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In recent years, the role of the Internet of Things (IoT) in monitoring and predicting various 

environmental phenomena has expanded significantly. This study presents the design and 

implementation of an intelligent IoT ecosystem tailored for weather monitoring stations. 

The core objective of this system is to enhance the accuracy and responsiveness of weather 

forecasting by integrating machine learning (ML) techniques. This scalable IoT ecosystem 

efficiently collects comprehensive meteorological data from all sensors, such as 

temperature, humidity, and atmospheric pressure, using an ESP32 as a microcontroller. 

This combination of specialized hardware and advanced software techniques markedly 

boosts prediction accuracy, presenting a pioneering step in environmental monitoring 

methodologies. These algorithms are well-known for their adaptive learning capabilities 

and dynamically update predictions based on real-time and historical datasets. With the 

strategic inclusion of cloud computing, data accessibility and scalability have been 

remarkably enhanced. This amalgamation of specialized hardware, intelligent software, 

and cloud infrastructure significantly amplifies prediction accuracy, heralding a new era 

in environmental monitoring methodologies. 
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1. INTRODUCTION

Atmospheric observations were made by ancient people 

using simple equipment like wind vans and water clocks. 

During the 17th and 18th centuries, barometers were 

introduced alongside thermometers and hygrometers which 

gave better readings than before. The late 20th century 

witnessed the development of automated weather stations. 

These stations can record data autonomously, reduce human 

errors, and enable continuous monitoring. 

Weather forecasting has evolved significantly over the past 

century. Traditional methods relied on manual observations, 

empirical rules, and basic statistical models. In the mid-20th 

century, the introduction of numerical weather prediction 

(NWP) models marked a major leap, utilizing early computers 

to solve mathematical equations that simulate atmospheric 

behavior. These models, though groundbreaking, were limited 

by computational capacity and data availability. 

By the late 20th and early 21st centuries, advancements in 

satellite technology and remote sensing dramatically improved 

the accuracy and resolution of meteorological data. However, 

despite these improvements, challenges remained in 

forecasting localized and rapidly changing weather patterns. 

The IoT began to influence the IT scene at the beginning of 

the twenty-first century. Sensors are cheaper, more compact, 

and networked. To provide more extensive data collection and 

remote data access, weather stations have begun integrating 

these sensors.  

The amount of data increased with data collection capacity. 

As a solution, cloud-computing systems with scalable 

processing and storage capacities have been developed. Big 

meteorological data began during this period, when large 

datasets were accessible for study [1-5]. 

Although statistical techniques have long been employed in 

weather forecasting, machine learning research has been 

spurred by the availability of large datasets. It is now possible 

to train algorithms on past data to identify anomalies and make 

more accurate predictions. 

The potential for combining the Internet of Things (IoT) and 

machine learning became apparent at a pivotal point in the 

mid-2010s. This means that in weather monitoring, real-time 

actionable insights must be derived in addition to data 

collection. This made short-term hyper-local forecasts, real-

time anomaly detection, and feasible predictive equipment 

maintenance. 

Today, a number of cutting-edge technologies have come 

together in the design and execution of weather monitoring 

systems. Currently, IoT sensors can gather a wide variety of 
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data from UV radiation to soil moisture. These data were 

analyzed using machine learning models, which provide 

predictions with previously unknown accuracy. These models 

include neural networks, decision trees, and algorithms such 

as Naive Bayes. These integrated systems are essential tools 

for many industries, from urban planning to agriculture, as 

they offer decision-making insights in addition to data. 

Based on Bayes' theorem, the Naive Bayes algorithm has 

been applied in several fields, including meteorology, as in our 

study. Using past data and other atmospheric indications, a 

weather station can use this supervised machine-learning 

technique to forecast weather conditions, such as rain, 

sunshine, or snow. By training a Naive Bayes classifier with 

inputs, such as humidity, temperature, and barometric pressure, 

one can learn to identify patterns in the data and forecast the 

probability of a certain weather event. In spite of its 'naive' 

assumption of feature independence, this algorithm frequently 

yields remarkably accurate results, which makes it an 

economical and useful tool for short-term weather forecasting 

[6-11]. 

The purpose of this study is to design and implement an 

intelligent IoT and machine-learning-based weather 

monitoring station system. Weather station monitoring 

involves the collection of atmospheric data to predict, 

understand, and analyze weather patterns. With the advent of 

the Internet of Things (IoT), it has become easier to create DIY 

weather stations and monitor them remotely in real time [12, 

13]. 

The block diagram of the proposed system is represented in 

Figure 1. A weather monitoring IoT system consists not only 

of an array of sensors for collecting the environmental data but 

also a microcontroller that processes the sensor output and 

communicates the results. The paper employs several sensors 

and hardware components to monitor the ambient conditions 

that influence varying degrees of macro weather, quantifying 

air pressure, temperature, and humidity. The BMP180 sensor 

is for air pressure, and the DHT11 sensor is for temperature 

and humidity measurement. This provides a real-time reading 

on the environment, meaning that no access to the data via the 

cloud is necessary (by using an I2C LCD2004 module). The 

ESP32 and sensors power supply go through a breadboard DC 

power supply to make the voltage distribution stable. 

The system employs cloud computing for the storage, 

access, and real-time scaling of data using ThingSpeak. Sensor 

data from the ESP32 is sent to ThingSpeak, which offers 

comprehensive capabilities for querying and visualizing past 

data for feedforward machine learning models. It is scalable, 

enabling the processing of data from several weather 

monitoring stations, hence facilitating remote monitoring and 

analysis. This smartphone app displays real-time weather data 

from ThingSpeak, and users can check out historical trends 

and future predictions. This enhances the overall user 

experience by making it easier for users to get predictions and 

data anywhere, at any time. 

Figure 1. The block diagram of the proposed system 

2. RELATED WORK

This section presents the design of the system in addition to 

showcasing related work in the same field. These works 

include similar studies that use different technologies and 

approaches, such as those that use different types of sensors 

for weather stations, microcontrollers, wireless 

communication technologies, and monitoring devices. 

The weather station designed in this study consists of 

temperature, humidity, and air pressure sensors; an ESP32 

microcontroller; Wi-Fi as a wireless communication system; 

ThingSpeak Cloud for storage and monitoring data; and a new 

Android app for smartphones that is intended to track the 

measured data from the weather station. The devices utilized 

in prior projects in this field are listed in Table 1.

Table 1. The list of related work papers 

Related Work Type of Sensors 
Type of 

Microcontroller 

Type of 

Communication 
IoT Monitoring Cloud 

Mabrouki et al. [1], 2021 

DHT22, Ozone, 

Nitrogen 

dioxide, Sulfur 

dioxide 

Arduino UNO Wi-Fi NO Terminal NO 
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Djordjevic and Dankovic 

[2], 2019 
BME280, MQ-2, BH1750 PIC18F45K22 GSM YES LCD 1602 YES 

Bella et al. [5], 2023 
DHT11, Rain Sensor, Bmp 

180 
ESP8266, Wi-Fi YES Terminal YES 

Kim et al. [14], 2018 
SHT-21, Rain Sensor, Wind 

speed, wind direction 
Arduino GSM YES Terminal YES 

Nallakaruppan and 

Kumaran [15], 2019 

DHT-11, BMP-180, Rainfall 

Sensor  

Raspberry 

Pi 3 
Wi-Fi NO LCD 1602 NO 

Shahadat et al. [16], 2020 
DHT11, BMP-180, Rain 

Sensor 
ESP8266 Wi-Fi YES Terminal YES 

NarasimhaRao et al. [17], 

2020 

SHT10,  

DHT 11, MG 811, TSL251 

Arduino UNO and 

ESP8266 
Wi-Fi YES Terminal YES 

3. SYSTEM DESIGN

The Intelligent IoT Ecosystem for Weather Monitoring 

seamlessly blends advanced IoT sensors and machine-learning 

algorithms to revolutionize meteorological data capture and 

interpretation. Strategically positioned sensors gather essential 

weather metrics and transmit them via advanced wireless 

protocols to a centralized data repository. These raw data are 

then processed by machine learning models to detect patterns 

and forecast weather changes. Insights are readily accessible 

to users through an intuitive interface, whereas a feedback 

loop ensures continuous system refinement and increased 

accuracy over time. 

3.1 Hardware components 

In this part, every electronic component utilized in this 

project will be presented. 

3.1.1 ESP32 Microcontroller 

The ESP32 shown in Figure 2 is a versatile and powerful 

microcontroller developed by Espress. This is particularly 

noteworthy for its integration of both Wi-Fi and Bluetooth 

(classic and BLE) capabilities within a single chip. Building 

on the success of its predecessor, ESP8266 (primarily known 

for Wi-Fi), ESP32 provides a more comprehensive set of 

features, including a more extensive GPIO count, enhanced 

processing power with its dual-core Ten silica LX6 

microprocessor, and better power management. 

Developers appreciate the ESP32 for its compatibility with 

various development environments, including the popular 

Arduino IDE and the advanced ESP-IDF. The main properties 

of Node MCU ESP32 are listed in Table 2 [18]. 

3.1.2 BMP180 sensor 

BMP180 in Figure 3 is a popular sensor for measuring 

temperature and barometric pressure. Atmospheric pressure 

varies with both weather and altitude, and both can be 

measured using this sensor. Manufactured by Bosch Sensor 

Tec, it has been widely used in various applications ranging 

from weather stations to altitude estimations. Table 3 lists 

some key properties and features [19]. 

3.1.3 DHT11 sensor 

A simple, very affordable digital temperature and humidity 

sensor is the DHT11, shown in Figure 4. It detects the air 

quality around it using a thermistor and a capacitive humidity 

sensor, then outputs a digital signal on the data pin. It's not too 

difficult to use. Table 4 displays the primary characteristics of 

the DHT11 sensor module [20]. 

Figure 2. Pin diagram of Node MCU ESP32 [18] 
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Table 2. Main properties of NODEMCU ESP32 [18] 

Property Details 

Processor 
Dual-core Tensilica LX6 

microprocessor 

Clock Frequency Up to 240 MHz 

RAM ~520 KB Internal SRAM 

Flash Memory External, varies (commonly 4 MB) 

Wi-Fi 802.11 b/g/n (2.4 GHz) 

Bluetooth 
Classic + BLE (Bluetooth Low 

Energy) 

GPIO Pins Typically up to 36 pins 

ADC Up to 18 channels (12-bit) 

DAC 2 channels (8-bit) 

UART, I2C, SPI Multiple channels/interfaces 

Temperature Sensor Internal 

Figure 3. BMP180 sensor module [19] 

Figure 4. DHT11 sensor module [20] 

Table 3. Main properties of BMP180 sensor [19] 

Property Details 

Supply Voltage 1.8V to 3.6V 

Interface I²C (100kHz and 400kHz speeds) 

Pressure Range 
300 hPa to 1100 hPa (+9000m to -

500m) 

Pressure Resolution Adjustable: 0.06 hPa to 0.02 hPa 

Pressure Accuracy Absolute: ±1 hPa 

Power Consumption 3µA during pressure measurement 

Temperature Range -40°C to +85℃

Temperature Resolution 0.1℃ 

Temperature Accuracy Absolute: ±1℃ 

Table 4. The main properties of DHT11 sensor [20] 

Property Details 

Supply Voltage 3.3V to 5V 

Humidity Range 20% to 90% RH 

Humidity Resolution 1% RH 

Humidity Accuracy  ±5% RH 

Temperature Range  0°C to 50℃ 

Temperature Resolution 1℃ 

Temperature Accuracy  ±2℃ 

Response Time Approximately 1 second 

Power Consumption 0.5mA (measurement), 100µA 

There are three phases in the communication process: 

sending a request to the DHT11 sensor, waiting for a return 

pulse from the sensor, and then beginning the data 

transmission to the microcontroller. The single-bus data 

format utilized for synchronization and communication 

between the MCU and DHT11 sensor is depicted in Figure 5a. 

An approximate 4 ms communication procedure occurs. 

Decimal and integral components make up data. The sensor 

transmits higher data bits first, with a 40bit total data 

transmission. The MCU is seen in Figure 5b, transmitting the 

start signal and receiving DHT answers [20]. 

(a) 

(b) 

Figure 5. a) DHT11 Sensor communication process, and b) MCU sending out the start signal and DHT responses [20] 
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3.1.4 I2C LCD2004 module 

The LCD2004 module in Figure 6 is a user-friendly 20 × 4 

liquid crystal display that leverages the I2C communication 

protocol, allowing for efficient interfacing with 

microcontrollers using only two data lines: SDA and SCL. By 

simplifying traditional LCD connections, this module reduces 

pin usage, making it ideal for projects with limited GPIO 

availability [21]. 

Figure 6. I2C LCD2004 module [21] 

3.1.5 Breadboard DC power supply 

Figure 7 displays the breadboard power supply and Table 5 

lists the breadboard's primary characteristics. Its two channels 

provide configurable output between 3.3V and 5V. The 

maximum amount of current that can be drawn is 700 mA. The 

user may choose the output voltage by adjusting the jumpers 

individually, and this decision is independent of the channel. 

Figure 7. DC power supply module [22] 

A breadboard power supply is a compact and convenient 

module designed to provide regulated voltage directly to a 

solderless breadboard, which is commonly used in electronic 

prototyping. These power supplies are designed to fit onto the 

breadboard and provide selectable voltage levels, often 3.3V 

and 5V, which are standard voltages for many electronic 

components and microcontrollers [22]. 

Table 5. The main properties of DC power supply [22] 

Property Details 

Input Voltage 
Often 6.5V to 12V (from a DC 

adapter) 

Output Voltage Options Commonly 3.3V and 5V (selectable) 

Maximum Current 
Varies (common values include 

500mA or 700mA) 

Voltage Regulation 
Linear regulator (like LM317) or 

switching regulator (like LM2596) 

On/Off Switch Typically included 

Indicator LEDs Often present to show power status 

Protection Features 
Overcurrent, short-circuit, sometimes 

thermal 

3.2 Software requirements 

3.2.1 Arduino IDE software 

The Arduino IDE is an open-source software environment. 

was used to create and upload code to boards that were 

compatible with Arduino. It offers extensive functionality for 

seasoned developers while being user friendly. As an essential 

tool in the Arduino ecosystem for prototyping and electronics 

exploration, the IDE supports a range of Arduino boards and 

offers an easy method to add libraries and examine sample 

projects. The main window of the IDE is shown in Figure 8 

[23]. 

Figure 8. Main Arduino IDE platform widow [23] 

3.2.2 ThingSpeak cloud 

MathWorks created ThingSpeak, an IoT analytics platform 

that provides cloud-based data aggregation, visualization, and 

analysis. ThingSpeak facilitates the gathering, storing, and 

understanding of real-time data by seamlessly integrating with 

connected devices. Its compatibility with MATLAB makes 

complex data processing and analytics possible. ThingSpeak 

is an adaptable option for IoT data management, supporting 

applications ranging from simple hobby projects to intricate 

industrial monitoring systems, all with a focus on real-time 

data display. Figure 9 shows the main webpage window of the 

ThingSpeak cloud [24]. 

Figure 9. The website window of ThingSpeak cloud [24] 

3.2.3 MIT App inventor 

Figure 10 shows the MIT APP Inventor main webpage 

window. MIT created an open-source web-based platform 

called MIT App Inventor to make the process of creating 

Android apps easier. Even those without any previous coding 

experience may design functioning mobile apps with intuitive 

drag-and-drop interfaces. With the App Inventor, a platform 
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for quick prototyping and teaching, a wide variety of 

individuals can now easily convert their ideas into functional 

mobile applications [25]. 

Figure 10. Website window of MIT App Inventor [25] 

3.3 Machine learning integration 

Under artificial intelligence lies machine learning, which 

allows self-learning from data through zero explicit 

programming requirements, enabling its integration into 

different systems in different domains, enhanced system 

functionality, automation of complex operations, and 

predictive capabilities [15]. The Naïve Bayes classifier is one 

of the fundamental algorithms within machine learning. 

Naive Bayes is a probabilistic machine learning algorithm 

that can be used in various classification tasks based on Bayes’ 

theorem. It operates based on the principle of independence 

among predictors. Simplicity and efficiency are some features 

distinctively associated with this type of naive Bayesian 

classifier [16]. Institutions may benefit from incorporating 

such models into their frameworks since they expose new 

dimensions for analysis that were previously difficult or not 

possible at all [17]. To prevent any knowledge gaps, we will 

cover in detail the Naïve Bayes method and related topics in 

this chapter [26, 27]. Bayes’ theorem is a simple mathematical 

procedure for calculating conditional probabilities. 

Conditional probability is the probability of an event occurring 

given that another event has (assuming, supposing, stating, or 

asserting) occurred, as in Eq. (1). 

𝑃(𝐴B) = (𝑃(𝐵A) 𝑃(𝐴) )/(𝑃(𝐵)) (1) 

where: 

P(A|B): how often does A happen given that B happens? (Is 

called posterior probability) 

P(B|A): how often does B happen given that A happens? 

P(A): how likely A is on its own? 

P(B): how likely B is on its own? 

By using the chain rule, the likelihood P(A|B) can be 

decomposed, as shown in Eq. (2): 

𝑃(𝐴𝐵) =  𝑃(𝐴1, 𝐴2, … … , 𝐴𝑛𝐵)  =
𝑃(𝐴 1𝐴2, … . 𝐴𝑛, 𝐵) ∗ 𝑃(𝑥2 𝑥3, … . 𝑥𝑛 , 𝐵)𝑃(𝐴𝑛 𝐵)

(2) 

However, the conditional probabilities are independent of 

each other because of the naive conditional independence 

principle (As in Eq. (3)). 

𝑃(𝐴𝐵) = 𝑃(𝐴1𝐵) ∗ 𝑃(𝐴2𝐵)  𝑃(𝐴𝑛𝐵) (3) 

As a result, conditional independence gives us results in Eq. 

(4). 

𝑃(𝐵A) = (𝑃(𝐴1 𝐵) ∗ 𝑃(𝐴2 𝐵)𝑃(𝐴𝑛 𝐵) ∗ 𝑃(𝐵))/
(𝑃(𝐴1 ) ∗ 𝑃(𝐴2 ) 𝑃(𝐴𝑛 ) )

(4) 

Furthermore, because the denominator is constant across all 

values, the posterior probability may be as in Eq. (5) 

𝑃(𝐴1, 𝐴2, … … , 𝐴𝑛 𝐵) 𝛼 𝑃(𝐵) ∏ 𝑃(𝐴1𝐵)𝑛
𝑖=1 (5) 

The Naive Bayes classifier uses this model in conjunction 

with a decision rule. Selecting the hypothesis with the greatest 

probability is a commonly used guideline known as the 

maximum a posteriori (MAP) decision rule, as shown in Eq. 

(6). 

𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐵𝑃(𝐵) ∏ 𝑃(𝐴1𝐵)𝑛
𝑖=1 (6) 

The process of using the Naive Bayes algorithm to process 

environmental parameters (such as temperature, humidity, 

pressure, and altitude) on an ESP32 starts with the collection 

of an adequate dataset. This dataset was collected manually in 

Iraq with relevant sensors attached to an ESP32 

microcontroller. For accurate environment readings, sensors 

such as DHT22 (Temperature and humidity) and BME280 

(Pressure and Altitude) were utilized. These data were 

collected and logged periodically and saved into a structured 

file such as CSV, where each line contained data of the 

readings from each sensor in addition to a label, either 

"normal" or "alert" depending on whether the environment 

was as expected. This is the base data we use to train a machine 

learning model. 

After the dataset was obtained, we leveraged Python using 

the scikit-learn library to train a Naive Bayes classification 

model. Using the panda’s library, the data were imported into 

a Python script and split into input features (temperature, 

humidity, pressure, and altitude) and output labels. The data 

were subsequently separated into training and testing subsets 

through the conventional 80/20 split. The model was trained 

on the training set and tested on the validation set using a 

Gaussian Naive Bayes approach. The accuracy of the model 

was determined, and the reliability of the model to predict 

environmental settings based on new sensor data was 

established. 

Following training, the model was used to extract its 

internal parameters called mean and variance for each feature 

across each class, as well as the class prior probabilities. These 

parameters are critical for running the Naive Bayes decision-

making logic directly on the ESP32. A header file named 

"model. These two angles were generated, as constants or 

arrays in C/C++ format, by the h, which means "header. This 

file is included in the Arduino IDE project, allowing the 

ESP32 to do real-time classification with the Naive Bayes 

algorithm. This means using ML, the ESP32 can process the 

sensor data and classify environmental conditions as normal 

or alert without assistance from a server or cloud-based ML 

service. 

4. SYSTEM SETUP AND RESULTS

The ESP32 microcontroller and weather station sensors 

were integrated to create the final device used in this project 

after they were thoroughly explained in the preceding section, 

which also covered all electronic elements and software used 
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in the programming. Figure 11 shows the completed block 

diagram architectural circuit created using the Fritzing 

electrical and electronic circuit design applications. 

Fritzing is an open-source initiative aimed at supporting 

designers, artists, researchers, and hobbyists in working 

creatively with interactive electronics. It provides a software 

application that allows users to record and share their 

prototypes, educate them on electronics in a classroom, and 

design PCB layouts for commercial manufacturing. Beginners 

may more easily comprehend and design electronics owing to 

Fritzing's user-friendly interface, which makes it possible to 

create electronic circuits via visual representations [28]. 

Figure 11. Monitoring system's block diagram architecture 

After the Naive Bayes algorithm, which is a probabilistic 

classification technique based on Bayes' theory, was used in 

our research and applied to weather forecasting, it can now be 

used to predict weather conditions based on historical weather 

data. By training on past weather patterns and associated 

conditions, a Naive Bayes classifier can determine the 

probability of a specific weather outcome occurring, given a 

new set of input data from the sensors in real-time.  

The Naive Bayes algorithm was used in this study only to 

generate data for fore-casting weather that will be used and 

relied upon in programming the final practical circuit. The 

programming focused on temperature and humidity, given that 

the place where the measurement was made is the same in 

terms of atmospheric pressure; therefore, it does not affect the 

results in the programming. 

The primary function of this system is to monitor 

meteorological parameters such as air pressure, temperature, 

and humidity, and utilize the results to anticipate the weather. 

As shown in Figure 12, the smart weather station prototype 

was implemented in a laboratory setting. BMP180 and DHTT 

sensors, together with an ESP32 microcontroller, were used to 

create the prototype. 

The complete system was programmed using three different 

programs: one for measuring and sending circuit results, 

another for cloud monitoring via ThingSpeak, and a third for 

smartphone applications. Figure 13 shows a flowchart of the 

measurement circuit. The flowchart illustrates how the ESP32 

measures gathered and presented data from the sensors 

(temperature, humidity, and air pressure) on the LCD screen. 

If Wi-Fi is accessible, the data are transferred and uploaded to 

the cloud. 

Figure 14 (a) shows the monitoring system at the start of the 

operation, as well as taking one of the readings after it is turned 

on. Figure 14 (b) shows the readings (temperature, humidity, 

altitude, and air pressure), and the result or confirmation of the 

Naive Bayes algorithm can be observed in the first row of the 

LCD. 

ThingSpeak is often used for IoT system proof-of-concept 

and prototypes that require analytics. The cloud-based IoT 

analytics platform ThingSpeak was used to evaluate the 

condition of the completed system and display the real-time 

data streams. Figure 15 shows the findings of this study. 

ThingSpeak displays data in real-time that it gets from a 

weather station gadget. A specialized software created for this 

purpose will display the same findings on smartphones when 

all data and results have been submitted to the ThingSpeak 

website, as shown in Figure 16. 

Figure 12. The monitoring hardware system's architecture 

These IoT systems, like the ESP32-based environmental 

monitors, provide huge benefits through the real-time data 

they gather, making resource management and sustainability 

easier than ever. But on freshening it up with their scale, they 

can contribute to electronic waste, the pollution that comes 

from battery usage, and energy consumption. Energy-efficient 

designs, sustainable materials, and proper recycling practices 

should be used to minimize their impact on the environment. 

As the proposed ESP32-based environmental monitoring 

system is an example of an Internet of Things (IoT) system, 

running in potentially energy-constrained environments, the 

need for power management to facilitate long-lived, reliable 
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deployments becomes a primary concern. ESP32 

microcontroller is very powerful, but it also consumes a lot of 

energy when working Wi-Fi or sensor modules around the 

clock. There are a few different methods to reduce power 

consumption. 

Figure 13. The flowchart of the weather station system 

(a) 

(b) 

Figure 14. The monitoring circuit with deferments results 

Figure 15. ThingSpeak website window with results (temperature, humidity, air pressure, and altitude) 

126



To combat this, the system can use deep sleep modes 

available on the ESP32, powering down most of its 

components between sensor readings and waking at scheduled 

intervals to log and process the data. Second, sensor readings 

can be taken at optimized intervals based on an application's 

sensitivity to change, preventing unnecessary activity. Third, 

as BME280 and DHT22 are low-power sensors, they should 

be used efficiently by powering them using GPIO pins and 

turning them off after each reading. Data transmission to the 

cloud (ThingSpeak) can be made less frequent or scheduled to 

save Wi-Fi usage, which is a big power drain. Finally, 

including energy harvesting techniques such as solar panels or 

optimized battery management systems increases operational 

duration, contributing to the sustainability of the system and 

enabling its applicability in remote areas or battery-operated 

installations. 

Figure 16. Smart phone window with system results 

(temperature, humidity, air pressure, and altitude) 

Measurements made using the suggested method for the 

weather station were confirmed using the Pearson correlation 

coefficient [29]. The degree to which two variables are 

significantly correlated is determined by the Pearson 

correlation coefficient, which is sometimes referred to as 

Pearson's statistical test. Pearson's correlation coefficient, 

represented by the Greek letter rho (ꞅ), expresses how strongly 

the two variables are linearly related. The Pearson correlation 

coefficient is given by Eq. (7). Table 6 shows the results of the 

proposed system and its comparison with one of the devices 

available in the market. 

Γ =
∑ (𝑋𝑖−𝑋)(𝑌𝑖−𝑌)𝑖

√∑ (𝑋𝑖−𝑋)𝑖
2

∑ (𝑌𝑖−𝑌)𝑖
2 (7) 

Tables 7 and 8 show the set of readings at different times 

for which the Pearson correlation coefficient is applied to the 

temperature and humidity readings in the table to verify the 

practical design results. Pearson’s coefficients for temperature 

and humidity were calculated using Eq. (8) and Eq. (9). 

Table 6. System results at different times 

No. T(C) H(%) Pressure(pa) Altitude(m) 

1 29.3 40 101617 10.96926 

2 34.2 40 101565 11.15167 

3 29.3 35 101644 11.87799 

4 29.3 33 101636 11.46312 

5 38.6 18 101652 12.87441 

6 31.3 34 101629 10.7991 

7 32.3 31 101642 11.62887 

8 34.7 29 101647 12.87441 

9 36.4 24 101654 12.54295 

10 33.8 32 101586 10.89647 

Table 7. System results for temperature to calculate 

Pearson's correlation coefficient 

T1 T2 
T1-M 

(T1) 

T2-M 

(T2) 

(T1-M 

(T1)) ^2 

(T2-M 

(T2)) 

^2 

(T1-

M(T1)) 

* (T2-

M(T2))

40 40 8.4 7.1 70.56 50.41 59.64 

40 49 8.4 16.1 70.56 259.21 135.24 

35 34 3.4 1.1 11.56 1.21 3.74 

33 33 1.4 0.1 1.96 0.01 0.14 

18 19 -13.6 -13.9 184.96 193.21 189.04 

34 34 2.4 1.1 5.76 1.21 2.64 

31 32 -0.6 -0.9 0.36 0.81 0.54 

29 30 -2.6 -2.9 6.76 8.41 7.54 

24 25 -7.6 -7.9 57.76 62.41 60.04 

32 33 0.4 0.1 0.16 0.01 0.04 

Table 8. System results for humidity to calculate Pearson's 

correlation coefficient 

H1 H2 
H1-M 

(H1) 

H2-M 

(H2) 

(H1-

M 

(T1)) 

^2 

(H2-M 

(H2)) 

^2 

(H1-M 

(H1)) 

*(H2-

M(H2)) 

40 40 8.4 7.1 70.56 50.41 59.64 

40 49 8.4 16.1 70.56 259.21 135.24 

35 34 3.4 1.1 11.56 1.21 3.74 

33 33 1.4 0.1 1.96 0.01 0.14 

18 19 -13.6 -13.9 184.96 193.21 189.04 

34 34 2.4 1.1 5.76 1.21 2.64 

31 32 -0.6 -0.9 0.36 0.81 0.54 

29 30 -2.6 -2.9 6.76 8.41 7.54 

24 25 -7.6 -7.9 57.76 62.41 60.04 

32 33 0.4 0.1 0.16 0.01 0.04 

𝛤𝑇 =
∑ (𝑇1𝑖−𝑀(𝑇1))(𝑇2𝑖−𝑀(𝑇2))𝑖

√∑ (𝑇1𝑖−𝑀(𝑇1))𝑖
2 ∑ (𝑇2𝑖−𝑀(𝑇2))𝑖

2

𝛤𝑇 =
73.972

115.21
= 0.6421

(8) 

𝛤𝐻 =
∑ (𝐻1𝑖−𝑀(𝐻1))(𝐻2𝑖−𝑀(𝐻2))𝑖

√∑ (𝐻1𝑖−𝑀(𝐻1))𝑖
2 ∑ (𝐻2𝑖−𝑀(𝐻2))𝑖

2

𝛤𝐻 =
458.6

486.58
= 0.9425

(9) 
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where, M is the mean of the Values. 
The final results after the Pearson's coefficient calculation 

for temperature and humidity are equal to (T = 0.6421) and (H 

= 0.9425), respectively. According to the values of the Pearson 

coefficient calculation, the system results were good because 

the values of Γ were between 1 and -1. 

5. CONCLUSIONS AND FUTURE WORK

In conclusion, a machine learning-based intelligent IoT 

ecosystem is created and put into use as a weather monitoring 

station to record and track meteorological parameters, 

including humidity, temperature, and air pressure. 

Incorporating a variety of specialized weather sensors enables 

granular data collection, while microcontrollers and 

connectivity modules ensure real-time data relay and 

processing. 

This ecosystem permits immediate data availability and the 

capacity to predict future weather patterns and phenomena 

through the adeptness of machine-learning models. Using 

machine learning, the system evolves, adapts, and refines its 

predictions over time by leveraging past and present data. As 

more data accumulates, the predictive prowess of the model 

improves, ensuring more accurate weather forecasts. This has 

profound implications for various sectors, including 

agriculture, aviation, event planning, and disaster management, 

where timely and precise weather updates can be game-

changing. 

The intelligent IoT ecosystem for weather monitoring 

encapsulates the paradigm of modern technology, including 

interconnectivity, intelligence, and adaptability. By harnessing 

the power of IoT and machine learning, we are not just 

passively observing the weather but also proactively 

predicting and preparing for it, epitomizing the future of 

weather monitoring. 

Future research direction can involve integrating more 

datasets such as specific air quality sensors in the IoT-based 

environmental monitoring systems, or using more robust 

machine learning models like ensemble methods, deep 

learning, or reinforcement learning to further enhance the 

prediction capabilities. Real-time weather data, satellite 

imagery, and spatial-temporal models from many devices 

could improve predictions. If large-scale deployment is to take 

place, edge computing and energy-efficient machine learning 

algorithms can help further optimize power consumption and 

allow for swifter decision making. 
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