reduce the claim ratio 

within the communication system. 

Benazzouza et al. [13] proposed a novel model based on two 

machine learning approaches. This algorithm employs a 

chaotic compressive sensing-based authentication technique 

to extract low-dimensional features, along with a collaborative 

machine learning method for user identification. Furthermore, 

a deep learning technique is proposed that utilizes scalogram 

images as inputs for identifying primary users in the spectrum. 

Paul and Choi [14] presented combined SU and CSS 

information communications in Energy Harvesting enabled 

CRN in SSDF threats. The current study utilizes collecting 

approach to detach the hateful SU from truthful set of SU 

utilizing reputational rate and other features. The recognized 

hateful and weak SU is controlled by resourceful Device-to-

Device (D2D) transmission in CRN. A Collaborative Learning 

approach is also projected.  

In reference [15], an AI method used to protect transmission 

on VWN is presented. An effective cyberattack recognition 

technique is examined utilizing an AI method in the Bayesian 

learning method for recognition. The outcomes of deep neural 

network (DNN) and Random Forest methods are examined to 

identify the cyberattacks on a VWN, having measured 

essential communication control as a beginning value to the 

classification of mistrustful actions.  

Ajay and Nesasudha [16] proposed an enhanced ANN based 

on the aggressor identification method. The presentation of 

ANN is enhanced by the Immune plasma optimizer (IPO) 

technique which is enthused by the human immune system 

reaction to COVID19 infection. Consequences specify that the 

projected IP-enhanced ANN generates the best outcomes 

relating to hacker recognition accuracy, packet delivery ratio, 

delay of the network, and energy. 

Zhang et al. [17] presented a result for the recognition of 

irregular use of spectrum from the sub-sampled data stream, 

an MLP/FFNN. The projected result will be learning the 

outline of authentic and unauthentic practices independently 

without the notice of the specialists. The projected NN 

architecture has displayed rapid recognition speed and a lesser 

recognition error rate. Brinda and Bhuvaneshwari [18] 

developed a Boundary recognition technique that utilizes the 

projected position of each SU, which is attained by employing 

the RNN method. Next Malicious User Detection by Ordering 

(MUDO) method can be projected, in which additional 

employers are evaluated utilizing Basic Probability Analysis 

(BPA), and depend on commands in which SUs combined by 

equivalent PU. The SUs with minimum commands rejected as 

they might be malevolent employers. 

 

 
 

Figure 2. Workflow of SIOPA-DLMUC approach 
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3. THE PROPOSED MODEL 

 

In this article, we introduced an automated solution, the 

Self‐Improved Orca Predation Algorithm with Deep Learning 

Driven Malicious User Detection (SIOPA-DLMUC), tailored 

to address the pressing challenge of detecting Malicious Users 

(MUs) within the context of 5G-assisted Cognitive Radio 

Networks (CRN) susceptible to various attacks. The SIOPA-

DLMUC operates through two critical stages: firstly, it 

harnesses Long Short-Term Memory (LSTM) to detect MUs 

effectively, offering the capability to identify temporal 

patterns associated with Byzantine attacks, Jamming Attacks, 

Spectrum Sensing Data Falsification (SSDF) attacks, and 

Primary User Emulation (PUE) attacks, as well as normal 

network behavior. The second stage utilizes the SIOPA to 

fine-tune hyperparameters, enhancing the model's adaptability 

to detect these specific attacks. SIOPA leverages advanced 

features, including an acceleration mechanism, memory, 

learning, and social interactions, to navigate the complex 

landscape of CRNs under the influence of these disruptive 

attacks. The model also incorporates a 'BubbleNet' mechanism 

that refines encircling behaviors, bolstering its ability to detect 

MUs and ensuring the security of CRNs operating within the 

dynamic 5G environment. 

The SIOPA-DLMUC system aims to classify and detect the 

occurrence of the MUs in the CRN. To achieve this, SIOPA-

DLMUC algorithm follows two phases of processes namely 

LSTM-based detection and SIOPA-based hyperparameter 

tuning. Figure 2 portrays workflow of SIOPA-DLMUC 

methodology. 

 

3.1 Stage I: MU detection process 

 

The detection of the MUs in the CRN is performed by the 

use of the LSTM model. LSTM works by employing a gating 

mechanism, consisting of forget, input, and output gates, to 

selectively process and store information in memory cells, 

allowing it to effectively capture and analyze temporal 

patterns in the data [19].  

The LSTM is a kind of in-between NN model. LSTM 

comprises 4 neural system layers that interface in an optimum 

manner. LSTM adds or removes information to memory unit, 

using the "Gateway". It includes multiplication and layering 

work of sigmoid NN. The sigmoid layer opposites feature data 

by sigmoid ability and estimates outcome in range of [0, 1], 

representing what amount of information elements can be 

experienced. “1” represents that each data is permitted that 

sent. “0” denotes that no date is allowed that sent. The gating 

mechanism in the LSTM is related to the forgetting gate 

information gateway and an output gate. 

The Forget gate selects what data to be discarded or retained 

from the memory: 

 

𝐹𝐺 = 𝜎[𝑤𝐹(𝐹𝑡 , 𝑌𝑡−1) + 𝑐𝐹] (1) 

 

In Eq. (1), 𝐹𝐺  is forget gate. 𝐶  and 𝑤  are controlled and 

weighted borders. 𝐹𝑡  addresses input at existing timestamp; 

𝑌𝑡 − 1  shows outcome at 𝑡‐ 1  timestamp in prior square of 

LSTM. 𝜎 shows sigmoid function.  

The input gate 𝐼𝐺  selects the data that must be saved: 

 

𝐼𝐺 = 𝜎[𝑤𝐼(𝐹𝑡 , 𝑌𝑡−1) + 𝐶𝐼] (2) 

 

Lastly, the resultant gate defines which portion of the 

memory can be retained: 

 

𝑂𝐺 = 𝜎[𝑤𝑂(𝐹𝑡 , 𝑌𝑡−1) + 𝑐𝑜] (3) 

 

Additional candidate memory cell 𝑀𝑡 is made by the tan 𝐻 

layer and is represented by: 

 

𝑀𝑡 = tan 𝐻[𝑤𝑀(𝐹𝑡 , 𝑌𝑡−1) + 𝑐𝑀] (4) 

 

In Eq. (4), tan 𝐻  permits LSTM to remove or add 

information in the final input. The information gateway 

chooses the memory unit, and the forget gate is used to delete 

or hold data for creating the last memory. 

 

𝑀𝑡 = 𝐹𝐺 ∗ 𝑀𝑡−1 + 𝐼𝐺 ∗ 𝑀𝑡 (5) 

 

In Eq. (5), 𝑀𝑡 signifies memory unit at existing timestamp 

(𝑡).  

 

𝑌𝑡 = 𝑂𝐺 ∗ tan 𝐻(𝑀𝑡) (6) 

 

In Eq. (6), ∗ denotes element‐wise multiplication, 𝑦𝑡  

indicates the output attained by the softmax resultant layer to 

obtain the output predictive in the existing blocks. Lastly, the 

loss function is estimated by selecting the MSE as the error 

calculation: 

 

𝐿𝑜𝑠𝑠 = ∑(

𝑁

𝑡=1

𝑌𝑡 − 𝑇𝑡)2 (7) 

 

In Eq. (7), 𝑇𝑡  shows desired outcome. 𝑁  indicates 

prediction made in instance of 𝑛  data point. Figure 3 

demonstrates infrastructure of LSTM. 

 

 
 

Figure 3. LSTM architecture  

 

3.2 Stage II: Hyperparameter tuning process  

 

For hyperparameter tuning of LSTM method, SIOPA used. 

An OPA is a current metaheuristic optimization model that 

sketched inspiration from natural hunting strategy of orcas 

(killer whales) [20]. It stimulates the hunting behavior of orca 

to resolve the problem of the optimization algorithm. In the 

OPA, initialize the population of virtual orca, and each orca 

signifies the best possible solution to the optimization 

problems.  

 

Driving phase  

Current advancement has introduced the incorporation of 

social interaction, acceleration mechanism, memory, and 

learning during the driving stage. This increases the 

capabilities and performance of the model. The acceleration 

mechanism has been integrated to enhance the exploitation 
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and exploration. Orcas collectively improve their intelligence 

by exchanging and communicating data about the best 

possible solution, which facilitates the convergence towards 

the best solution. 

 

i) Acceleration 

The acceleration mechanism has been integrated to improve 

exploitation and exploration capabilities. This mechanism 

enables orcas to finetune movement speed dynamically 

according to solution quality, leading to effective navigation 

of searching space. Sequentially, this enables better 

exploration of promising outcomes and exploitation of 

potential areas. During the chase phase, the velocity update 

equation can be used as follows: 

 

𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 1, 𝑖 = 𝑎 ∗ (𝑑 ∗ 𝑥𝑡𝑏𝑒𝑠𝑡 − 𝐹

∗ (𝑏 ∗ 𝑀𝑡 + 𝑐 ∗ 𝑥𝑡𝑖)) 

+𝑤 ∗ 𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 1, 𝑖— 1 

(8) 

 

𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 2, 𝑖 = 𝑒 ∗ (𝑥𝑡𝑏𝑒𝑠𝑡 − 𝑥𝑡𝑖) + 𝑤
∗ 𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 2, 𝑖— 1 

(9) 

 

Now, the acceleration or weight feature 𝑤 controls impact 

of previous velocity on existing velocity. 

 

ii) Memory and learning 

Here, memory and learning mechanism incorporated to 

allow orcas to exploit previous knowledge. This allows for 

making appropriate decisions in future iterations and retaining 

the memory of successful outcomes, gradually increasing 

performance of model. In chase stage, velocity update 

equation is adapted to integrate memory and learning as 

follows: 

 

𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 1, 𝑖 = 𝑎 ∗ (𝑑 ∗ 𝑥𝑡𝑏𝑒𝑠𝑡 − 𝐹

∗ (𝑏 ∗ 𝑀𝑡 + 𝑐 ∗ 𝑥𝑡𝑖)) + 𝑤

∗ 𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 1, 𝑖 − 1 + 𝑚
∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑥𝑡𝑖) 

(10) 

 

In Eq. (10), weight or learning factor 𝑚 defines impact of 

prior optimum location (𝑋𝑏𝑒𝑠𝑡) on the existing velocity. Orcas 

could successfully learn from previous experience and 

accordingly adapt the movement by adjusting these weights.   

 

iii) Social interaction 

During driving process, social interactions amongst orcas 

established to enable collaboration as well as data sharing. 

This f to cooperate and exchange valuable information, 

resulting in better exploitation and exploration of the searching 

space. During chase phase, velocity updating formula is 

modified to integrate social interaction: 

 

𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 1, 𝑖 = 𝑎 ∗ (𝑑 ∗ 𝑥𝑡𝑏𝑒𝑠𝑡 − 𝐹

∗ (𝑏 ∗ 𝑀𝑡 + 𝑐 ∗ 𝑥𝑡𝑖)) + 𝑤

∗ 𝑉𝑡𝑐ℎ𝑎𝑠𝑒, 1, 𝑖 − 1 + 𝑠
∗ (𝑋𝑠𝑜𝑐𝑖𝑎𝑙 − 𝑥𝑡𝑖) 

(11) 

 

The social or weight factor 𝑠 defines the impact of social 

information, 𝑋𝑠𝑜𝑐𝑖𝑎𝑙, on existing velocity.   

 

Encircling phase 

A “BubbleNet” mechanism is employed in encircling stage, 

to enable encircling behaviors of orcas. The orca works 

together in encircling stage, to encircle target performance by 

forming a virtual "net" around it.  The orca creates a 

cooperative force that successfully encircles target outcome by 

coordinating the action. 

 

i) BubbleNet formation 

The orcas exploit a BubbleNet development in the 

encircling stage, based on the supportive hunting strategy used 

by orcas. The BubbleNet development assists in concentrating 

and corraling the target solution in a certain region, which 

improves efficiency of the collective hunting. The location 

updating formula for the 3rd chasing method, integrating the 

BubbleNet creation shown as follows:  

 

𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 3, 𝑖, 𝑘 = 𝑥𝑡𝑑1, 𝑘 + 𝑢 ∗ (𝑥𝑡𝑑2, 𝑘 − 𝑥𝑡𝑑3, 𝑘)
+ 𝑏 ∗ 𝐵𝑡 

(12) 

 

𝐵𝑡 =
∑ 𝑁 𝑛(𝑥𝑡𝑏𝑒𝑠𝑡 − 𝑥𝑡𝑖)

𝑁𝑛
 (13) 

 

After choosing the third chasing technique, 𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 3, 𝑖, 𝑘 

shows the updated location with BubbleNet development. The 

BubbleNet creation can be obtained by adding the weighted 

sum of differences among the past best location (𝑥𝑡𝑏𝑒𝑠𝑡) and 

the existing location of orcas (𝑥𝑡𝑖). The weight 𝑏 defines the 

impact of BubbleNet formation on the movement and allows 

for coordination of the position for creating the virtual net. The 

differences between the historical best position and the 

existing positions for each orca are divided and summed by the 

overall number of orcas (𝑁𝑛) to compute the BubbleNet force 

(𝐵𝑡). 

 

ii) BubbleNet position modifications 

In encircling stage, orca location is modified according to 

BubbleNet formation, taking fitness function into account. 

The location updating equation is given below: 

 

𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖 = 𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖 𝑖𝑓 𝑓(𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖) < 𝑓(𝑥𝑡𝑖) (14) 

 

After integrating the BubbleNet formation (𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖), if 
the fitness values of the location are superior to the fitness 

values of the existing location (𝑥𝑡𝑖), the location remains the 

same. This ensures that the orca maintains the position if 

BubbleNet formation does not result in an enhancement in 

fitness value. 

 

𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖 = 𝑥𝑡𝑖 𝑖𝑓 𝑓 (𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖) ≥ 𝑓(𝑥𝑡𝑖) (15) 

 

After integrating BubbleNet development, if the fitness 

value of the location is equal or not superior to the fitness 

values of the existing location, then the location can be 

upgraded to that existing location. This prevents the orca from 

moving towards a lesser optimum location.  

 

iii) Adaptive attack speed 

During attacking stage, adaptive attack speed is established 

to change movement rapidity dynamically based on vicinity of 

the prey and the existing iteration. These facilities improve the 

probability of catching the prey and improve their attack 

strategy. 𝑆(𝑡), denotes the adaptive attack speed function and 

evaluates the correct attack speed according to factors 

including convergence criteria, distance to the prey, and prey 

movement. During the attacking phase, the velocity update for 

the orca is expressed as follows: 
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𝑉𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 1, 𝑖 =
(𝑥𝑡1+𝑥𝑡2+𝑥𝑡3+𝑥𝑡4)

4
‐ 𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖 ∗ 𝑆(𝑡)  (16) 

 

𝑉𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 2, 𝑖 =
(𝑥𝑡𝑐ℎ𝑎𝑠𝑒,𝑑1+𝑥𝑡𝑐ℎ𝑎𝑠𝑒,𝑑2+𝑥𝑡𝑐ℎ𝑎𝑠𝑒,𝑑3)

3
− 𝑥𝑡𝑖 ∗

𝑆(𝑡)  
(17) 

 

Now, velocity upgrade for orca in 1st and 2nd attacking 

strategies are, 𝑉𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 1, 𝑖 and 𝑉𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 2, 𝑖. According to 

the orca position, the updates are calculated and their chase 

target, considering the adaptive attack speed as (𝑡). During the 

attacking phase, the updated location of the orca is defined as 

follows: 

 

𝑥𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 𝑖 = 𝑥𝑡𝑐ℎ𝑎𝑠𝑒, 𝑖 + 𝑔1 ∗ 𝑉𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 1, 𝑖 + 𝑔2
∗ 𝑉𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 2, 𝑖 

(18) 

 

In Eq. (18), the upgrade place of the orcas is 𝑥𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 𝑖 
considering the chase location, the velocity update, and the 

weighted 𝑔1 and 𝑔2. Both weights controlling the impact of 

the velocity update on the movement, enabling to finetune the 

attack strategy. 

The fitness optimum is an important feature in SIOPA 

algorithm. An encoded performance has been organized to 

assess superior efficiency of candidate results. Currently, 

accuracy value is a main form used to project an FF.  

 

 

4. RESULTS AND DISCUSSION 

 

This section inspects MU detection outcomes of SIOPA-

DLMUC approach tested on a dataset, generated by our own. 

Table 1 represents the details of the dataset. Indoor CRN 

attacks involve threats like spectrum sensing data falsification, 

where attackers manipulate sensing information to mislead 

network, and primary user emulation, where malicious devices 

impersonate authentic users to disrupt spectrum allocation. 

Sybil attacks include creating fake identities to gain undue 

control over spectrum resources, hindering network efficacy, 

whereas Jamming attacks are common indoors, intending to 

cause interference. Outdoors, spectrum misuse, primary user 

emulation, and eavesdropping on communication attacks 

remain a concern. Furthermore, attackers may exploit 

vulnerabilities in cross-technology integration, perform Denial 

of Service (DoS) attacks, and manipulate location information, 

imposing strong security systems and regulations to defend 

CRN performance and integrity. In this work, indoor and 

outdoor attacks are involved. We have generated a dataset 

comprising 25000 samples with five classes namely Byzantine 

attack, Jamming Attack, SSDF attack, Primary User 

Emulation (PUE) attack, and Normal. Each class holds a total 

of 5000 samples.  

 

Table 1. Details on database 

 
Classes No. of Samples 

Byzantine Attack 5000 

Jamming Attack 5000 

SSDF Attack 5000 

PUE Attack 5000 

Normal 5000 

Total Samples 25000 

 

The class labels are defined as follows: 

•Byzantine attack occurs when certain nodes, including 

secondary users, intentionally provide conflicting or false 

information about spectrum availability. This deception 

disrupts efficient spectrum utilization, posing a significant 

threat to network reliability and security. Detecting and 

preventing Byzantine attacks is crucial for safeguarding 

Cognitive Radio Networks. 

•A jamming attack in 5G Cognitive Radio involves the 

deliberate interference with radio signals, typically by 

secondary users, disrupting communication. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max (𝑃) (19) 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (20) 

 

where, 𝐹𝑃 and 𝑇𝑃 imply false and true positive values 

•Attackers generate high power signals exceeding expected 

levels or introduce signal variances to disrupt network 

operations. Detecting and mitigating jamming attacks is vital 

to maintain communication reliability in Cognitive Radio 

Networks.  

•Spectrum Sensing Data Falsification (SSDF) is deliberate 

manipulation of spectrum sensing data in cognitive radio 

systems. It involves misreporting presence or nonappearance 

of primary users to disrupt spectrum allocation. Detecting and 

countering SSDF is essential for network reliability and 

security. 

•In realm of 5G Cognitive Radio, Primary User Emulation 

(PUE) entails a deceptive practice where secondary users 

mimic primary users' signal behavior, potentially causing 

harmful interference. Attackers may imitate signal 

characteristics, posing a challenge for distinguishing between 

genuine and emulated primary users. Detecting PUE attacks is 

critical for preserving the integrity and performance of 

Cognitive Radio Networks. 

•In the context of CRN in 5G, "normal" refers to the 

standard and expected behavior of nodes within the network. 

It signifies the absence of malicious activities like Byzantine 

attacks, jamming attacks, Primary User Emulation (PUE), or 

other deceptive actions “Normal” behavior includes legitimate 

spectrum sensing, communication, and network operations 

that follow established protocols and do not disrupt the 

efficient utilization of the radio spectrum.  

This study employed a carefully crafted set of simulation 

parameters to generate a comprehensive dataset for research in 

the domain of 5G-assisted Cognitive Radio Networks. The 

parameters encompass various attack scenarios, including 

Byzantine Attacks, Jamming Attacks, Primary User Emulation 

(PUE) Attacks, and Spectrum Sensing Data Falsification 

(SSDF) Attacks, all operating within the 2.4 GHz frequency 

band. These attacks were executed with distinct modulation 

schemes, such as QPSK for Primary Users (PUs) and BPSK 

for Secondary Users (SUs). To ensure dataset's fidelity, the 

simulation considered critical factors like expected signal 

power, modulation schemes, and specific detection thresholds 

tailored to each attack type. By capturing the dynamics of 

malicious behaviors and their impact on the network, this 

dataset serves as a valuable resource for advancing research in 

the security and resilience of 5G Cognitive Radio Networks. 

The simulation settings of the attacks are given in Table 2. 

Figure 4 shows confusion matrices attained by SIOPA-

DLMUC technique at 80:20 and 70:30 of TR phase /TS phase. 

The simulated values reported effective recognition with all 

five classes. 
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Table 2. Simulation parameter setting 

 
Attack Type Parameter Value 

Byzantine 

Attack 

Frequency Band 2.4 GHz 

Modulation Scheme QPSK for PUs, BPSK for SUs 

Expected Signal Power (P_expected) -70 dBm 

Expected Modulation Scheme (M_expected) QPSK for PUs, BPSK for SUs 

Threshold for Byzantine Attack Detection 
At least 20% of nodes provide conflicting information within 1 

second 

Jamming Attack 

Frequency Band 2.4 GHz 

Modulation Scheme QPSK for PUs, BPSK for SUs 

Expected Signal Power (P_expected) -70 dBm 

Expected Modulation Scheme (M_expected) QPSK for PUs, BPSK for SUs 

Threshold for Sudden Spike P(t) > P_expected + 5 dB 

Threshold for High Variance Variance > 10 dB 

Threshold for Sudden Increase in Nodes N_actual > N_expected * 1.2 within 1 second 

PUE Attacks 

Frequency Band 2.4 GHz 

Modulation Scheme QPSK for PUs, BPSK for SUs 

Maximum Transmission Power for SUs 

(P_max_SU) 
-60 dBm 

Maximum Transmission Power for PUs 

(P_max_PU) 
-30 dBm 

Threshold for PUE Attack Detection Significant overlap in signal behavior between SUs and PUs 

SSDF Attacks 

Frequency Band 2.4 GHz 

Modulation Scheme QPSK for PUs, BPSK for SUs 

Maximum Transmission Power for SUs 

(P_max_SU) 
-60 dBm 

Maximum Transmission Power for PUs 

(P_max_PU) 
-30 dBm 

Threshold for SSDF Attack Detection Energy levels exceeding -40 dBm within a certain time window 

 

 
 

Figure 4. Confusion matrices of (a-c) TR phase of 80% and 70% and (b-d) TS phase of 20% and 30% 
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Table 3. MU recognition outcome of SIOPA-DLMUC method at 80:20 of TR phase/TS phase 

 

Class  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 MCC 

TR Phase (80%) 

Byzantine Attack 93.05 83.36 81.57 82.46 88.75 78.13 

Jamming Attack 97.68 93.63 94.89 94.25 96.63 92.80 

SSDF Attack 92.62 81.18 82.23 81.70 88.73 77.08 

PUE Attack 92.16 78.76 83.02 80.83 88.73 75.95 

Normal 93.12 84.82 79.83 82.25 88.13 78.04 

Average 93.73 84.35 84.31 84.30 90.19 80.40 

TS Phase (20%) 

Byzantine Attack 92.74 81.47 82.21 81.84 88.78 77.31 

Jamming Attack 97.34 91.96 94.84 93.38 96.40 91.73 

SSDF Attack 92.28 80.69 80.36 80.52 87.80 75.71 

PUE Attack 90.92 76.50 80.10 78.26 86.90 72.55 

Normal 92.92 85.31 78.17 81.58 87.39 77.32 

Average 93.24 83.19 83.14 83.12 89.45 78.93 

 

Table 4. MU detection outcome of SIOPA-DLMUC approach at 70:30 of TR phase/TS phase 

 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 MCC 

TR Phase (70%) 

Byzantine Attack 94.85 87.05 87.49 87.27 92.10 84.04 

Jamming Attack 93.49 85.79 81.07 83.36 88.84 79.37 

SSDF Attack 94.11 86.75 83.09 84.88 89.97 81.25 

PUE Attack 93.73 81.78 87.98 84.77 91.57 80.92 

Normal 93.09 82.12 83.53 82.82 89.50 78.49 

Average 93.85 84.70 84.63 84.62 90.39 80.81 

TS Phase (30%) 

Byzantine Attack 94.85 86.45 87.39 86.92 92.03 83.71 

Jamming Attack 93.89 85.65 82.87 84.24 89.73 80.47 

SSDF Attack 93.92 87.49 81.61 84.45 89.33 80.75 

PUE Attack 93.76 82.34 88.37 85.25 91.75 81.38 

Normal 93.23 82.69 83.90 83.29 89.74 79.05 

Average 93.93 84.92 84.83 84.83 90.52 81.07 

 

  
  

Figure 5. Average of SIOPA-DLMUC approach at 80:20 of 

TR phase/TS phase 

Figure 6. Average of SIOPA-DLMUC technique at 70:30 of 

TR phase/TS phase 

 

In Table 3 and Figure 5, MU detection results of SIOPA-

DLMUC model at 80:20 of TR Phase/TS Phase are illustrated. 

The simulated values indicate that SIOPA-DLMUC model 

attains enhanced performance under all five classes. With 80% 

of TR Phase, SIOPA-DLMUC method achieves an 

average  𝑎𝑐𝑐𝑢𝑦  of 93.73%, 𝑝𝑟𝑒𝑐𝑛  of 84.35%, 𝑟𝑒𝑐𝑎𝑙  of 

84.31%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 84.30%, 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 90.19%, and MCC of 

80.40%. At the same time, based on 20 % of the TS Phase, 

SIOPA-DLMUC system attains an average 𝑎𝑐𝑐𝑢𝑦 of 93.24%, 

𝑝𝑟𝑒𝑐𝑛  of 83.19%, 𝑟𝑒𝑐𝑎𝑙  of 83.14%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 83.12%, 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 89.45%, and MCC of 78.93%. 

In Table 4 and Figure 6, MU detection outcome of SIOPA-

DLMUC model with 70:30 of TR Phase/TS Phase is 

demonstrated. The simulated values highlighted that SIOPA-

DLMUC method achieves improved performance by all five 

classes. According to 70% of the TR Phase, the SIOPA-

DLMUC methodology gets an average  𝑎𝑐𝑐𝑢𝑦  of 93.85%, 

𝑝𝑟𝑒𝑐𝑛  of 84.70%, 𝑟𝑒𝑐𝑎𝑙  of 84.63%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 84.62%, 
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𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 90.39%, and Mathew Correlation coefficient 

(MCC) of 80.81%. Simultaneously, with 30 % of TS Phase, 

SIOPA-DLMUC system attains an average 𝑎𝑐𝑐𝑢𝑦 of 93.93%, 

𝑝𝑟𝑒𝑐𝑛  of 84.92%, 𝑟𝑒𝑐𝑎𝑙  of 84.83%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 84.83%, 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 90.52%, and MCC of 81.07%. 

To determine the performance of the SIOPA-DLMUC 

method with 70:30of TR Phase/TS Phase, TR and TS 𝑎𝑐𝑐𝑢𝑦 

curves are well-defined, as represented in Figure 7. TR and TS 

𝑎𝑐𝑐𝑢𝑦  curves reported performance of SIOPA-DLMUC 

model over various epochs. This figure provides important 

particulars about learning tasks and generalization abilities of 

SIOPA-DLMUC methodology. With a growth in epoch 

amount, it is observed that TR and TS 𝑎𝑐𝑐𝑢𝑦  curves get 

upgraded. It is showed that SIOPA-DLMUC algorithm extents 

enriched testing accuracy can potentially recognize patterns in 

TR and TS data. 

 

 
 

Figure 7. 𝐴𝑐𝑐𝑢𝑦 curve of SIOPA-DLMUC approach at 

70:30 of TR phase/TS phase 

 

 
 

Figure 8. Loss curve of SIOPA-DLMUC approach at 70:30 

of TR phase/TS phase 

 

Figure 8 represents complete TR and TS loss values of 

SIOPA-DLMUC methodology with 70:30 of TR Phase /TS 

Phase over epochs. TR loss displays model loss gets decreased 

over epochs. Primarily, loss values become reduced as model 

adjusts weight to diminish predicted error on TR and TS data.  

The loss curves shows that extent to which the model fits 

training data. It is observed that TR and TS loss progressively 

diminished as well as defined that SIOPA-DLMUC technique 

efficiently learns patterns exhibited in TR and TS data. It is 

also remarked that SIOPA-DLMUC model modifies 

parameters for minimizing difference between real and 

predicted training labels. 

The PR analysis of SIOPA-DLMUC methodology with 

70:30 of TR Phase/TS Phase is described by scheming 

exactness beside recall as represented in Figure 9. The 

simulated values reported that SIOPA-DLMUC model 

acquires enhanced PR values with every 5 class. The figure 

exhibits that method learns for recognizing diverse classes. 

SIOPA-DLMUC technique gains enriched outcomes in 

detection of positive samples by reduced false positive.  

 

 
 

Figure 9. PR curve of SIOPA-DLMUC approach at 70:30 of 

TR phase/TS phase 

 

 
 

Figure 10. ROC curve of SIOPA-DLMUC approach at 70:30 

of TR phase/TS phase 

 

The ROC analysis offered by SIOPA-DLMUC system with 

70:30 of TR Phase/TS Phase is showed in Figure 10, which 

has ability to differ class labels. The figure states respected 

visions into trade-off between TPR and FPR rates over 

dissimilar categorization thresholds as well as modifying 

epoch counts. It offers correct forecast result of SIOPA-

DLMUC method on classifier of separate five classes. 

The comparative results of SIOPA-DLMUC approach with 

current methods are made in Table 5 and Figure 11 [13]. The 

simulated values highlighted that SVM model reaches poor 

performance. Similarly, NB, stacking, and DBN techniques 

portrayed slightly improvised results. Meanwhile, LR model 

has resulted in near-optimal performance with 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

and 𝑟𝑒𝑐𝑎𝑙  of 93%, 82%, and 84% respectively. Finally, the 

SIOPA-DLMUC technique demonstrates maximum results 

over other models with higher 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , and 𝑟𝑒𝑐𝑎𝑙  of 

93.93%, 84.92%, and 84.83% respectively. These results show 

that the SIOPA-DLMUC technique accomplishes improved 

performance on the MU detection process in the CRN. 
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Table 5. Comparative outcome of SIOPA-DLMUC method 

with current systems 

 

Models 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 

SVM Model 70.00 66.00 75.00 

Logistic Regression 93.00 82.00 84.00 

Naïve Bayes 92.00 84.00 84.00 

Stacking Model 92.70 83.90 83.00 

DBN Model 92.89 82.98 83.50 

SIOPA-DLMUC 93.93 84.92 84.83 

 

 
 

Figure 11. Comparative outcome of SIOPA-DLMUC 

approach with recent methods 

 

 

5. CONCLUSION 

 

In this study article, an automated SIOPA-DLMUC 

approach has been established for the MU detection process in 

the 5G assisted CRN. The chief goal of SIOPA-DLMUC 

method is to classify as well as detect occurrence of MUs in 

the CRN. To accomplish this, SIOPA-DLMUC approach 

follows 2-stage processes namely LSTM-based detection and 

SIOPA-based hyperparameter tuning. In this work, LSTM is 

utilized for analyzing temporal behaviour and communication 

patterns of users in CRN. To better outcome of LSTM system 

in MU detection process, SIOPA-DLMUC technique is used 

for optimal hyperparameter selection process. To examine 

solution of SIOPA-DLMUC approach, a complete set of 

simulations carried out on our database, comprising four kinds 

of attacks namely Byzantine Attacks, Jamming Attacks, 

Primary User Emulation (PUE) Attacks, and Spectrum 

Sensing Data Falsification (SSDF) Attacks alongside normal 

samples.  An extensive result stated that an optimum outcome 

of the SIOPA-DLMUC technique based on other DL models. 

Ensuring the robustness of 5G-assisted Cognitive Radio 

Networks (CRNs) in face of evolving security challenges is of 

paramount importance. While simulations provide valuable 

insights and a controlled environment for testing security 

measures, transition to real-world deployment is a pivotal step 

in validating effectiveness of these security mechanisms. 

Future research could also focus on development of 

blockchain-based protocols and smart contracts tailored to 

unique requirements of CRNs in 5G, ensuring trust, 

transparency, and resilience against attacks.   
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