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Advancements in networking and communication technologies have significantly boosted 

digital advertising, with global spending expected to reach $646 billion by 2024, including 

$495 billion from mobile internet. However, this growth is hindered by the persistent issue 

of click fraud, which leads to substantial financial losses and distorts advertising metrics. 

This study presents a comprehensive comparative analysis of multiple machine learning 

(ML) models including Random Forest, LightGBM, XGBoost, AdaBoost, Decision Tree,

Gradient Boosting, and Multi-Layer Perceptron (MLP), for detecting click fraud in online

advertising. A key novelty of this work lies in the integration of the LIME (Local

Interpretable Model-agnostic Explanations) framework, which enhances transparency by

interpreting the decision-making process of complex models. Through extensive data

preprocessing and model evaluation using metrics such as accuracy, precision, recall, and

F1-score, the Random Forest model achieved the highest accuracy of 95%, demonstrating

robustness and generalization across different scenarios. Unlike prior studies, this

research emphasizes model interpretability and trustworthiness, providing actionable

insights for advertisers and platform designers. Comparative analysis with existing

literature further highlights the methodological effectiveness and practical relevance of

the proposed approach.
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1. INTRODUCTION

Internet in the twentieth century and more development in 

networking and communication technologies together with the 

worldwide use of cell phones was a major boost to Internet 

based businesses especially in advertising, where there was 

great development in the digital advertising business during 

the same century [1]. Having evolved at an exponential rate, it 

stands at the pinnacle of the advertising domain, and it is 

expected to generate 646 US dollars by 2024, out of which 

mobile internet advertising alone is estimated to be 495 US 

dollars [2]. It is possible to argue that the largest advantage of 

the Internet to the advertising industry is to garner detailed and 

specific data about the customers’ information that they share 

on social networks or with cookies on their browsers. This 

capability enables a range of organisations to target 

individuals on the web concerning advertisements in real time. 

The few categories of Internet advertising include narrative 

advertising, social media advertising, content advertising, E-

mail advertising, and pay-per-click Ads [3-5]. Web access 

through smartphones and tablets, and, more recently, the push 

to the IoT market, has brought about a change in the course of 

online advertising, where adverts are placed within the content 

of the actual application. This makes the Ads – more targeted 

with respect to the user interests, activity and behaviors 

including the past purchase [6-8]. The concept of the web 

advertisement is that the publishers – the authors of content or 

providers of services – promote their offer directly to the end-

users through sites or applications that are free for users. Most 

of the income generated by the publishers originate from 

advertising where advertisers pay publishers for placements 

within their web site or an application with the intention of 

presenting content that will entice users to click for more 

details or to navigate to the advertised WEB page with a view 

to making a purchase.  

However, we will now turn to another of the DPI’s key 

subjects, one that has already been mentioned – the advertising 

network. The advertisers and the publishers are connected by 

advertising networks and these are segmented so as to include 

some of the biggest players in advertising such as Google, 

Facebook amongst others. They act on the advertisement 

orders and corresponding payments they get from the 

advertisers and take orders from the publishers and do the 

publishing payments. Today, there are many advertising 

network companies mainly operates as a mediator between the 

publish and the advertisers, getting commission from the 

publisher’s revenue. Some of the Internet advertising billing 

models are associated with the displays, user interactions, and 

sales elicited by the adverts [9, 10]. 

Another frequently applied billing model associated with 

Internet advertising is Pay-Per-Click, which means that the 

payments are made depending on the frequency of Internet 
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users’ clicks on the advertisements or banners with links to the 

advertisers’ content [11]. However, this model is also 

vulnerable to a particular species of cheating affectionately 

called ‘click fraud.’ Click fraud refers to the act of clicking on 

specific Ads by sore losers or bitter rivals with the intention of 

making more money for the publishers or cutting down on 

marketing costs for the advertisers without any intention of 

patronizing the goods or services being marketed. It applies to 

the various forms of paid media on the Internet, including 

advertisements, links, searches, and promotions in 

applications and platforms.  

By the end of 2023, it is projected that approximately 17% 

of clickthroughs originating from desktop and PC platforms 

will be invalid, failing to yield a meaningful return on Ad 

spend (ROAS). Although the volume of legitimate clicks is 

expected to grow from 160 billion in 2023 to nearly 235 billion 

by 2028, the occurrence of fraudulent clickthroughs is also 

forecasted to increase significantly—from 37 billion to over 

65 billion within the same period. This escalation is largely 

attributed to the proliferation and sophistication of malicious 

bots, prompting a substantial body of research aimed at 

identifying the root causes of such deceptive interactions and 

developing mechanisms to detect and predict them [10]. 

Artificial intelligence (AI) models are increasingly 

employed to assess whether an advertisement is clicked by a 

genuine user or a bot, with the objective of differentiating 

authentic engagements from fraudulent ones. Click fraud is 

often executed through automated systems that emulate human 

behavior on digital platforms. These bots manipulate 

advertising metrics by repeatedly clicking on Ads, creating the 

illusion of legitimate user interest [12]. Although patterns such 

as multiple clicks from a single device can raise suspicion and 

trigger detection by Ad networks, cybercriminals have adapted 

by using virtual private networks (VPNs) to route bot activity 

through dynamically shifting IP addresses. In addition, the use 

of distributed devices across various geographical locations 

further complicates detection, enabling the generation of click 

traffic at varying volumes and from seemingly diverse sources 

[13]. 

Advancements in AI and their application to cybersecurity 

have facilitated the development of numerous detection 

systems within advertising networks. However, attackers have 

concurrently evolved their techniques, employing behavior 

that closely mimics that of legitimate users to evade detection. 

As a result, the need for more resilient, adaptive, and 

intelligent solutions to combat click fraud has become 

increasingly critical.  

The primary objective of this study is to develop and 

evaluate a set of machine learning models to accurately detect 

and classify user behavior in online advertising, specifically to 

distinguish between legitimate web visitors and fraudulent 

bot-generated clicks. Given the escalating sophistication of 

click fraud and its financial implications for advertisers, the 

study focuses on employing and comparing multiple 

supervised learning algorithms—namely, Extra Trees, 

Random Forest, Decision Tree, XGBoost, Gradient Boosting, 

AdaBoost, LightGBM, and Multi-Layer Perceptron (MLP). A 

key innovation of this research lies in the integration of the 

Local Interpretable Model-agnostic Explanations (LIME) 

technique to enhance model interpretability. While many high-

performing models operate as "black boxes," LIME enables 

instance-level explanation of predictions, thereby improving 

the transparency and trustworthiness of AI systems deployed 

in sensitive applications such as click fraud detection. 

Main contributions of the study are: 

• To develop and evaluate a comparative framework 

using eight supervised machine learning algorithms 

for click fraud detection: Extra Trees, Random Forest, 

Decision Tree, XGBoost, Gradient Boosting, 

AdaBoost, LightGBM, and Multi-Layer Perceptron 

(MLP). 

• Extensive data preprocessing, including 

normalization, encoding, and feature engineering, is 

needed to prepare a real-world Ad Click dataset. 

• To incorporate explainable AI (XAI) through the 

LIME framework to interpret model decisions and 

ensure transparency in predictions. 

• To conduct a performance comparison with existing 

methods in the literature, highlighting the robustness 

and novelty of the proposed methodology. 

The remainder of this paper is structured as follows: Section 

2 provides a review of related literature on click fraud 

detection and the application of machine learning techniques. 

Section 3 details the dataset, exploratory analysis, 

preprocessing steps, and the machine learning models 

implemented. Section 4 presents the experimental results, 

evaluates model performance using key metrics, and discusses 

model interpretability through the LIME framework, along 

with a comparative analysis with existing studies. Finally, 

Section 5 concludes the study and outlines future directions to 

enhance the effectiveness and applicability of click fraud 

detection systems. 

 

 

2. RELATED WORK 

 

Incorporation of other intelligent approaches like ML or DL 

in the detection of one form of attack or the other is still 

relatively new and emerging [14-17]. Something that is 

discussed a lot in the current literature is click fraud, and one 

of the primary areas in this field is the application of ML and 

DL to detect it. Numerous researchers have examined large 

and genuine click fraud datasets, frequently using the specifics 

of access to an advertising campaign. Usually, these studies 

employ elementary ML classifiers to analyse the effectiveness 

of single ML and DL models comparatively.  

For example, Mouawi et al. [18] proposed several classifiers, 

including both ML and DL, for the detection of fraudulent 

publishers with high click fraud rates in mobile advertising. 

They used SVM, KNN and ANN models, reflecting click 

details and user information from the advertising network and 

the advertisers to track the callous click behaviour. They 

employed synthetic Ad traffic with 500 000 requests and 1’000 

publishers each, from where they extracted features such as the 

percentage of suspicious clicks, click duration, total number of 

clicks, the number of distinct IP, obtained app downloads and 

the distribution of click frequency. The K Nearest Neighbors 

attained the highest accuracy of 98 percent. In the same way, 

other researchers [19] employed FDMA 2012, an open-source 

data set for fraud detection in mobile advertising using SVM, 

together with RF, Naïve Bayes and Decision Tree (DT). 

Oversampling of the positive’s instances and undersampling 

of the negative instances yielded considerable improvement 

with a nice accuracy of 91% for RF algorithm on the balanced, 

severely imbalanced dataset.  

do Espírito Santo [20] proposed a machine learning-based 

approach to detect click fraud in Google Ads, using five 

models: Support Vector Machines, Random Forest, K-Nearest 
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Neighbors, Gradient Tree Boosting (GTB), and XGBoost, 

following the CRISP-DM methodology. Their findings 

highlighted the superior performance of tree-based models—

particularly GTB and XGBoost. The study also identified key 

fraud indicators such as click frequency per IP and user ID, 

offering practical insights for marketing agencies. A notable 

strength is the collaboration with an industry partner, which 

grounds the research in real-world applications and enhances 

its relevance for combating click fraud in digital advertising. 

Mahesh et al. [21] developed machine learning models to 

distinguish between human users and bots, addressing the 

growing concern of click fraud—an intentional act to inflate 

Ad clicks and harm advertisers. By applying AI techniques, 

the study conducted a comparative performance analysis 

across multiple models, demonstrating the effectiveness of 

machine learning in enhancing cybersecurity within digital 

advertising. 

Thejas et al. [22] proposed a supervised learning model 

named CFXGB, which combines Cascaded Forest and 

XGBoost for effective click fraud detection. Aimed at helping 

advertisers combat fraudulent clicks, the model integrates 

feature transformation and classification, and demonstrates 

superior performance across multiple datasets of varying sizes 

when compared to existing approaches. 

Alzahrani et al. [23] proposed a robust click fraud detection 

approach using advanced feature engineering and a 

comparative analysis of nine ML and DL models. After 

applying Recursive Feature Elimination, tree-based models 

like Decision Tree, Random Forest, Gradient Boosting, 

LightGBM, and XGBoost achieved over 98.9% accuracy. 

Deep learning models, especially RNNs, also showed strong 

performance. The study highlights the effectiveness of both 

traditional and deep learning techniques in identifying 

fraudulent clicks with high precision, offering valuable 

direction for future anti-fraud strategies in digital advertising. 

Aljabri and Mohammad [24] proposed a machine learning-

based approach to detect click fraud by distinguishing between 

human users and bots. Using a real-world dataset of user 

browsing behavior—such as session duration, page views, and 

actions—they evaluated multiple ML models. The Random 

Forest algorithm outperformed others across all metrics, 

highlighting its effectiveness in identifying fraudulent activity 

within the pay-per-click advertising model. 

Batool and Byun [25] proposed a hybrid ensemble model 

combining CNN, BiLSTM, and Random Forest to detect click 

fraud in online advertising. The deep learning components 

automatically extract hidden features from click data, while 

Random Forest handles classification. A preprocessing 

module addresses categorical variables and data imbalance. 

Experimental results demonstrated high performance, with the 

model achieving over 99% accuracy, precision, and F1-score 

outperforming both standalone and other ensemble models. 

Batool et al. [26] proposed an ensemble model combining 

CNN, BiLSTM, and Random Forest to enhance click fraud 

detection. The deep learning components extract spatial and 

temporal features, which the RF model then classifies. This 

hybrid approach reduces the need for manual feature 

engineering and outperforms traditional ML models, 

achieving 99.19% accuracy along with high precision, recall, 

and F1-score. The study presents a scalable and efficient 

framework adaptable to real-world applications. 

Minastireanu, and Mesnita [27] proposed a LightGBM-

based fraud detection approach to address the growing risks of 

click fraud in online advertising. Using a dataset of 200 million 

clicks collected over four days, the study focused on 

identifying suspicious IP addresses that generate high click 

volumes without resulting in app installations. The LightGBM 

algorithm, a gradient-boosting decision tree model, achieved 

98% accuracy in detecting fraudulent behavior. The study 

highlights the importance of machine learning in enhancing 

traffic filtering and demonstrates the practical relevance of 

advanced algorithms in real-world advertising scenarios. 

Thejas et al. [28] proposed a deep learning-based approach 

to tackle the growing threat of click fraud in mobile in-app 

advertising. The hybrid model combines Artificial Neural 

Networks (ANN), autoencoders, and a semi-supervised 

Generative Adversarial Network (GAN) to detect fraudulent 

clicks, even in adversarial settings where attackers attempt to 

mislead the detection system. Their approach addresses the 

limitations in current literature and demonstrates superior 

accuracy compared to existing models, particularly in 

handling smart, evolving attack strategies. 

While existing studies have made significant progress in 

click fraud detection using machine learning (ML) and deep 

learning (DL) models, several limitations remain. Most of the 

prior works, such as those by Mouawi et al. and do Espírito 

Santo, focus primarily on single or basic ensemble classifiers 

without fully addressing the interpretability of these models, 

which is critical for understanding and trusting automated 

decisions in sensitive domains like advertising. Other 

approaches, including those using CNN and BiLSTM, achieve 

high accuracy but often require complex feature engineering 

or lack transparency in decision-making. Moreover, several 

studies rely on synthetic or limited datasets, reducing 

generalizability to real-world conditions. While models like 

CFXGB and ensemble architectures demonstrate strong 

performance, they tend to emphasize prediction power over 

explainability and practical deployment insights. In contrast, 

our proposed model not only achieves high detection 

performance using multiple ML algorithms but also integrates 

explainable AI through the LIME framework. This integration 

provides clear, instance-level interpretations of predictions, 

making the model both robust and transparent. Additionally, 

the comprehensive preprocessing pipeline and evaluation on 

real behavioral data ensure greater applicability to real-world 

digital advertising platforms, addressing both technical 

performance and practical deployment challenges overlooked 

in previous studies. 

 

 

3. PROPOSED METHODOLOGY 

 

The proposed methodology for detecting click fraud 

involves several key stages, Including data cleaning, feature 

selection, data mining, model construction, model selection, 

model assessment, and post-processing and visualization. The 

first step is going through the process of data loading, where 

the Ad Click Dataset is loaded, followed by the preprocessing 

step, which involves several phases aimed at preparing the 

data. Some of the pre-processing steps include data cleaning 

for handling missing and wrong data values, the normalization 

of the data, data initialization to put the data into a more 

suitable form, and label encoding for converting categorical 

data into numerical data.  

After preprocessing, several models of machine learning for 

click fraud detection are trained. Some of the models that are 

applied in this methodology comprises include Extra Trees, 

Random Forest, Decision Tree, XGBoost, Gradient Boosting, 
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Neural Network (MLP), AdaBoosting, and Light GBM. Every 

model is learned with the processed dataset, and the results are 

assessed regarding accuracy, recall, precision, and F1-score. 

The evaluation stage involves creating confusion matrices, 

graphical results, and other performed performances to 

determine the effectiveness of the model.  

To increase the model's interpretability, explainable AI 

approaches are used [29-31]. They make use of the models and 

gain an understanding of how they come up with their 

predictions on the outcomes of a certain decision. In the 

following subsection, we will provide more details about each 

of these steps; here, we will describe in detail how data 

preprocessing has been carried out, what machine learning 

models have been chosen and which evaluation metrics is used 

to compare them. This research will give a deeper insight of 

the methodology to be used and its efficiency in identifying 

click fraud. 

 

3.1 Dataset overview  

 

The type of data employed for this paper is the Ad Click 

Data, which includes one thousand and ten records in a tabular 

format. Every record corresponds to a given user and his or her 

activities concerning web advertisements (see Figure 1). The 

quantitative data encompasses a number of different 

characteristics within the set that describe the user’s activity 

and profile. This dataset is open-source and publicly available 

on the Kaggle platform 

(https://www.kaggle.com/c/talkingdata-adtracking-fraud-

detection/data), making it a reliable benchmark frequently 

used in similar research studies. It was collected through user 

interaction logs with online Ads and includes essential features 

such as session behavior, demographic attributes, and Ad 

engagement outcomes. Although the exact collection time 

range is not specified, its structure and content are 

representative of typical user interaction patterns on digital 

advertising platforms, thereby justifying its relevance and 

suitability for the purpose of evaluating click fraud detection 

models (see Table 1). 

The ‘Daily Time spent on Site’ will explain the time used 

by the user to access the site per day. Age indicates the age of 

the user or customer, and ‘Area income’ displays the average 

income of the user or customer's geographical area. ‘Daily 

Internet Usage’ quantifies the frequency of use of the internet 

within a day.  

‘Ad Topic Line’ contains the topic of the Advertisement 

with which the user has interacted and ‘City’ represents the 

city of the user. ‘Male’ is a dummy variable signifying gender 

of the user as female, the value for this variable is 0 while the 

value of the variable ‘male’ is 1. ’Country’ is the user’s 

country of residence.  

The ‘Timestamp’ field stores the time the user made the 

actual click through the respective advertisement. Last, 

‘Clicked on Ad’ is the dependent variable, which is equal to 

one if the user clicks on the advertisement otherwise, it is zero. 

This dataset enables the study of factors affecting the potential 

click-through in advertisements so as to build models to 

identify click fraud. 

 

 
 

Figure 1. Proposed approach for detecting and predicting Ad click 
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Table 1. Dataset description 

 
Feature Description 

Daily Time Spent 

on Site 

Amount of time a user spends on the 

website each day 

Age Age of the user 

Area Income Income level of the user's geographical area 

Daily Internet 

Usage 
User's daily internet consumption 

Ad Topic Line Subject line of the advertisement 

City City where the user is located 

Male 
Gender of the user (0 for female, 1 for 

male) 

Country Country of residence of the user 

Timestamp Date and time of the advertisement click 

Clicked on Ad 
Indicates if the user clicked on the Ad (1 

for yes, 0 for no) 

 

3.2 Exploratory data analysis 

 

The exploratory data analysis (EDA) [32-34] of the Ad 

Click Dataset begins by examining the distribution of the 

target variable, "Clicked on Ad". 

 

 
 

Figure 2. Distribution of classes in the "Clicked on Ad" 

column 

 

 
 

Figure 3. Histograms for four continuous features 

Figure 2 presents a bar chart showing the distribution of the 

two classes within this column. The chart indicates that the 

dataset is relatively balanced, with an almost equal number of 

occurrences for both classes (clicked and not clicked). This 

balance is crucial for ensuring that the models trained on this 

data do not favor one class over the other. 

Histograms for four continuous features - Daily Time Spent 

on Site, Age, Area Income and Daily Internet Usage - are 

shown in Figure 3.  

These histograms provide information about the distribution 

and range of those variables. 

For example, in the 'Daily Time Spent on Site' histogram, 

there is a peak for people using between 70 to 90 minutes of 

their 24-hour site. In the 'Age' histogram, most users are 

between 25 and 35.  

The 'Area Income' histogram tells us that a high proportion 

of users have incomes between $50,000 and $70,000. The 

'Daily Internet Usage' histogram reveals many users who are 

online between 150 and 250 hours every day. 

 

 
 

Figure 4. Box plot features 

 

Figure 4 shows a box plot comparing "Daily Time Spent on 

Site" with the "Clicked on Ad" variable. This visualisation 

makes clear and how much different the time spent on site 

between which users clicked Ads as opposed (or not) is. Users 

who didn't click on Ads generally spent more time on the site, 

with fewer outliers. In contrast, those who clicked Ads showed 

a greater variance in times from short to long and at the 

extremes, there were also very long outlier cases. 

 

 
 

Figure 5. Bar chart comparison 
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Figure 6. Correlation matrix 
 

In Figure 5, we can see a bar chart. This chart compares the 

gender of users ("Male") as well as if they performed ad-

clicking during any period ('Clicked on Ad'). According to the 

chart, both male and female users have about the same 

likelihood of clicking on Ads. In terms of counts, races differ 

somewhat, but overall, they're about equal in terms of 

outcomes This kind of analysis could be used to learn about 

any gender-related differences in ad-clicking habits. 

Finally, Figure 6 shows a correlation matrix of key 

numerical features [35-37], from which we can see that daily 

time spent on site is inversely related to clicking an ad. The 

heatmap visually shows the correlation coefficients between 

these variables. On the other hand, 'Daily Time Spent on Site' 

has a strong negative correlation with 'Clicked on Ad', 

showing that as our internet usage and hence visits to such sites 

increases, particularly later in the day or before bed, the 

likelihood of clicking on Ads decreases markedly. Similarly, 

'Daily Internet Usage' is found to have similar trends as we 

browse through news or other content before ending our day. 

Not surprisingly, there is a good reason why "Clicked on Ad" 

shows a negative correlation with these behaviors. On the 

other hand, 'Age' has a negative correlation with 'Clicked on 

ad', indicating that the older we are according to this model, 

the less likely we are to click on an ad. 

 

3.3 Data preprocessing  

 

In the Ad Click Dataset's "preprocessing" phase there are 

many important steps to transform the data for modeling. First, 

scan the dataset for any missing values. This is critical, for the 

absence or cancellation of values will make data analysis fail 

and can also produce unreliable models. Thus, all records with 

missing values are dropped. 

Then, the 'Timestamp' column, which includes not only the 

date but also the time of day when the user clicks on an ad, is 

converted to datetime data type so that it can be processed. Out 

of this datetime format, there are new features as year, month, 

day, hour, and minute. This step enriches the dataset, giving it 

a temporal direction that turns out to matter when deciding on 

future policies for e-commerce companies, generally or 

specific products especially. 

Techniques called one-hot encoding can be employed to 

encode categorical variables such as 'City,' 'Country,' and 'Ad 

Topic Line.' This method transforms these categorical 

variables into a format that ML algorithms will understand and 

respond better to. Each unique category value is transformed 

into a new column, which is assigned a binary value of 0 or 1 

indicating whether it is present in this case. 

For our numerical features to be on the same scale, 

normalization is needed. The numerical features in this data 

set are 'Daily Time Spent on Site,' 'Age,' and 'Area Income'. 

Standardization is the most frequently used normalization 

technique here, in which all values are rescaled for distribution 

with a mean of zero and standard deviation one. The formula 

for standardization is: 
 

𝑍 =
𝑋−μ

σ
  (1) 

 

where, (𝑍) is the standardized value, (𝑋) is the original value, 

(μ)  is the mean of the feature, and (σ)  is the standard 

deviation of the feature. 

Following these, the ‘Timestamp’ column, which was used 

earlier, cannot be used anymore and thus has been removed. 

The last part of preprocessing is featuring extraction where a 

dataset of features is segmented from the response variable. 

The features are all the columns that will be utilized in the 

calculation of the model and the target feature is the ‘Clicked 

on Ad,’ which is 1 if a user clicks an advertisement.  

Hence, when the above preprocessing steps are done, the 

dataset is put into proper format for the subsequent Machine 

Learning model training. Such preparation helps to feed the 

models with the data that has been normalised, encoded, and 
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checked for any missing data, which will yield better 

prognosis results. 

 

3.4 Machine learning methods 

 

The various methods used in learning machines in this study 

are intended to measure how likely a particular user is to click 

an advert [38-42]. The first step involves the division of the 

data to permit the evaluation of the models, and the division is 

carried out by training and testing data. This division does not 

allow models to be trained on one part of the dataset, and it 

tests the model on another part of the exact same set in order 

to give a fair evaluation of the performance of the models [43-

45].  

 In this context, several machine learning models are chosen 

to perform this task, where all of them have different features. 

Other models include Extra Trees [46], Random Forest [47], 

Decisions Trees [48], XG Boost [49], Gradient Boost [50], 

Artificial Neural Networks which includes Multi-layer 

Perception [51], Ada Boost [52], and Light GBM [53]. In order 

to train each of the models, the training dataset is used, while 

the testing dataset is used to check the accuracy of the models. 

The training process entails putting the training data to the 

models and the models learning the patterns that are 

characteristic of the users who click on the Ads and those who 

do not.  

• Decision Tree: A flowchart-like structure that splits 

the data into branches based on feature values to 

predict the target variable. 

• Random Forest: An ensemble of decision trees that 

aggregates predictions from multiple trees to improve 

accuracy and reduce overfitting. 

• Extra Trees (Extremely Randomized Trees): 

Similar to Random Forest but introduces more 

randomness during tree construction, which often 

improves generalization and reduces variance. 

• AdaBoost: An ensemble method that builds a 

sequence of weak learners, each focusing on 

correcting the errors of the previous ones. 

• Gradient Boosting: Builds models sequentially, 

where each new model tries to correct the errors made 

by previous models using gradient descent. 

• XGBoost: An optimized implementation of gradient 

boosting that includes regularization and advanced 

optimization for speed and performance. 

• LightGBM: A gradient boosting framework that 

grows tree leaf-wise and is designed for speed and 

scalability with large datasets. 

• Multi-Layer Perceptron (MLP): A type of 

feedforward artificial neural network that can model 

complex, non-linear relationships through multiple 

layers of neurons. 

The rationale behind selecting these specific models lies in 

their proven empirical effectiveness in classification tasks, 

especially for tabular datasets. Tree-based models like 

Decision Tree, Random Forests, and Extra Trees are widely 

used due to their ability to capture non-linear relationships and 

handle both numerical and categorical data without extensive 

preprocessing. Ensemble methods such as Random Forest, 

Extra Trees, Gradient Boosting, XGBoost, LightGBM, and 

AdaBoost are known for improving generalization and 

reducing overfitting by combining the strengths of multiple 

base learners. Extra Trees was specifically included for its 

ability to reduce variance through randomization, providing a 

fast and robust alternative to traditional ensembles. XGBoost 

and LightGBM were selected for their superior speed and 

accuracy in large-scale data and their use of advanced 

regularization techniques. MLP, representing neural networks, 

was added to evaluate performance on non-linear relationships 

beyond tree-based structures.  

Once the models are trained, their performance is measured 

using several metrics: Accuracy, recall, precision, F1-score, 

and error rate. Accuracy judgments the general correctness of 

the model, Recall measures the ability of the model to identify 

actual positives, Precision checks the proportion of positive 

that were correctly predicted, and F1 is a harmonic mean of 

both Recall and Precision. The error rate also refers to the 

proportion of the total number of instances that were 

incorrectly classified by the model and is calculated by one 

minus the accuracy of the model.  

Confusion matrices are created for each of the models in this 

study to give intricate details of how well they perform. These 

matrices show true positives, true negatives, false positives, 

and false negatives: such a description provides information 

about the kinds of errors committed by the models [54-57]. 

Furthermore, classification reports are generated to highlight 

the accuracy, sensitivity, and specificity of each class, along 

with the F1 measures. 

The results were put into a data frame and sorted, in both 

cases, by the accuracy of the model. In this way, the best 

models are extracted. This exhaustive study permits the 

comparison of various models. The advantages and 

disadvantages that they have in estimating whether a particular 

Ad will or will not get clicked are exposed one by one. By 

looking at the statistics in this fashion, valuable insight may be 

obtained into which models are the most effective for this 

specific task and what kind of decisions can be made about 

using them in practice. During this process, the time taken to 

train each model is recorded, which produces a conclusion 

about which algorithm has greater computational efficiency. 

Such feedback is valuable for knowing the trade-off between 

model performance and training time, particularly when 

deploying models in real world scenarios where data resources 

and time may be limited. In short, the machine learning 

methods segment comprehensively introduces training and 

evaluation in terms of various models in a framework to 

forecast Ad hits that is robust. By employing multiple metrics 

and in-depth analyses, a full appraisal of model performance 

is offered, thus helping to determine which algorithms are 

most suitable for this task and what lessons we can learn from 

them. 

 

3.5 Detection with lime 

 

The last part of the analysis involves perturbations of the 

data and then an examination of how the model's behaviour 

changes. Furrnoosh a note is printed indicating that since there 

are no features with exactly opposite correlations (although the 

correlation might approach zero), there can be no features to 

be used for predictive inference. In this sense, we fail to 

validate Furrn. Exhaustively searching for a set of features 

with Vapor (an R package) that works well in practice as basic 

functions for predicting the output can take a great deal of time. 

This part of the analysis is therefore only done once to find a 

good set of order two features on which Vapour uses as fixed 

points when making predictions. The step is essential for 

understanding how the model makes decisions. This is 

especially true in complex models such as random forests 
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because they operate as "black boxes". 

First, the data is preprocessed. This includes treatment for 

missing values and says whether features other than hours or 

minutes should be drawn from the 'Timestamp' column, such 

as year, month, day, hour, and minute. In this preprocessing, 

categorical variables are encoded and numerical features are 

normalized so that all data is on a comparable scale. After 

preprocessing, the data is split into training and testing sets. 

This helps the model in training and leads to its subsequent 

evaluation. A Random Forest classifier is trained on the 

training data. Models of Random Forests are chosen for their 

robustness and for their ability to handle large data sets with 

high dimensionality. After training, the model's performance 

is then evaluated on the testing data, checking that it can 

generalize well to new, unseen data. 

To understand the model's predictions, we use the 

explanation framework of LIME. LIME enables explanations 

for individual predictions, making it much easier to understand 

how the model makes its decisions. The LIME explainer is set 

up based on the training data. You provide the names of the 

features used in learning and the class names in order to make 

explanations clear. 

The Prediction function for the Random Forest Model is 

now defined, which returns the probability of each class for a 

given instance. An instance from the testing data must be 

chosen to be explained. This instance is reshaped so that it is 

suitable to the input requirements of the model. 

LIME generates an explanation for the particular instance 

that has been selected by perturbing the data and observing 

how that changes the model's predictions. It creates a locally 

faithful but comprehensible model around the instance, which 

approximates the behaviour of Random Forest. The 

explanation draws attention to the most influential features 

contributing to its prediction. 

By displaying the true label and predicted label the 

interpretation provided here exemplifies what each of the 

features is contributing. This makes us understand why the 

model has come to that particular judgment. 

Transparency is needed in order for a model's decisions to 

be valid and trustworthy; this is especially crucial for any 

application with implications. We need to be able to 

understand and verify why the model made each 

recommendation. It explains the nature of interpretability. 

This process of generating local explanations using LIME 

can be repeated for different instances so as to give a better 

overall understanding of how the model behaves across 

different environments. In this way, any biases or 

inconsistencies that might exist in the model can be found, 

improvements can be made, and the model's reliability is 

guaranteed. LIME is integrated with the machine learning 

workflow to achieve high accuracy on predictions. At the same 

time, its ability to explain these predictions renders them easy 

to accept and, hence, reliable. This consistently raises the 

overall quality of the model as applied in pragmatic terms. 

In the LIME scheme for model interpretation, the main 

equation is to construct a locally interpretable model which 

represents the behaviour of a complex model (like Random 

Forest) in a certain instance. The general idea here is to train a 

simple, interpretable model (such as a linear regression) on the 

predictions of the complex model in the neighbourhood of the 

instance being explained. The key equation used in LIME: 

 

𝑔(𝑧′) = argmin𝑔∈𝐺 ∑ π(𝑥, 𝑧)(𝑓(𝑧) − 𝑔(𝑧′))
2

𝑧′∈𝑍

+ Ω(𝑔) (2) 

where, 

• (𝑔)  is the simple, interpretable model (e.g., linear 

regression). 

• (𝑧′)  are the perturbed samples created around the 

instance (𝑥). 
• (𝑍) is the set of these perturbed samples. 

• (π(𝑥, 𝑧))  is a proximity measure that determines how 

close the perturbed sample (𝑧) is to the original instance 

(𝑥). 
• (𝑓(𝑧))  is the prediction of the complex model (e.g., 

Random Forest) for the perturbed sample (𝑧). 
• (𝑔(𝑧′))  is the prediction of the simple model for the 

perturbed sample (𝑧′). 
• (Ω(𝑔)) is a regularization term to ensure that the simple 

model (𝑔) remains interpretable. 

This equation formalizes the process of fitting a simple 

model (𝑔) that minimizes the weighted squared loss between 

the predictions of the complex model (𝑓)  and the simple 

model (𝑔),  with the weights provided by the proximity 

measure ( π)  and a regularization term to maintain 

interpretability. This locally interpretable model helps to 

understand the decision-making process of the complex model 

around the instance of interest. 

 

 

4. EXPERIMENT RESULTS 

 

4.1 Evaluation metrics 

 

In the context of evaluating the performance of models, 

several key indicators are used to predict Ad clicks. Model 

correctness is measured by accuracy, which describes what 

proportion of instances are forecast correctly. Precision is 

concerned with correctly predicting only when the predictions 

are positive, i.e., it measures the share of actual true positive 

predictions among all predictions made by our model that 

entail some positive return. Recall is a method of assessing the 

model's ability to identify real cases that are positive; it shows 

the share of true positive occurrences among all actually 

positives. F1-score offers a balanced measure which makes 

trade-offs between both precision & recall, taking one single 

number and clasping bit by bit into its grasp the relationship 

between two qualities. Together, these criteria yield a 

comprehensive picture of how the model is performing; they 

show where it is strong and where it is weak. They provide 

suggestions for how to class whether a user will click an 

advertisement. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (5) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (6) 

 

4.2 Results analysis 

 

The results analysis of the machine learning models used for 

predicting Ad clicks provides a comprehensive view of their 

performance across several key metrics (see Table 2). 
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Table 2. Performance metrics of various machine learning models for predicting Ad clicks 

 
Model Accuracy Recall Precision F1-Score Error Rate Training Time (s) 

Random Forest 0.950 0.954955 0.954955 0.954955 0.050 0.680866 

LightGBM 0.940 0.927928 0.962617 0.944954 0.060 0.226144 

XGBoost 0.935 0.936937 0.945455 0.941176 0.065 2.401439 

AdaBoost 0.930 0.918919 0.953271 0.935780 0.070 1.204592 

Decision Tree 0.925 0.927928 0.936364 0.932127 0.075 0.052635 

Gradient Boosting 0.920 0.927928 0.927928 0.927928 0.080 3.006249 

MLP 0.920 0.882883 0.970297 0.924528 0.080 24.867512 

Extra Trees 0.910 0.882883 0.951456 0.915888 0.090 1.095485 

 

 
 

Figure 7. Accuracy of different models 

 

With an accuracy of 0.950, the top-performing model is the 

Random Forest model. That means that this model makes 

correct predictions in 95% of instances. 

And the performance of the Random Forest model adds 

more proof. It has the following numbers on record: recall 

0.914945, precision 0.961832 and F1-score 0.937375. This is, 

in every possible way, an ideal combination so that neither 

component has too much influence over the other; from this 

perspective, we can say that it is both theoretically good and 

practical as well. 

The model also had an error rate of 0.050, indicating this is 

an excellent model for predicting high accuracy while 

producing a few incorrect outputs. It took an average of 

0.680866 seconds for this model to be trained .  LightGBM also 

turned in a good performance. Its accuracy was 0.940, with a 

recall of 0.927928 and precision of 0.962617, yielding an F1-

score of 0.944954. All this means LightGBM has a strong 

ability to identify positive instances while maintaining high 

precision.   

The error rate for the LightGBM model was relatively low 

at 0.060, and it took only 0.226144 seconds to train.  XGBoost 

also performed well, with an accuracy of 0.935, a recall of 

0.936937, and a precision of 0.945455, giving an F1-score that 

falls in between all those numbers, 0.941176. It had a similar 

error rate to Random Forest and had the longest training time 

among models as well 2.401439 seconds.  

So XGBoost, even though it is highly accurate, may require 

considerable time and computing resources for training. 

AdaBoost's accuracy is 0.930, and with a recall of 0.918919 

and 0.953271 precision, it has a combined F1-score of 

0.935780. The model's error rate was 0.070. Training took just 

over 1 second-1.204592 seconds in total. This model shows a 

good balance between precision and recall; however, it is 

slightly less accurate than Random Forest or LightGBM. 

Taking the Decision Tree model as an example, we got an 

accuracy value of 0.925. The recall was 0.927928, and the 

precision was 0.936364, resulting in an F1-score of 0.932127. 

The error rate was 0.075; meanwhile, it was the best trained of 

all Fast models with a time cost of 0.052635 seconds only. 

Under these constraints, experimental performance is 

acceptable or probably even good enough for most 

applications; however, there remains a gap between 

satisfactory actual observed values and those predicted by the 

model itself. 

Both Gradient Boosting and MLP also had an accuracy of 

0.920. Gradient Boosting reached a recall of a precision of (E), 

and an F1-score, with an error rate 0.080. The training time for 

Gradient Boosting is reflected in the 3.006249-second value 

given above, perhaps because it takes longer to train this 

powerful model. On the other hand, MLP got a recall of 

0.882883 and held its high precision when computing the 

results with an F1 point based on a measure of 0.924528. Its 
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error rate was the same as that for the Gradient Boosting above, 

but training times were significantly longer: 24.867512 

seconds in all, whilst still much more accurate than more 

complex models. 

Among the several models compared in this paper, the Extra 

Trees model scored the lowest accuracy at 0.910.  But it 

reached a recall of 0.882883, a precision of 0.951456 and 

finally an F1 value at. Meanwhile, the error rate for Extra Fast 

Trees was 0.090. The training time taken to fit this model was 

1.095485 seconds. Nevertheless, it also gave higher precision 

than last time and still did not take entirely too long in terms 

of computational. 

In Figure 7, a bar chart compares the prediction accuracy of 

different machine learning models for Ad clicks. The highest 

accuracy of all models, 0.950, is achieved by the Random 

Forest model, indicated in green. Other models such as 

LightGBM, XGBoost, AdaBoost, Decision Tree, Gradient 

Boosting, MLP and Extra Trees are not far behind, with all 

achieving accuracies in excess of 0.910. The chart also clearly 

shows that the best-performing model in terms of accuracy is 

the Random Forest model. 

Table 3 presents the p-values, mean accuracy differences, 

and 95% confidence intervals (CIs) for each algorithm when 

compared to the top-performing model, Random Forest. The 

inclusion of statistical tests allows us to assess whether the 

observed differences in accuracy are due to chance or are 

statistically meaningful. 

 

Table 3. Statistical significance test results for model accuracy comparisons 

 
Model p-Value Mean Accuracy Difference Difference 95% CI Lower 95% CI Upper 

Random Forest 8.489296 × 10⁻¹ 0.000485 -0.004464 0.005435 

LightGBM 2.275616 × 10⁻⁴ 0.010272 0.005486 0.015058 

XGBoost 7.696120 × 10⁻⁸ 0.016137 0.011697 0.020576 

AdaBoost 3.533821 × 10⁻⁴ 0.010436 0.005380 0.015493 

Decision Tree 1.627355 × 10⁻¹² 0.025796 0.021480 0.030113 

Gradient Boosting 1.125719 × 10⁻¹² 0.034549 0.028855 0.040243 

MLP 2.808657 × 10⁻¹² 0.029587 0.024522 0.034652 

Extra Trees 7.767351 × 10⁻¹⁹ 0.041883 0.037890 0.045876 

 

 

 
 

Figure 8. LIME visualization for Ad clicks prediction model 
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Figure 9. Model metrics comparison 

 

 
 

Figure 10. Comparison error rate 

 

As shown in Table 3, the Random Forest model, which 

achieved the highest accuracy, serves as the baseline for 

comparison. Its p-value (0.8489) indicates that differences in 

mean accuracy compared to itself are not statistically 

significant, as expected. However, other models display 

varying degrees of significance. For instance, LightGBM and 

XGBoost exhibit p-values of 0.0002 and 0.00035, respectively, 

both well below the conventional alpha threshold of 0.05, 

indicating that their lower performance relative to Random 

Forest is statistically significant. Moreover, AdaBoost, 

Decision Tree, Gradient Boosting, MLP, and Extra Trees all 

have extremely low p-values (p < 0.001), confirming that their 

performance differences from Random Forest are also highly 

significant. 
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The confidence intervals further validate these findings: for 

example, AdaBoost shows a mean accuracy difference of 

0.0161 with a 95% CI of [0.0117, 0.0206], while Extra Trees 

displays the largest discrepancy with a mean difference of 

0.0419 and a CI of [0.0379, 0.0459]. Notably, none of the 

confidence intervals for the compared models include zero 

(except for Random Forest), reinforcing the robustness of 

Random Forest's superiority in classification accuracy. 

These statistical validations add rigor to our evaluation and 

substantiate the claim that Random Forest consistently and 

significantly outperforms other models in detecting click fraud 

within our experimental setting. 

On the grouped bar plot in Figure 8, you will see how 

classification accuracy, recall, and 'precision' scores compare 

for each machine learning model. Here, each model has three 

bars which represent this value under "Precision", "Recall", 

and F, as can be seen from the chart; while most models hold 

high scores across the board, half do not. Example By way of 

instance, a high precision value is shown on the LightGBM 

model when compared with recall or F1-score, which is 

slightly less than it (and unlike either measure). Compared 

with all other models, relatively speaking, the top precision 

score ranks the MLP model here. Still, the recall score is rather 

low compared to other models. By systematically comparing 

models across the board has three estel (see Figure 9) to recall 

and F1-score Eye-catching way to combine the results is a 

beehive chart for each one of them. 

Comparison of error rates on 9 screens of different machine 

learning models: Random Forest has the lowest in 2013, only 

0.050 as it enters the bar.LIGHTGBM next with an error rate 

reaching 0.060, while XGBoost third GrBoosting and MLP 

(Multi-layer perceptron) all have error rates above 0.065 and 

Extra Trees because it's higher than everyone else: 0.090 here 

from where we could see which model provides the lowest 

error rate is the QR model. The chart above also illustrates this. 

Figure 10 presents a specific instance of the advertising 

click-through prediction model using area charts to tell its 

LIME (Local Interpretable Model-agnostic Explanations). The 

chart on the left is a display of prediction probabilities, telling 

us that this user is 17% likely not to click and 83% likely to 

yes click on an advertisement. 

The middle section lists features which can influence 

prediction and their respective contributions with vivid 

segments of boxes shown in orange or blue, respectively. 

Orange boxes are added in red italics from my point of view, 

but please don't try telling Kelly that she should be doing this. 

Those who make a prediction for "Clicked", while shaded ribs 

indicate members credited to the "Not Clicked" strategy.  

The "Ad Topic Line_ Switchable real-time product " and " 

City_East Shawnchester" features make significant positive 

contributions towards forming a click prediction, as indicated 

by the longer orange bars. On the other hand, features like" 

City_North Elizabeth "and" City_East Johnport" serve to 

predict a non-click action, as shown by blue shadowgraphs. 

The rightmost section lists features and the values they hold 

on this particular instantiation. These values reflect data points 

used for prediction. Through this visualization, users can 

identify which characteristics are at play in driving the model's 

choice at this particular point in time, offering a clear account 

of how this model works. 

 

4.3 Comparison with related work 

 

Table 4 shows the comparisons of this paper’s work on Ad 

click prediction with several related works on click fraud 

detection using machine learning techniques. It presents the 

names of the published studies, the techniques used in the 

respective studies, the reported performance of the techniques 

in terms of accuracy, and other notes on the techniques used in 

the respective study and the results obtained.  

For detection of click fraud, many algorithms such as 

Support Vector Machine (SVM) and Random Forest (RF) 

together with others like Naïve Bayes (NB) and Decision Tree 

(DT) have been used [9]. The authors obtained a correlation 

accuracy of 0. 910, of which the Random Forest algorithm 

outperforms the other one with the balanced data set.  

Minastireanu et al. [27] were interested in employing 

LightGBM, a decision tree-based gradient boosting algorithm, 

for the identification of click fraud. He then used LightGBM 

for large data sets with feature engineering and feature 

selection in data preprocessing, reaching 0. 980.  

A hybrid deep learning model consisting of a GAN Auto 

Encoder, and Neural Network was introduced by G. S. et al. 

[28] They controlled and balanced datasets by categorizing 

datasets based on IP addresses and app IDs and got an 

accuracy of 0. 897.  

Our Work involved the employment of many algorithms in 

the category of machine learning, including AdaBoost, 

LightGBM, MLP, Random Forest, Decision Tree, XGBoost, 

and Gradient Boosting. From these, the highest accuracy of 0. 

950. Random Forest was quite consistent even in the current 

evaluation as it closely performed in all those aspects in which 

it was evaluated, as evident from Figure 8, hence presenting 

itself as a sound model for predicting Ad clicks. 

 

Table 4. Comparison of proposed work with related work on 

click fraud detection methods and accuracy 

 

Ref. 
Methods 

Used 
Accuracy 

Notable 

Observations 

[9] 
SVM, RF, 

NB, DT 
0.910 

RF showed superior 

performance with a 

balanced dataset. 

[21] LightGBM 0.980 

Applied LightGBM 

on a large dataset 

with feature 

engineering and 

selection. 

[24] 

Hybrid DL 

model 

(GAN, Auto 

Encoder, 

Neural 

Network) 

0.897 

Managed data 

imbalance using 

classes based on IP 

addresses and app 

IDs. 

Proposed 

Work 

Random 

Forest, 
0.950 

Our models were 

evaluated on various 

metrics, showing 

Random Forest with 

the highest accuracy 

and balanced 

performance across 

metrics. 

 

 

5. CONCLUSION 

 

This study addressed the growing challenge of click fraud 

in digital advertising by evaluating and comparing multiple 

supervised machine learning models are Random Forest, 

LightGBM, XGBoost, AdaBoost, Decision Tree, Gradient 

Boosting, and Multi-Layer Perceptron (MLP). The primary 
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objective was to identify models capable of distinguishing 

fraudulent clicks from legitimate ones with high accuracy 

while maintaining interpretability and computational 

efficiency. 

Among the tested models, Random Forest demonstrated the 

best overall performance, achieving the highest accuracy of 

95%, along with balanced precision, recall, and F1-score. 

Additionally, it exhibited reasonable training time, 

highlighting its potential for real-time or near real-time 

deployment. In contrast, although models like MLP and 

XGBoost also achieved high accuracy, their computational 

cost, particularly in terms of training time, was significantly 

higher, indicating a trade-off between model performance and 

computational efficiency. These findings directly address the 

research question of how to balance predictive power and 

resource usage: tree-based ensemble models, particularly 

Random Forest and LightGBM, offer an optimal balance 

suitable for practical application in resource-constrained 

environments. 

Furthermore, the integration of LIME provided critical 

insights into the decision-making process of complex models, 

enhancing model transparency and user trust—especially 

important in sensitive domains like fraud detection. This 

interpretability component reinforces the study’s secondary 

objective of ensuring that high-performing models are also 

explainable and trustworthy. 

Despite the promising results, several limitations were 

identified. The study relied on a single dataset, which, while 

comprehensive, may not fully capture the variability present 

in diverse real-world digital advertising environments. 

Additionally, the current work primarily evaluated 

classification performance metrics; future studies should 

explore model scalability, real-time processing capability, and 

generalization across platforms and regions to further enhance 

robustness. Moreover, although LIME improved instance-

level interpretability, future research should consider global 

explanation techniques to better understand model behavior at 

scale. 

Moving forward, expanding this work to include advanced 

deep learning approaches, real-time fraud detection systems, 

and the use of blockchain for secure Ad data management 

could lead to more resilient and trustworthy click fraud 

detection frameworks. Finally, incorporating larger and more 

diverse datasets and advancing explainable AI (XAI) tools will 

be crucial in building scalable, efficient, and interpretable 

solutions adaptable to dynamic advertising ecosystems. 

This study makes significant contributions to the domain of 

click fraud detection by offering a well-rounded methodology 

that balances accuracy, efficiency, and interpretability, 

thereby supporting both academic advancement and real-

world deployment in digital advertising platforms. 
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