
Integrating Machine Learning in IoT Solutions for Real-Time Weather Forecasting Systems

Ahmed Rifaat Hamad1 , Aqeel N. Abdulateef2 , Bayan Mahdi Sabbar3 , Mohannad Jabbar Mnati1* ,

Adnan Hussein Ali1 , Alex Van Den Bossche4

1 Department of Electrical Technology, Institute of Technology – Baghdad, Middle Technical University, Baghdad 10074, Iraq
2 Department of Medical Instruments Engineering Techniques, Technical Engineering College, Al-Bayan University, Baghdad

10070, Iraq
3 Medical Instrumentation Engineering Techniques Department, College of Engineering and Techniques, Al-Mustaqbal

University, Al Hilla 51001, Iraq
4 Energy and Systems, Ghent University, Ghent 9052, Belgium

Corresponding Author Email: mohannad.mnati@mtu.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/i2m.240203 ABSTRACT

Received: 26 February 2025

Revised: 12 April 2025

Accepted: 20 April 2025

Available online: 30 April 2025

In recent years, the role of the Internet of Things (IoT) in monitoring and predicting various

environmental phenomena has expanded significantly. This study presents the design and

implementation of an intelligent IoT ecosystem tailored for weather monitoring stations.

The core objective of this system is to enhance the accuracy and responsiveness of weather

forecasting by integrating machine learning (ML) techniques. This scalable IoT ecosystem

efficiently collects comprehensive meteorological data from all sensors, such as

temperature, humidity, and atmospheric pressure, using an ESP32 as a microcontroller.

This combination of specialized hardware and advanced software techniques markedly

boosts prediction accuracy, presenting a pioneering step in environmental monitoring

methodologies. These algorithms are well-known for their adaptive learning capabilities

and dynamically update predictions based on real-time and historical datasets. With the

strategic inclusion of cloud computing, data accessibility and scalability have been

remarkably enhanced. This amalgamation of specialized hardware, intelligent software,

and cloud infrastructure significantly amplifies prediction accuracy, heralding a new era

in environmental monitoring methodologies.

Keywords:

IoT, ML, ESP32, temperature sensor,

humidity sensor, pressure sensor, weather

station

1. INTRODUCTION

Atmospheric observations were made by ancient people

using simple equipment like wind vans and water clocks.

During the 17th and 18th centuries, barometers were

introduced alongside thermometers and hygrometers which

gave better readings than before. The late 20th century

witnessed the development of automated weather stations.

These stations can record data autonomously, reduce human

errors, and enable continuous monitoring.

Weather forecasting has evolved significantly over the past

century. Traditional methods relied on manual observations,

empirical rules, and basic statistical models. In the mid-20th

century, the introduction of numerical weather prediction

(NWP) models marked a major leap, utilizing early computers

to solve mathematical equations that simulate atmospheric

behavior. These models, though groundbreaking, were limited

by computational capacity and data availability.

By the late 20th and early 21st centuries, advancements in

satellite technology and remote sensing dramatically improved

the accuracy and resolution of meteorological data. However,

despite these improvements, challenges remained in

forecasting localized and rapidly changing weather patterns.

The IoT began to influence the IT scene at the beginning of

the twenty-first century. Sensors are cheaper, more compact,

and networked. To provide more extensive data collection and

remote data access, weather stations have begun integrating

these sensors.

The amount of data increased with data collection capacity.

As a solution, cloud-computing systems with scalable

processing and storage capacities have been developed. Big

meteorological data began during this period, when large

datasets were accessible for study [1-5].

Although statistical techniques have long been employed in

weather forecasting, machine learning research has been

spurred by the availability of large datasets. It is now possible

to train algorithms on past data to identify anomalies and make

more accurate predictions.

The potential for combining the Internet of Things (IoT) and

machine learning became apparent at a pivotal point in the

mid-2010s. This means that in weather monitoring, real-time

actionable insights must be derived in addition to data

collection. This made short-term hyper-local forecasts, real-

time anomaly detection, and feasible predictive equipment

maintenance.

Today, a number of cutting-edge technologies have come

together in the design and execution of weather monitoring

systems. Currently, IoT sensors can gather a wide variety of

Instrumentation Mesure Métrologie
Vol. 24, No. 2, April, 2025, pp. 119-129

Journal homepage: http://iieta.org/journals/i2m

119

https://orcid.org/0009-0002-8006-6554
https://orcid.org/0000-0003-3806-3798
https://orcid.org/0000-0003-0541-2410
https://orcid.org/0000-0003-0276-9246
https://orcid.org/0009-0002-3024-4244
https://orcid.org/0000-0003-3332-3386
https://crossmark.crossref.org/dialog/?doi=10.18280/i2m.240203&domain=pdf

data from UV radiation to soil moisture. These data were

analyzed using machine learning models, which provide

predictions with previously unknown accuracy. These models

include neural networks, decision trees, and algorithms such

as Naive Bayes. These integrated systems are essential tools

for many industries, from urban planning to agriculture, as

they offer decision-making insights in addition to data.

Based on Bayes' theorem, the Naive Bayes algorithm has

been applied in several fields, including meteorology, as in our

study. Using past data and other atmospheric indications, a

weather station can use this supervised machine-learning

technique to forecast weather conditions, such as rain,

sunshine, or snow. By training a Naive Bayes classifier with

inputs, such as humidity, temperature, and barometric pressure,

one can learn to identify patterns in the data and forecast the

probability of a certain weather event. In spite of its 'naive'

assumption of feature independence, this algorithm frequently

yields remarkably accurate results, which makes it an

economical and useful tool for short-term weather forecasting

[6-11].

The purpose of this study is to design and implement an

intelligent IoT and machine-learning-based weather

monitoring station system. Weather station monitoring

involves the collection of atmospheric data to predict,

understand, and analyze weather patterns. With the advent of

the Internet of Things (IoT), it has become easier to create DIY

weather stations and monitor them remotely in real time [12,

13].

The block diagram of the proposed system is represented in

Figure 1. A weather monitoring IoT system consists not only

of an array of sensors for collecting the environmental data but

also a microcontroller that processes the sensor output and

communicates the results. The paper employs several sensors

and hardware components to monitor the ambient conditions

that influence varying degrees of macro weather, quantifying

air pressure, temperature, and humidity. The BMP180 sensor

is for air pressure, and the DHT11 sensor is for temperature

and humidity measurement. This provides a real-time reading

on the environment, meaning that no access to the data via the

cloud is necessary (by using an I2C LCD2004 module). The

ESP32 and sensors power supply go through a breadboard DC

power supply to make the voltage distribution stable.

The system employs cloud computing for the storage,

access, and real-time scaling of data using ThingSpeak. Sensor

data from the ESP32 is sent to ThingSpeak, which offers

comprehensive capabilities for querying and visualizing past

data for feedforward machine learning models. It is scalable,

enabling the processing of data from several weather

monitoring stations, hence facilitating remote monitoring and

analysis. This smartphone app displays real-time weather data

from ThingSpeak, and users can check out historical trends

and future predictions. This enhances the overall user

experience by making it easier for users to get predictions and

data anywhere, at any time.

Figure 1. The block diagram of the proposed system

2. RELATED WORK

This section presents the design of the system in addition to

showcasing related work in the same field. These works

include similar studies that use different technologies and

approaches, such as those that use different types of sensors

for weather stations, microcontrollers, wireless

communication technologies, and monitoring devices.

The weather station designed in this study consists of

temperature, humidity, and air pressure sensors; an ESP32

microcontroller; Wi-Fi as a wireless communication system;

ThingSpeak Cloud for storage and monitoring data; and a new

Android app for smartphones that is intended to track the

measured data from the weather station. The devices utilized

in prior projects in this field are listed in Table 1.

Table 1. The list of related work papers

Related Work Type of Sensors
Type of

Microcontroller

Type of

Communication
IoT Monitoring Cloud

Mabrouki et al. [1], 2021

DHT22, Ozone,

Nitrogen

dioxide, Sulfur

dioxide

Arduino UNO Wi-Fi NO Terminal NO

120

Djordjevic and Dankovic

[2], 2019
BME280, MQ-2, BH1750 PIC18F45K22 GSM YES LCD 1602 YES

Bella et al. [5], 2023
DHT11, Rain Sensor, Bmp

180
ESP8266, Wi-Fi YES Terminal YES

Kim et al. [14], 2018
SHT-21, Rain Sensor, Wind

speed, wind direction
Arduino GSM YES Terminal YES

Nallakaruppan and

Kumaran [15], 2019

DHT-11, BMP-180, Rainfall

Sensor

Raspberry

Pi 3
Wi-Fi NO LCD 1602 NO

Shahadat et al. [16], 2020
DHT11, BMP-180, Rain

Sensor
ESP8266 Wi-Fi YES Terminal YES

NarasimhaRao et al. [17],

2020

SHT10,

DHT 11, MG 811, TSL251

Arduino UNO and

ESP8266
Wi-Fi YES Terminal YES

3. SYSTEM DESIGN

The Intelligent IoT Ecosystem for Weather Monitoring

seamlessly blends advanced IoT sensors and machine-learning

algorithms to revolutionize meteorological data capture and

interpretation. Strategically positioned sensors gather essential

weather metrics and transmit them via advanced wireless

protocols to a centralized data repository. These raw data are

then processed by machine learning models to detect patterns

and forecast weather changes. Insights are readily accessible

to users through an intuitive interface, whereas a feedback

loop ensures continuous system refinement and increased

accuracy over time.

3.1 Hardware components

In this part, every electronic component utilized in this

project will be presented.

3.1.1 ESP32 Microcontroller

The ESP32 shown in Figure 2 is a versatile and powerful

microcontroller developed by Espress. This is particularly

noteworthy for its integration of both Wi-Fi and Bluetooth

(classic and BLE) capabilities within a single chip. Building

on the success of its predecessor, ESP8266 (primarily known

for Wi-Fi), ESP32 provides a more comprehensive set of

features, including a more extensive GPIO count, enhanced

processing power with its dual-core Ten silica LX6

microprocessor, and better power management.

Developers appreciate the ESP32 for its compatibility with

various development environments, including the popular

Arduino IDE and the advanced ESP-IDF. The main properties

of Node MCU ESP32 are listed in Table 2 [18].

3.1.2 BMP180 sensor

BMP180 in Figure 3 is a popular sensor for measuring

temperature and barometric pressure. Atmospheric pressure

varies with both weather and altitude, and both can be

measured using this sensor. Manufactured by Bosch Sensor

Tec, it has been widely used in various applications ranging

from weather stations to altitude estimations. Table 3 lists

some key properties and features [19].

3.1.3 DHT11 sensor

A simple, very affordable digital temperature and humidity

sensor is the DHT11, shown in Figure 4. It detects the air

quality around it using a thermistor and a capacitive humidity

sensor, then outputs a digital signal on the data pin. It's not too

difficult to use. Table 4 displays the primary characteristics of

the DHT11 sensor module [20].

Figure 2. Pin diagram of Node MCU ESP32 [18]

121

Table 2. Main properties of NODEMCU ESP32 [18]

Property Details

Processor
Dual-core Tensilica LX6

microprocessor

Clock Frequency Up to 240 MHz

RAM ~520 KB Internal SRAM

Flash Memory External, varies (commonly 4 MB)

Wi-Fi 802.11 b/g/n (2.4 GHz)

Bluetooth
Classic + BLE (Bluetooth Low

Energy)

GPIO Pins Typically up to 36 pins

ADC Up to 18 channels (12-bit)

DAC 2 channels (8-bit)

UART, I2C, SPI Multiple channels/interfaces

Temperature Sensor Internal

Figure 3. BMP180 sensor module [19]

Figure 4. DHT11 sensor module [20]

Table 3. Main properties of BMP180 sensor [19]

Property Details

Supply Voltage 1.8V to 3.6V

Interface I²C (100kHz and 400kHz speeds)

Pressure Range
300 hPa to 1100 hPa (+9000m to -

500m)

Pressure Resolution Adjustable: 0.06 hPa to 0.02 hPa

Pressure Accuracy Absolute: ±1 hPa

Power Consumption 3µA during pressure measurement

Temperature Range -40°C to +85℃

Temperature Resolution 0.1℃

Temperature Accuracy Absolute: ±1℃

Table 4. The main properties of DHT11 sensor [20]

Property Details

Supply Voltage 3.3V to 5V

Humidity Range 20% to 90% RH

Humidity Resolution 1% RH

Humidity Accuracy ±5% RH

Temperature Range 0°C to 50℃

Temperature Resolution 1℃

Temperature Accuracy ±2℃

Response Time Approximately 1 second

Power Consumption 0.5mA (measurement), 100µA

There are three phases in the communication process:

sending a request to the DHT11 sensor, waiting for a return

pulse from the sensor, and then beginning the data

transmission to the microcontroller. The single-bus data

format utilized for synchronization and communication

between the MCU and DHT11 sensor is depicted in Figure 5a.

An approximate 4 ms communication procedure occurs.

Decimal and integral components make up data. The sensor

transmits higher data bits first, with a 40bit total data

transmission. The MCU is seen in Figure 5b, transmitting the

start signal and receiving DHT answers [20].

(a)

(b)

Figure 5. a) DHT11 Sensor communication process, and b) MCU sending out the start signal and DHT responses [20]

122

3.1.4 I2C LCD2004 module

The LCD2004 module in Figure 6 is a user-friendly 20 × 4

liquid crystal display that leverages the I2C communication

protocol, allowing for efficient interfacing with

microcontrollers using only two data lines: SDA and SCL. By

simplifying traditional LCD connections, this module reduces

pin usage, making it ideal for projects with limited GPIO

availability [21].

Figure 6. I2C LCD2004 module [21]

3.1.5 Breadboard DC power supply

Figure 7 displays the breadboard power supply and Table 5

lists the breadboard's primary characteristics. Its two channels

provide configurable output between 3.3V and 5V. The

maximum amount of current that can be drawn is 700 mA. The

user may choose the output voltage by adjusting the jumpers

individually, and this decision is independent of the channel.

Figure 7. DC power supply module [22]

A breadboard power supply is a compact and convenient

module designed to provide regulated voltage directly to a

solderless breadboard, which is commonly used in electronic

prototyping. These power supplies are designed to fit onto the

breadboard and provide selectable voltage levels, often 3.3V

and 5V, which are standard voltages for many electronic

components and microcontrollers [22].

Table 5. The main properties of DC power supply [22]

Property Details

Input Voltage
Often 6.5V to 12V (from a DC

adapter)

Output Voltage Options Commonly 3.3V and 5V (selectable)

Maximum Current
Varies (common values include

500mA or 700mA)

Voltage Regulation
Linear regulator (like LM317) or

switching regulator (like LM2596)

On/Off Switch Typically included

Indicator LEDs Often present to show power status

Protection Features
Overcurrent, short-circuit, sometimes

thermal

3.2 Software requirements

3.2.1 Arduino IDE software

The Arduino IDE is an open-source software environment.

was used to create and upload code to boards that were

compatible with Arduino. It offers extensive functionality for

seasoned developers while being user friendly. As an essential

tool in the Arduino ecosystem for prototyping and electronics

exploration, the IDE supports a range of Arduino boards and

offers an easy method to add libraries and examine sample

projects. The main window of the IDE is shown in Figure 8

[23].

Figure 8. Main Arduino IDE platform widow [23]

3.2.2 ThingSpeak cloud

MathWorks created ThingSpeak, an IoT analytics platform

that provides cloud-based data aggregation, visualization, and

analysis. ThingSpeak facilitates the gathering, storing, and

understanding of real-time data by seamlessly integrating with

connected devices. Its compatibility with MATLAB makes

complex data processing and analytics possible. ThingSpeak

is an adaptable option for IoT data management, supporting

applications ranging from simple hobby projects to intricate

industrial monitoring systems, all with a focus on real-time

data display. Figure 9 shows the main webpage window of the

ThingSpeak cloud [24].

Figure 9. The website window of ThingSpeak cloud [24]

3.2.3 MIT App inventor

Figure 10 shows the MIT APP Inventor main webpage

window. MIT created an open-source web-based platform

called MIT App Inventor to make the process of creating

Android apps easier. Even those without any previous coding

experience may design functioning mobile apps with intuitive

drag-and-drop interfaces. With the App Inventor, a platform

123

for quick prototyping and teaching, a wide variety of

individuals can now easily convert their ideas into functional

mobile applications [25].

Figure 10. Website window of MIT App Inventor [25]

3.3 Machine learning integration

Under artificial intelligence lies machine learning, which

allows self-learning from data through zero explicit

programming requirements, enabling its integration into

different systems in different domains, enhanced system

functionality, automation of complex operations, and

predictive capabilities [15]. The Naïve Bayes classifier is one

of the fundamental algorithms within machine learning.

Naive Bayes is a probabilistic machine learning algorithm

that can be used in various classification tasks based on Bayes’

theorem. It operates based on the principle of independence

among predictors. Simplicity and efficiency are some features

distinctively associated with this type of naive Bayesian

classifier [16]. Institutions may benefit from incorporating

such models into their frameworks since they expose new

dimensions for analysis that were previously difficult or not

possible at all [17]. To prevent any knowledge gaps, we will

cover in detail the Naïve Bayes method and related topics in

this chapter [26, 27]. Bayes’ theorem is a simple mathematical

procedure for calculating conditional probabilities.

Conditional probability is the probability of an event occurring

given that another event has (assuming, supposing, stating, or

asserting) occurred, as in Eq. (1).

𝑃(𝐴B) = (𝑃(𝐵A) 𝑃(𝐴))/(𝑃(𝐵)) (1)

where:

P(A|B): how often does A happen given that B happens? (Is

called posterior probability)

P(B|A): how often does B happen given that A happens?

P(A): how likely A is on its own?

P(B): how likely B is on its own?

By using the chain rule, the likelihood P(A|B) can be

decomposed, as shown in Eq. (2):

𝑃(𝐴𝐵) = 𝑃(𝐴1, 𝐴2, … … , 𝐴𝑛𝐵) =
𝑃(𝐴 1𝐴2, … . 𝐴𝑛, 𝐵) ∗ 𝑃(𝑥2 𝑥3, … . 𝑥𝑛 , 𝐵)𝑃(𝐴𝑛 𝐵)

(2)

However, the conditional probabilities are independent of

each other because of the naive conditional independence

principle (As in Eq. (3)).

𝑃(𝐴𝐵) = 𝑃(𝐴1𝐵) ∗ 𝑃(𝐴2𝐵) 𝑃(𝐴𝑛𝐵) (3)

As a result, conditional independence gives us results in Eq.

(4).

𝑃(𝐵A) = (𝑃(𝐴1 𝐵) ∗ 𝑃(𝐴2 𝐵)𝑃(𝐴𝑛 𝐵) ∗ 𝑃(𝐵))/
(𝑃(𝐴1) ∗ 𝑃(𝐴2) 𝑃(𝐴𝑛))

(4)

Furthermore, because the denominator is constant across all

values, the posterior probability may be as in Eq. (5)

𝑃(𝐴1, 𝐴2, … … , 𝐴𝑛 𝐵) 𝛼 𝑃(𝐵) ∏ 𝑃(𝐴1𝐵)𝑛
𝑖=1 (5)

The Naive Bayes classifier uses this model in conjunction

with a decision rule. Selecting the hypothesis with the greatest

probability is a commonly used guideline known as the

maximum a posteriori (MAP) decision rule, as shown in Eq.

(6).

𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐵𝑃(𝐵) ∏ 𝑃(𝐴1𝐵)𝑛
𝑖=1 (6)

The process of using the Naive Bayes algorithm to process

environmental parameters (such as temperature, humidity,

pressure, and altitude) on an ESP32 starts with the collection

of an adequate dataset. This dataset was collected manually in

Iraq with relevant sensors attached to an ESP32

microcontroller. For accurate environment readings, sensors

such as DHT22 (Temperature and humidity) and BME280

(Pressure and Altitude) were utilized. These data were

collected and logged periodically and saved into a structured

file such as CSV, where each line contained data of the

readings from each sensor in addition to a label, either

"normal" or "alert" depending on whether the environment

was as expected. This is the base data we use to train a machine

learning model.

After the dataset was obtained, we leveraged Python using

the scikit-learn library to train a Naive Bayes classification

model. Using the panda’s library, the data were imported into

a Python script and split into input features (temperature,

humidity, pressure, and altitude) and output labels. The data

were subsequently separated into training and testing subsets

through the conventional 80/20 split. The model was trained

on the training set and tested on the validation set using a

Gaussian Naive Bayes approach. The accuracy of the model

was determined, and the reliability of the model to predict

environmental settings based on new sensor data was

established.

Following training, the model was used to extract its

internal parameters called mean and variance for each feature

across each class, as well as the class prior probabilities. These

parameters are critical for running the Naive Bayes decision-

making logic directly on the ESP32. A header file named

"model. These two angles were generated, as constants or

arrays in C/C++ format, by the h, which means "header. This

file is included in the Arduino IDE project, allowing the

ESP32 to do real-time classification with the Naive Bayes

algorithm. This means using ML, the ESP32 can process the

sensor data and classify environmental conditions as normal

or alert without assistance from a server or cloud-based ML

service.

4. SYSTEM SETUP AND RESULTS

The ESP32 microcontroller and weather station sensors

were integrated to create the final device used in this project

after they were thoroughly explained in the preceding section,

which also covered all electronic elements and software used

124

in the programming. Figure 11 shows the completed block

diagram architectural circuit created using the Fritzing

electrical and electronic circuit design applications.

Fritzing is an open-source initiative aimed at supporting

designers, artists, researchers, and hobbyists in working

creatively with interactive electronics. It provides a software

application that allows users to record and share their

prototypes, educate them on electronics in a classroom, and

design PCB layouts for commercial manufacturing. Beginners

may more easily comprehend and design electronics owing to

Fritzing's user-friendly interface, which makes it possible to

create electronic circuits via visual representations [28].

Figure 11. Monitoring system's block diagram architecture

After the Naive Bayes algorithm, which is a probabilistic

classification technique based on Bayes' theory, was used in

our research and applied to weather forecasting, it can now be

used to predict weather conditions based on historical weather

data. By training on past weather patterns and associated

conditions, a Naive Bayes classifier can determine the

probability of a specific weather outcome occurring, given a

new set of input data from the sensors in real-time.

The Naive Bayes algorithm was used in this study only to

generate data for fore-casting weather that will be used and

relied upon in programming the final practical circuit. The

programming focused on temperature and humidity, given that

the place where the measurement was made is the same in

terms of atmospheric pressure; therefore, it does not affect the

results in the programming.

The primary function of this system is to monitor

meteorological parameters such as air pressure, temperature,

and humidity, and utilize the results to anticipate the weather.

As shown in Figure 12, the smart weather station prototype

was implemented in a laboratory setting. BMP180 and DHTT

sensors, together with an ESP32 microcontroller, were used to

create the prototype.

The complete system was programmed using three different

programs: one for measuring and sending circuit results,

another for cloud monitoring via ThingSpeak, and a third for

smartphone applications. Figure 13 shows a flowchart of the

measurement circuit. The flowchart illustrates how the ESP32

measures gathered and presented data from the sensors

(temperature, humidity, and air pressure) on the LCD screen.

If Wi-Fi is accessible, the data are transferred and uploaded to

the cloud.

Figure 14 (a) shows the monitoring system at the start of the

operation, as well as taking one of the readings after it is turned

on. Figure 14 (b) shows the readings (temperature, humidity,

altitude, and air pressure), and the result or confirmation of the

Naive Bayes algorithm can be observed in the first row of the

LCD.

ThingSpeak is often used for IoT system proof-of-concept

and prototypes that require analytics. The cloud-based IoT

analytics platform ThingSpeak was used to evaluate the

condition of the completed system and display the real-time

data streams. Figure 15 shows the findings of this study.

ThingSpeak displays data in real-time that it gets from a

weather station gadget. A specialized software created for this

purpose will display the same findings on smartphones when

all data and results have been submitted to the ThingSpeak

website, as shown in Figure 16.

Figure 12. The monitoring hardware system's architecture

These IoT systems, like the ESP32-based environmental

monitors, provide huge benefits through the real-time data

they gather, making resource management and sustainability

easier than ever. But on freshening it up with their scale, they

can contribute to electronic waste, the pollution that comes

from battery usage, and energy consumption. Energy-efficient

designs, sustainable materials, and proper recycling practices

should be used to minimize their impact on the environment.

As the proposed ESP32-based environmental monitoring

system is an example of an Internet of Things (IoT) system,

running in potentially energy-constrained environments, the

need for power management to facilitate long-lived, reliable

125

deployments becomes a primary concern. ESP32

microcontroller is very powerful, but it also consumes a lot of

energy when working Wi-Fi or sensor modules around the

clock. There are a few different methods to reduce power

consumption.

Figure 13. The flowchart of the weather station system

(a)

(b)

Figure 14. The monitoring circuit with deferments results

Figure 15. ThingSpeak website window with results (temperature, humidity, air pressure, and altitude)

126

To combat this, the system can use deep sleep modes

available on the ESP32, powering down most of its

components between sensor readings and waking at scheduled

intervals to log and process the data. Second, sensor readings

can be taken at optimized intervals based on an application's

sensitivity to change, preventing unnecessary activity. Third,

as BME280 and DHT22 are low-power sensors, they should

be used efficiently by powering them using GPIO pins and

turning them off after each reading. Data transmission to the

cloud (ThingSpeak) can be made less frequent or scheduled to

save Wi-Fi usage, which is a big power drain. Finally,

including energy harvesting techniques such as solar panels or

optimized battery management systems increases operational

duration, contributing to the sustainability of the system and

enabling its applicability in remote areas or battery-operated

installations.

Figure 16. Smart phone window with system results

(temperature, humidity, air pressure, and altitude)

Measurements made using the suggested method for the

weather station were confirmed using the Pearson correlation

coefficient [29]. The degree to which two variables are

significantly correlated is determined by the Pearson

correlation coefficient, which is sometimes referred to as

Pearson's statistical test. Pearson's correlation coefficient,

represented by the Greek letter rho (ꞅ), expresses how strongly

the two variables are linearly related. The Pearson correlation

coefficient is given by Eq. (7). Table 6 shows the results of the

proposed system and its comparison with one of the devices

available in the market.

Γ =
∑ (𝑋𝑖−𝑋)(𝑌𝑖−𝑌)𝑖

√∑ (𝑋𝑖−𝑋)𝑖
2

∑ (𝑌𝑖−𝑌)𝑖
2 (7)

Tables 7 and 8 show the set of readings at different times

for which the Pearson correlation coefficient is applied to the

temperature and humidity readings in the table to verify the

practical design results. Pearson’s coefficients for temperature

and humidity were calculated using Eq. (8) and Eq. (9).

Table 6. System results at different times

No. T(C) H(%) Pressure(pa) Altitude(m)

1 29.3 40 101617 10.96926

2 34.2 40 101565 11.15167

3 29.3 35 101644 11.87799

4 29.3 33 101636 11.46312

5 38.6 18 101652 12.87441

6 31.3 34 101629 10.7991

7 32.3 31 101642 11.62887

8 34.7 29 101647 12.87441

9 36.4 24 101654 12.54295

10 33.8 32 101586 10.89647

Table 7. System results for temperature to calculate

Pearson's correlation coefficient

T1 T2
T1-M

(T1)

T2-M

(T2)

(T1-M

(T1)) ^2

(T2-M

(T2))

^2

(T1-

M(T1))

* (T2-

M(T2))

40 40 8.4 7.1 70.56 50.41 59.64

40 49 8.4 16.1 70.56 259.21 135.24

35 34 3.4 1.1 11.56 1.21 3.74

33 33 1.4 0.1 1.96 0.01 0.14

18 19 -13.6 -13.9 184.96 193.21 189.04

34 34 2.4 1.1 5.76 1.21 2.64

31 32 -0.6 -0.9 0.36 0.81 0.54

29 30 -2.6 -2.9 6.76 8.41 7.54

24 25 -7.6 -7.9 57.76 62.41 60.04

32 33 0.4 0.1 0.16 0.01 0.04

Table 8. System results for humidity to calculate Pearson's

correlation coefficient

H1 H2
H1-M

(H1)

H2-M

(H2)

(H1-

M

(T1))

^2

(H2-M

(H2))

^2

(H1-M

(H1))

*(H2-

M(H2))

40 40 8.4 7.1 70.56 50.41 59.64

40 49 8.4 16.1 70.56 259.21 135.24

35 34 3.4 1.1 11.56 1.21 3.74

33 33 1.4 0.1 1.96 0.01 0.14

18 19 -13.6 -13.9 184.96 193.21 189.04

34 34 2.4 1.1 5.76 1.21 2.64

31 32 -0.6 -0.9 0.36 0.81 0.54

29 30 -2.6 -2.9 6.76 8.41 7.54

24 25 -7.6 -7.9 57.76 62.41 60.04

32 33 0.4 0.1 0.16 0.01 0.04

𝛤𝑇 =
∑ (𝑇1𝑖−𝑀(𝑇1))(𝑇2𝑖−𝑀(𝑇2))𝑖

√∑ (𝑇1𝑖−𝑀(𝑇1))𝑖
2 ∑ (𝑇2𝑖−𝑀(𝑇2))𝑖

2

𝛤𝑇 =
73.972

115.21
= 0.6421

(8)

𝛤𝐻 =
∑ (𝐻1𝑖−𝑀(𝐻1))(𝐻2𝑖−𝑀(𝐻2))𝑖

√∑ (𝐻1𝑖−𝑀(𝐻1))𝑖
2 ∑ (𝐻2𝑖−𝑀(𝐻2))𝑖

2

𝛤𝐻 =
458.6

486.58
= 0.9425

(9)

127

where, M is the mean of the Values.
The final results after the Pearson's coefficient calculation

for temperature and humidity are equal to (T = 0.6421) and (H

= 0.9425), respectively. According to the values of the Pearson

coefficient calculation, the system results were good because

the values of Γ were between 1 and -1.

5. CONCLUSIONS AND FUTURE WORK

In conclusion, a machine learning-based intelligent IoT

ecosystem is created and put into use as a weather monitoring

station to record and track meteorological parameters,

including humidity, temperature, and air pressure.

Incorporating a variety of specialized weather sensors enables

granular data collection, while microcontrollers and

connectivity modules ensure real-time data relay and

processing.

This ecosystem permits immediate data availability and the

capacity to predict future weather patterns and phenomena

through the adeptness of machine-learning models. Using

machine learning, the system evolves, adapts, and refines its

predictions over time by leveraging past and present data. As

more data accumulates, the predictive prowess of the model

improves, ensuring more accurate weather forecasts. This has

profound implications for various sectors, including

agriculture, aviation, event planning, and disaster management,

where timely and precise weather updates can be game-

changing.

The intelligent IoT ecosystem for weather monitoring

encapsulates the paradigm of modern technology, including

interconnectivity, intelligence, and adaptability. By harnessing

the power of IoT and machine learning, we are not just

passively observing the weather but also proactively

predicting and preparing for it, epitomizing the future of

weather monitoring.

Future research direction can involve integrating more

datasets such as specific air quality sensors in the IoT-based

environmental monitoring systems, or using more robust

machine learning models like ensemble methods, deep

learning, or reinforcement learning to further enhance the

prediction capabilities. Real-time weather data, satellite

imagery, and spatial-temporal models from many devices

could improve predictions. If large-scale deployment is to take

place, edge computing and energy-efficient machine learning

algorithms can help further optimize power consumption and

allow for swifter decision making.

REFERENCES

[1] Mabrouki, J., Azrour, M., Dhiba, D., Farhaoui, Y., El

Hajjaji, S. (2021). IoT-based data logger for weather

monitoring using Arduino-based wireless sensor

networks with remote graphical application and alerts.

Big Data Mining and Analytics, 4(1): 25-32.

https://doi.org/10.26599/BDMA.2020.9020018

[2] Djordjevic, M., Dankovic, D. (2019). A smart weather

station based on sensor technology. Facta Universitatis,

Series: Electronics and Energetics, 32(2): 195-210.

https://doi.org/10.2298/fuee1902195d

[3] Hahn, C., Garcia-Marti, I., Sugier, J., Emsley, F.,

Beaulant, A.L., Oram, L., Strandberg, E., Lindgren, E.,

Sunter, M., Ziska, F. (2022). Observations from personal

weather stations—EUMETNET interests and experience.

Climate, 10(12): 192.

https://doi.org/10.3390/cli10120192

[4] Mamat, N.H., Shazali, H.A., Othman, W.Z. (2022).

Development of a weather station with water level and

waterflow detection using Arduino. Journal of Physics:

Conference Series, 2319(1): 012020.

https://doi.org/10.1088/1742-6596/2319/1/012020

[5] Bella, H.K.D., Khan, M., Naidu, M.S., Jayanth, D.S.,

Khan, Y. (2023). Developing a sustainable IoT-based

smart weather station for real time weather monitoring

and forecasting. E3S Web of Conferences, 430: 01092.

https://doi.org/10.1051/e3sconf/202343001092

[6] Wisanwanichthan, T., Thammawichai, M. (2021). A

double-layered hybrid approach for network intrusion

detection system using combined naive bayes and SVM.

IEEE Access, 9: 138432-138450.

https://doi.org/10.1109/ACCESS.2021.3118573

[7] He, W., He, Y., Li, B., Zhang, C. (2019). A naive-Bayes-

based fault diagnosis approach for analog circuit by using

image-oriented feature extraction and selection

technique. IEEE Access, 8: 5065-5079.

https://doi.org/10.1109/ACCESS.2018.2888950

[8] Xue, Z., Wei, J., Guo, W. (2020). A real-time Naive

Bayes classifier accelerator on FPGA. IEEE Access, 8:

40755-40766.

https://doi.org/10.1109/ACCESS.2020.2976879

[9] Aridas, C.K., Karlos, S., Kanas, V.G., Fazakis, N.,

Kotsiantis, S.B. (2019). Uncertainty based under-

sampling for learning naive bayes classifiers under

imbalanced data sets. IEEE Access, 8: 2122-2133.

https://doi.org/10.1109/ACCESS.2019.2961784

[10] Afdhaluzzikri, A., Mawengkang, H., Sitompul, O.S.

(2022). Perfomance analysis of Naive Bayes method

with data weighting. Sinkron: Jurnal dan Penelitian

Teknik Informatika, 6(3): 817-821.

https://doi.org/10.33395/sinkron.v7i3.11516

[11] Vulova, S., Meier, F., Fenner, D., Nouri, H., Kleinschmit,

B. (2020). Summer nights in Berlin, Germany: modeling

air temperature spatially with remote sensing,

crowdsourced weather data, and machine learning. IEEE

Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 13: 5074-5087.

https://doi.org/10.1109/JSTARS.2020.3019696

[12] Mnati, M.J., Van den Bossche, A., Chisab, R.F. (2017).

A smart voltage and current monitoring system for three

phase inverters using an android smartphone application.

Sensors, 17(4): 872. https://doi.org/10.3390/s17040872

[13] Hasan, I.J., Salih, N.A.J., Abdulkhaleq, N.I., Mnati, M.J.

(2019). An Android smart application for an Arduino

based local meteorological data recording. IOP

Conference Series: Materials Science and Engineering,

518(4): 042014. https://doi.org/10.1088/1757-

899X/518/4/042014

[14] Kim, J., Minagawa, D., Saito, D., Hoshina, S., Kanda, K.

(2022). Development of Kosen weather station and

provision of weather information to farmers. Sensors,

22(6): 2108. https://doi.org/10.3390/s22062108

[15] Nallakaruppan, M.K., Kumaran, U.S. (2019). IoT based

machine learning techniques for climate predictive

analysis. International Journal of Recent Technology and

Engineering (IJRTE), 5: 171-175.

[16] Shahadat, A.S.B., Ayon, S.I., Khatun, M.R. (2020).

Efficient IoT based weather station. In 2020 IEEE

128

International Women in Engineering (WIE) Conference

on Electrical and Computer Engineering (WIECON-

ECE), Bhubaneswar, India, pp. 227-230.

https://doi.org/10.1109/WIECON-

ECE52138.2020.9398041

[17] NarasimhaRao, Y., Chandra, P.S., Revathi, V., Kumar,

N.S. (2020). Providing enhanced security in IoT based

smart weather system. Indonesian Journal of Electrical

Engineering and Computer Science, 18(1): 9-15.

https://doi.org/10.11591/ijeecs.v18.i1.pp9-15

[18] Espressif Systems. (2020). ESP32 Datasheet.

https://www.espressif.com/sites/default/files/documenta

tion/esp32_datasheet_en.pdf.

[19] Bosch Sensor Tec. (2013). BMP180 Digital pressure

sensor. https://www.adafruit.com/product/1603

[20] Microbot, “DHT11 Humidity and Temperature Digital

Sensor,” pp. 1–3, 2011,

https://www.tme.eu/Document/7a4fd48d400b8c4c8309e

f1e2b13cdd4/MR003-005-1.pdf.

[21] Handson Technology. (2008). I2C Serial Interface 20x4

LCD Module. pp. 1-26.

https://www.handsontec.com/dataspecs/I2C_2004_LCD

.pdf.

[22] Technology, H. (2020). Breadboard Power Supply

Module. Www.Components101.Com, pp. 1-3.

https://components101.com/modules/5v-mb102-

breadboard-power-supply-module.

[23] Arduino IDE. https://www.arduino.cc/en/software.

[24] ThingSpeak for IoT Projects. https://thingspeak.com/.

[25] MIT App Inventor. http://appinventor.mit.edu/.

[26] Saritas, M.M., Yasar, A. (2019). Performance analysis of

ANN and Naive Bayes classification algorithm for data

classification. International Journal of Intelligent

Systems and Applications in Engineering, 7(2): 88-91.

[27] Ren, J., Lee, S. D., Chen, X., Kao, B., Cheng, R., Cheung,

D. (2009). Naive bayes classification of uncertain data.

In 2009 Ninth IEEE International Conference on Data

Mining, Miami Beach, FL, USA, pp. 944-949.

https://doi.org/10.1109/ICDM.2009.90

[28] Fritzing. https://fritzing.org/.

[29] Pearson Correlation Coefficient Calculator.

https://www.socscistatistics.com/tests/pearson/.

129

