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This paper presents mathematical model of stratified deep water under modified gravity 

using the perturbation method (series solution) which involves the use of a small 

parameter, often denoted as 𝑔ˈ , to represent the modification in gravity. Then the

governing equations obtained from conserved momentum and continuity equation for 

the fluid motion are then expanded in terms of this small parameter, allowing for a 

simplified analysis of the effects of the modified gravity on stratified deep water. We 

employed perturbation method to allow for the solution of the governing equations in 

terms of a power series with the small Coriolis parameter f. In addition, we 

demonstrated that modified gravity is the major factor that necessitates stratification in 

deep water. One key aspect of this model is the assumption of small modifications to 

the gravity due to density disruption, which allows for the use of a perturbation 

expansion. Overall, the mathematical model of stratified deep water under modified 

gravity using the perturbation method provides a useful tool for studying the effects of 

modified gravity on the behavior of stratified deep water systems. The mathematical 

model of stratified deep water flow under modified gravity using the perturbation 

method analysis provides new insights into the dynamics of deep water systems. By 

considering the effects of modified gravity, the model captured the behavior of stratified 

flows in environments where the gravitational force is altered, such as in the presence 

of strong magnetic fields or in the context of planetary bodies with different 

gravitational properties, perturbation method allows for the analysis of small deviations 

from the base state, enabling the identification of instability mechanisms and the 

prediction of the emergence of new flow regimes. This reveals the conditions under 

which the stratified flow becomes unstable and transitions to turbulent or other complex 

states, which is crucial for understanding the dynamics of deep water systems. This 

model contributes to the advancement of our knowledge of stratified deep water flow 

under modified gravity, providing insights that can be applied in various fields, such as 

oceanography, geophysics, and planetary science. 
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1. INTRODUCTION

Stratification in deep water means the layering or division 

of water masses based on their temperature, density and 

salinity characteristics in deep ocean surroundings [1]. It plays 

a crucial role in oceanography with significant implications for 

the distribution of heat, nutrients, and dissolved gases in the 

ocean [2]. In deep water, stratification typically takes place in 

areas where there is limited vertical mixing between different 

water masses [3]. The major factors influencing stratification 

are temperature and salinity gradients. Cold and denser water 

tends to sink, but warm and less dense water rises [4]. Salinity 

also affects water density, with higher salinity usually leading 

to increased density. The primary mechanism responsible for 

deep water stratification is thermohaline circulation, which is 

equally known as the ocean conveyor belt [5]. This circulation 

is driven by differences in temperature and salinity, which in 

turn causes water masses to sink and rise, creating vertical 

stratification [6]. Deep water masses are formed in high-

latitude regions, where the surface water cools and becomes 

denser due to low temperatures and high salinity [7]. This 

dense water sinks to the deep ocean, forming deep water 

masses. The stratification in deep water has important 

implications for the distribution of nutrients and dissolved 

gases [8, 9]. Deep water masses are mostly nutrient-rich owing 

to the processes like upwelling and mixing with organic matter 

sinking from the surface [10]. This nutrient-rich water 

supports diverse marine ecosystems in deep-sea environments 

[11]. Imperatively, deep water masses play a crucial role in the 

global carbon cycle by sequestering carbon dioxide from the 

atmosphere and transporting it to the deep ocean where it is in 

abundant [12, 13]. 

Additionally, deep water stratification is essential for 

studying climate patterns, ocean circulation, and the impact of 

climate change on the oceans [14, 15]. Scientists use various 

methods and instruments, including autonomous underwater 
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vehicles (AUVs) and conductivity-temperature-depth (CTD) 

profilers, to measure temperature, salinity, and density profiles 

in the deep ocean and study stratification patterns [16]. Earth’s 

atmosphere and oceans exhibit complex patterns of motion 

over a vast range of space and time. The deep water and its 

density gradients may strongly affect the hydrodynamics [17]. 

The Density stratification processes are therefore essential in 

geophysical flows, and equally they are key features in the 

biogeochemical mechanisms occurring in natural aquatic 

systems [18-21].   

In the previous study [22], we worked on equations for deep 

water and developed model for waves moving both right and 

left but this model did not factor the effect of modified gravity. 

The Coriolis force always act at right angles to the direction of 

movement, which is to the right in the Northern Hemisphere 

and to the left in the Southern Hemisphere [23, 24]. 

To fully account for the description of the motion of mass 

conservation (continuity), the conservation of internal energy 

must also be added [15]. It can be expressed in terms of density 

or in terms of temperature and salinity. To make these motion 

more tractable and directly applicable to the flow circulation, 

various simplification and approximations are applied [16-18]. 

The simplifications are usually based on a scale analysis of the 

various terms in the equations. The vertical height or depth of 

the fluid layer is much larger than the horizontal scale of 

motion [25]. The Boussinesq approximations in which the 

density variations are assumed to be small compared to the 

mean value and are therefore neglected except in the buoyancy 

term of the equation [1, 19]. As result of this, the first 

approximation for the vertical component of the conservation 

of momentum can be reduced to a diagnostic equation for 

hydrostatic balance [9]. The second approximation, which is 

closely equivalent to assuming that sea water is 

incompressible, referring to, mass continuity can be reduced 

to a diagnostic equation for the conservation of volume [20-

22]. The embedding of parameter in perturbation method and 

its application [26] is useful in the concept of series solution. 

 

 

2. ASSUMPTIONS OF THE MODEL 

 

We wish to formulate some necessary and basic 

assumptions to aid our model mathematically. 

The following are the assumptions for the model: 

i. The fluid is incompressible with continuous density 

stratification. 

ii. In deep water flows the depth is infinite, so the vertical 

length scale (h) and the horizontal length scale (L) guarantee 

deep water regime when: 

 
𝐿

ℎ
≪ 1(𝑑𝑒𝑒𝑝 𝑤𝑎𝑡𝑒𝑟 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) but fails when 

𝐿

ℎ
≫ 1 

 

iii. The velocity components in the directions of increasing 

x, y and z will be denoted by u, v and w. 

iv. We denoted depth-average velocity in the x direction as 

U=𝑢(𝑥, 𝑦, 𝑡) and the depth-average velocity in the y- direction 

as 𝑣 = 𝑣 ( 𝑥; 𝑦; 𝑡 ). While the plane (z=0) can be chosen 

arbitrarily, it is usually positioned at mean water level. 

v. Take the (x, y) horizontal plane as being parallel to the 

surface of the still water, and the depth of the water at a given 

point as ℎ =(𝑥, 𝑦, 𝑡)>0. 

vi. Measuring down from this plane to the transition zone 

which is the thermocline, the point where the circular orbit of 

the deep water particles decrease at depth 𝑧 = −𝜁(𝑥, 𝑦). The 

equation 𝑧 = −𝜁(𝑥, 𝑦) is the equation for the bottom surface 

at which the diameter of the orbital path is zero at any instant. 

The interaction of deep water flow at this thermocline regime, 

which at this instant serves as the bottom condition is the layer 

of the ocean where the temperature changes most rapidly with 

varying depth. 

vii. The Cartesian coordinates x, y and z will be used, in 

Cartesian coordinates for deep water waves, the z-axis 

typically measures the vertical direction, the x-axis is the 

horizontal direction, the y-axis represents another horizontal 

direction and the z-axis represents the vertical direction up-

down. 

viii. In deep water, the motion of water particle becomes 

circular as it moves from the perturbed surface through the 

strata. 

ix. The variation in velocity along y- direction is constant 

because the flow is predominantly in horizontal direction so 

that partial derivative of velocity with respect to y is zero. 

 

 

3. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

 

The formulation of stratified deep water can be done using 

various physical and mathematical principles. This is done by 

adopting conservation of momentum. 

Equation to describe the principle of ocean dynamics and 

continuity equation to account for the movement of water 

masses with their impact on the vertical structure of the water 

column. 

Figure 1 is the geometry of stratified deep water with 

circular pattern as it decays exponentially across the strata. 

 

 

 

Figure 1. Exponential decay of deep water particles 

 

 
 

Figure 2. Symmetry of deep water decay at transition zone 

 

Figure 2 is the geometry of deep water with infinite depth 

showing transition zone where the deep water is stratified 

under modified gravity. 

Now we consider the dynamics of multiple layers of fluid 

stacked on top of each other in a deep water. This is a very old 

way for representation of continuous stratification, but it turns 

out to be a powerful model of many geophysical interesting 

phenomena. The pressure is continuous across the interface, 

but the density jumps discontinuously and this allows the 
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horizontal velocity to have a corresponding discontinuity. In 

each layer pressure is given by the hydrostatic approximation, 

and so anywhere in the interior. We can find the pressure as 

many times as possible by integrating the hydrostatic 

approximation down from the top. This can be uniquely done 

by applying Boussinesq Equation. Thus, hydrostatic 

approximation is, 

 
𝑑𝑝

𝑑𝑧
= −𝑔𝑝 

 

The multiple layers of stratified deep water stacked on top 

of each other, 

 

 
 

Figure 3. Multilayer system of stratified deep water 

 

Figure 3 is the multilayer stratified deep water system 

depicting stacking of fluid in strata. 

The layers are numbered from the top down. The 

coordinates of the interfaces are denoted by, and the layer 

thickness ℎ𝑖. 
 

∫𝑑𝑝 = ∫ (−𝑔𝜌𝑑𝑧)
𝜂𝑧

𝜂0

 (1) 

 

𝑝1 = −𝜌1𝑔(𝑧 − 𝜂0) 
𝑝1 = 𝜌1𝑔(𝜂0 − 𝑧) 

(2) 

 

For the second layer, integrating from 𝜂0 to 𝜂1 and 𝜂1 to 𝑧 

we have 

 

𝑝2 = −𝜌𝑔∫ 𝑑𝑧 − 𝜌𝑔∫ 𝑑𝑧
𝜂1

𝑧

𝜂1

𝜂0

 

𝑝2 = 𝜌1𝑔(𝜂0 − 𝜂1)+𝜌2𝑔(𝜂1 − 𝑧)= 𝜌1𝑔𝜂0 −
𝜌1𝑔ˈ1𝜂1 + 𝜌2𝑔ˈ1𝜂1 − 𝜌2𝑔𝑧 

𝑝2 = 𝜌1𝑔𝜂0 + (𝜌2 − 𝜌1)𝑔ˈ𝜂1 − 𝜌2𝑔𝑧 

(3) 

 

At 𝑧 = 0, 𝑝2𝑔𝑧 = 0, hence 

 

𝑝2 = 𝜌1𝑔𝜂0 + (𝜌2 − 𝜌1)𝑔ˈ𝜂1 

 

From Eq. (2), 𝑝1 = 𝜌1𝑔𝜂0 and 

 

𝜌1𝑔ˈ1𝜂1 = 𝑔(𝜌2 − 𝜌1)𝜂1 (4) 

 

From Eq. (4), we get 

𝑔ˈ1 = 𝑔
(𝜌2−𝜌1)

𝜌1
=g

Δ𝜌

�̅�
 

Similarly for nth layers, we have 

 

𝑔ˈ𝑛 = 𝑔
(𝜌𝑛+1 − 𝜌𝑛)

𝜌𝑛
 (5) 

 

Now for generality we can suppress n on 𝑔𝑛
ˈ  to give 𝑔ˈ and 

express 

 

𝑔ˈ = 𝑔
(𝜌𝑖+1 − 𝜌𝑖)

𝜌𝑖
 (6) 

 

Eq. (6) is the general nth term for the expression of modified 

gravity. 

And similarly for other levels. The term involving 𝑧  is 

irrelevant for the dynamics, because only the horizontal 

motion is considered. Omitting this term, for the two layered 

model, the dynamical pressure is expressed as 

 
𝑝
1 = 𝜌1𝑔𝜂0 

𝑝2 = 𝜌1𝑔𝜂0 + 𝜌1𝑔ˈ1𝜂1 
(7) 

 

𝜂1 can be assumed from the top down; hence 

𝜂0 = ℎ1 + ℎ2 + 𝜂𝑏 and 𝜂1 = ℎ2 + 𝜂𝑏 

Therefore, the pressure in the two layers’ system can be 

expressed as  

 

𝑝1 = 𝜌1𝑔𝜂0 = 𝜌1𝑔(ℎ1 + ℎ2 + 𝜂𝑏) 
𝑝
2 = 𝜌1𝑔𝜂0 + 𝜌1𝑔ˈ1𝜂1 

= 𝜌1𝑔(ℎ1 + ℎ2 + 𝜂𝑏)+𝜌1𝑔ˈ1(ℎ2 + 𝜂𝑏) 

(8) 

 

Finally, the mass conservation equation for each layer has 

the same form as the single-layer case, where 𝜂𝑏 is the bottom 

elevation at thermocline regime, hence we have 

 
𝐷ℎ𝑛
𝐷𝑡

+ ℎ𝑛∇. 𝑢𝑛 (9) 

 

Consider two layers of incompressible fluid under 

kinematic and dynamic boundary condition. We shall denote 

the upper layer 1 and the intermediate layer 2, with respective 

densities 𝜌1 and 𝜌2 , the mean horizontal velocities 𝑢1 and 𝑢2 

the thicknesses ℎ1 and ℎ2, with ℎ1 + ℎ2 = 𝐻, where H is the 

distance between the mean surface and the overall thermocline 

position. The pressure P is constant, the unknowns are 

therefore ℎ1, ℎ2, 𝑢1, 𝑢2, 𝜌1, 𝜌2, and all are functions of (x, t). 

 

 
 

Figure 4. Two layers of stratified deep water 

 

Figure 4 displays two layers of stratified deep water with 

continuous densities 𝜌1, 𝜌2  and horizontal velocities , 𝑢1, 𝑢2 

with varying depths ℎ1 and ℎ2. 
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The corresponding equations describing the motion of the 

stratified deep water are: 

 
𝜕ℎ1
𝜕𝑡

+
𝜕ℎ1𝑢1
𝜕𝑥

= 0 (10) 

 
𝜕ℎ2
𝜕𝑡

+
𝜕ℎ2𝑢2
𝜕𝑥

= 0 (11) 

 

(ℎ2𝑢2)𝑡 + (ℎ2𝑢2
2 +

𝑃ℎ2

𝜌2
+ 𝑔

𝑃2ℎ1ℎ2

𝜌2
+ 𝑔

ℎ2
2

2
)
𝑥
  

=−
1

𝜌2
(𝑃 + 𝑔𝜌2ℎ2)ℎ2𝑥 

(12) 

 

(ℎ1𝑢1)𝑡 + (ℎ1𝑢1
2 +

𝑃ℎ1

𝜌1
+ 𝑔𝜌2ℎ2ℎ1 + 𝑔

ℎ1
2

2
)
𝑥
  

=−
1

𝜌1
(𝑃 + 𝑔𝜌1ℎ1)ℎ1𝑥 

(13) 

 

Now if we incorporate the effect of gravity variation into 

the model at stratified condition then the model equations 

become: 

 

𝜕(ℎ1𝑢1)

𝜕𝑡
+
𝜕(ℎ1𝑢1

2 +
𝑔
𝜌0 − 𝜌1
𝜌1

ℎ1
2

2
𝜕𝑥

 

= −𝑔
𝜌1 − 𝜌0
𝜌0

ℎ1
𝜕ℎ2
𝜕𝑥

− 𝑔
𝜌1 − 𝜌0
𝜌0

ℎ1
𝜕(𝜉)

𝜕𝑥
 

+𝑓𝑢1
𝜕(ℎ1𝑣1)

𝜕𝑡
= −𝑔

𝜌1 − 𝜌0
𝜌0

ℎ1
𝜕ℎ1
𝜕𝑦

 

−𝑔
𝜌1 − 𝜌0
𝜌0

ℎ1
𝜕(𝜉)

𝜕𝑥
+ 𝑓𝑢1

𝜕ℎ1
𝜕𝑡

+
𝜕(ℎ1𝑢1)

𝜕𝑥
= 0 

 

𝜕(ℎ2𝑢2)

𝜕𝑡
+

𝜕 (ℎ2𝑢2
2 +

𝑔
𝜌2 − 𝜌1
𝜌1

ℎ2
2

2
+ 𝑔

𝜌2 − 𝜌1
𝜌1

ℎ2ℎ1)

𝜕𝑥
 

= −𝑔
𝜌1 − 𝜌2
𝜌2

ℎ2
1

𝜕ℎ2
𝜕𝑥

− 𝑔
𝜌1 − 𝜌2
𝜌2

ℎ2
𝜕(𝜉)

𝜕𝑥
 

+𝑓𝑢2
𝜕(ℎ2𝑣2)

𝜕𝑡
= −𝑔

𝜌2 − 𝜌1
𝜌1

ℎ1
𝜕ℎ2
𝜕𝑦

 

−𝑔
𝜌2 − 𝜌1
𝜌1

ℎ2
𝜕(𝜉)

𝜕𝑦
+ 𝑓𝑢2

𝜕ℎ2
𝜕𝑡

+
𝜕(ℎ2𝑢2)

𝜕𝑥
= 0 

(14) 

 

 

4. ANALYSIS OF THE MODEL 

 

Having obtained equations for the model which takes into 

account the necessary functions under modified gravity, the 

solution of the model equations can be provided using 

perturbation method. Now we consider the solutions of the 

deep water flow models using perturbation method (series 

solution). 

The deep water flow model: With initial condition and 

boundary condition 

 

    𝑢1(𝑥, 0) = 𝑢0,       𝑢𝑥(0, 𝑦, 𝑡) = 0 

  𝑢𝑥(𝑙, 𝑡) = 0,          𝑢2(𝑥, 0) = 𝑢0 

𝑢2(𝑥, 𝑡) = 0, 𝑢𝑥(𝑥, 𝑡) = 0 

    𝑢(2)𝑥(0, 𝑡) = 0,    𝑢2(𝑥)(𝑙, 𝑡) = 0 

(15) 

 

ℎ(𝑥, 0) = 𝑚𝑒−𝑠(𝑥
2) − 𝜉(𝑥), ℎ𝑥(𝑢, 𝑡), where 𝜉(𝑥, 𝑦) =

𝛽𝑠𝑖𝑛(𝛼𝑥) 0 ≤ 𝛼 ≤ 90, and the values of 𝛽 and 𝛼 depends on 

the size of the stratified layer at thermocline regime. Where α 

is the measure of strength t and β is the measure of stability of 

the system. 

 

ℎ(𝑥, 𝑡 = 0) = 𝑚𝑒−𝑠(𝑥
2) − 𝜉(𝑥) 

 

Consider the equation for total derivative of the system: 

 
𝜕ℎ

𝜕𝑡
+
𝜕(ℎ1𝑢1)

𝜕𝑥
+
𝜕(ℎ2𝑢2)

𝜕𝑥
+
𝜕(ℎ3𝑢3)

𝜕𝑥
= 0 

𝜕ℎ

𝜕𝑡
+
𝜕(ℎ1𝑢1 + ℎ2𝑢2 + ℎ3𝑢3)

𝜕𝑥
= 0 

(16) 

 

That is, 

 
𝑑ℎ1
𝑑𝑡

+ ℎ1
𝜕(𝑢1)

𝜕𝑥
= 0 (17) 

 
𝑑ℎ2
𝑑𝑡

+ ℎ2
𝜕(𝑢2)

𝜕𝑥
= 0 (18) 

 
𝑑ℎ3
𝑑𝑡

+ ℎ3
𝜕(𝑢3)

𝜕𝑥
= 0 (19) 

 

Therefore, 

 
𝑑ℎ1
𝑑𝑡

= −ℎ1
𝜕(𝑢1)

𝜕𝑥
 (20) 

 
𝑑ℎ2
𝑑𝑡

= −ℎ2
𝜕(𝑢2)

𝜕𝑥
 (21) 

 
𝑑ℎ3
𝑑𝑡

= −ℎ3
𝜕(𝑢3)

𝜕𝑥
 (22) 

 

Note that if 𝑓 = (𝑥, 𝑦, 𝑡) ⇒ 𝑓 = (𝑥, 𝑡), since the variation 

in velocity in y- direction is very small and then neglected. 

By product rule, we have: 

 
𝑑𝑓

𝑑𝑡
=
𝜕𝑓

𝜕𝑡
.
𝑑𝑡

𝑑𝑡
+
𝜕𝑓

𝜕𝑥
.
𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦
.
𝑑𝑦

𝑑𝑡
 

 

Now, we can rewrite the model equation as, 

 

𝜕(ℎ1𝑢1)

𝜕𝑡
+
𝜕 (ℎ1𝑢1

2 + 𝑔(
𝜌1 − 𝜌0
𝜌0

)
ℎ1
2

2
⁄

𝜕𝑥

= −𝑔
𝜌1 − 𝜌0
𝜌0

 
𝜕𝜉

𝜕𝑥
+ 𝑓𝑢1 

𝑢1
𝜕ℎ1
𝜕𝑡

+ ℎ1
𝜕𝑢1
𝜕𝑡

+ 𝑢1
2
𝜕ℎ1
𝜕𝑥

+ 2ℎ1𝑢1
𝜕𝑢

𝜕𝑥
+ 𝑔

𝜌1 − 𝜌0
𝜌0

ℎ1
𝜕ℎ1
𝜕𝑥

=

= −𝑔
𝜌1 − 𝜌0
𝜌0

𝜕𝜉

𝜕𝑥
+ 𝑓𝑢1 

 

This is further simplified as: 

 

𝑢1 (
𝜕ℎ1
𝜕𝑡

+ 𝑢1
𝜕ℎ1
𝜕𝑥
) + ℎ1 (

𝜕𝑢1
𝜕𝑡

+ 2𝑢1
𝜕𝑢1
𝜕𝑥
) + 

𝑔
(𝜌1 − 𝜌0)

𝜌0
ℎ1
𝜕ℎ1
𝜕𝑥

= −𝑔
(𝜌0 − 𝜌1)

𝜌1

𝜕𝜉

𝜕𝑥
+ 𝑓𝑢1 

(23) 

 

From Eq. (23), recall the continuity equation for each of the 

stratification. 
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From the first stratification level, 

 
𝜕

𝜕𝑡
(ℎ1) +

𝜕

𝜕𝑥
(ℎ1𝑢1) = 0 

⇒
𝜕

𝜕𝑡
(ℎ1) + ℎ1

𝜕

𝜕𝑥
(𝑢1) + 𝑢1

𝜕(ℎ1)

𝜕𝑥
= 0 

𝜕

𝜕𝑡
(ℎ1) + 𝑢1

𝜕(ℎ1)

𝜕𝑥
= −ℎ1

𝜕

𝜕𝑥
(𝑢1) 

(24) 

 

Substituting Eq. (24) into (23), we get 

 

−𝑢1ℎ1
𝜕𝑢1
𝜕𝑡

+ ℎ1
𝜕

𝜕𝑥
(𝑢1) + 2𝑢1ℎ1

𝜕𝑢1
𝜕𝑥

+ 𝑔ℎ1
𝜌1 − 𝜌0
𝜌0

𝜕ℎ1
𝜕𝑥

 

= −𝑔ℎ1 (
𝜌1 − 𝜌0
𝜌0

)
𝜕𝜉

𝜕𝑥
+ 𝑓𝑢1ℎ1 (

𝜕

𝜕𝑡
𝑢1 + 𝑢1

𝜕

𝜕𝑥
𝑢1)

+ 𝑔ℎ1 (
𝜌1 − 𝜌0
𝜌0

)
𝜕ℎ1
𝜕𝑥

 

= −𝑔 (
𝜌1 − 𝜌0
𝜌0

)
𝜕𝜉

𝜕𝑥
+ 𝑓𝑢1 

(25) 

 

From Eq. (25), (
𝜕

𝜕𝑡
𝑢1 + 𝑢1

𝜕

𝜕𝑥
𝑢1) =

𝑑𝑢1

𝑑𝑡
 

Eq. (25) becomes; 

 

ℎ1
𝑑𝑢1
𝑑𝑡

+ 𝑔ℎ1 (
𝜌1 − 𝜌0
𝜌0

)
𝜕ℎ1
𝜕𝑥

= −𝑔 (
𝜌1 − 𝜌0
𝜌0

)
𝜕𝜉

𝜕𝑥
+ 𝑓𝑢1 

 

Using Eq. (17) in Eq. (23), yields 

 

ℎ1
𝑑𝑢1
𝑑𝑡

+ 𝑔
(𝜌1 − 𝜌0)

𝜌0
ℎ1
𝜕ℎ1
𝜕𝑥

 

= −𝑔
(𝜌1−𝜌0)

𝜌0

𝜕𝜉

𝜕𝑥
+ 𝑓𝑢1  

(26) 

 

Similarly, Eq. (18) in Eq. (23) can be expressed as 

 

𝑢2 (
𝜕ℎ2
𝜕𝑡

+ 𝑢2
𝜕ℎ2
𝜕𝑥
) + ℎ2 (

𝜕𝑢2
𝜕𝑡

+ 2𝑢2
𝜕𝑢2
𝜕𝑥

) 

+𝑔
(𝜌2 − 𝜌1)

𝜌1
ℎ2
𝜕ℎ2
𝜕𝑥

= −𝑔
(𝜌2 − 𝜌1)

𝜌1

𝜕𝜉

𝜕𝑥
+ 𝑓𝑢2 

(27) 

 

Using Eq. (18) in Eq. (27), we obtain 

 

ℎ2
𝑑𝑢2
𝑑𝑡

+ 𝑔
(𝜌2 − 𝜌1)

𝜌1
ℎ2
𝜕ℎ2
𝜕𝑥

= −𝑔
(𝜌2 − 𝜌1)

𝜌1

𝜕𝜉

𝜕𝑥
+ 𝑓𝑢2 (28) 

 

Again, Eq. (19) in Eq. (23) can be written as 

 

𝑢3 (
𝜕ℎ3
𝜕𝑡

+ 𝑢3
𝜕ℎ3
𝜕𝑥
) + ℎ3 (

𝜕𝑢3
𝜕𝑡

+ 2𝑢3
𝜕𝑢3
𝜕𝑥

) 

+𝑔
(𝜌3 − 𝜌2)

𝜌2
ℎ3
𝜕ℎ3
𝜕𝑥

= −𝑔
(𝜌3 − 𝜌2)

𝜌2

𝜕𝜉

𝜕𝑥
+ 𝑓𝑢3 

ℎ3
𝑑𝑢3
𝑑𝑡

+ 𝑔
(𝜌2 − 𝜌1)

𝜌1
ℎ3
𝜕ℎ3
𝜕𝑥

= −𝑔
(𝜌2 − 𝜌1)

𝜌1

𝜕𝜉

𝜕𝑥
+ 𝑓𝑢3 

(29) 

 

Now let 0 < 𝑓 ≪ 1, 𝑎𝑛𝑑 𝑔 = 𝑔
(𝜌𝑖+1−𝜌𝑖)

𝜌𝑖
= 𝑎𝑓. 

The perturbation method (series solution) is a technique 

used to solve partial differential equations (PDEs) by 

assuming a solution in the form of an infinite series. By 

applying this method to solve the PDE of deep water waves, 

the Coriolis parameter is included on the left-hand side of the 

equation to account for the effect of rotation on the wave 

propagation. The inclusion of the Coriolis parameter is 

important because deep water waves can propagate in the 

presence of rotation, and this rotation can affect the wave 

speed and direction. Again, including the Coriolis parameter 𝑓 

on the left-hand side of the equation, the effect of rotation is 

taken into account, and the solution obtained will be more 

accurate. Since the Coriolis parameter is approximately 

7.29×10-5/s, Gaspard de Coriolis, (1835) which is ≪ 1, we can 

equally write the series expansion of the velocities and height 

in terms of 𝑓.  

Suppose the solution (𝑢1, 𝑢2, ℎ1, ℎ2) 
 

𝑢1(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑓𝑢1(𝑥, 𝑡) + ⋯

𝑢2 (𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑓𝑢2(𝑥, 𝑡) + ⋯

𝑢3(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑓𝑢3(𝑥, 𝑡) + ⋯

ℎ1(𝑥, 𝑡) = ℎ0(𝑥, 𝑡) + 𝑓ℎ1(𝑥, 𝑡) + ⋯

ℎ2(𝑥, 𝑡) = ℎ0(𝑥, 𝑡) + 𝑓ℎ2(𝑥, 𝑡) + ⋯}
 
 

 
 

 (30) 

 

Substituting Eq. (30) in Eqs. (17)-(19), we get 

 
𝑑

𝑑𝑡
(ℎ0 + 𝑓ℎ1 +⋯ ) + (ℎ0 + 𝑓ℎ1 +⋯)

(
𝜕

𝜕𝑥
(𝑢0 + 𝑓𝑢1 +⋯) +

𝜕

𝜕𝑥
(𝑢0 + 𝑓𝑢1 +⋯)) = 0

𝑑

𝑑𝑡
(ℎ0 + 𝑓ℎ2 +⋯ ) + (ℎ0 + 𝑓ℎ2 +⋯)

(
𝜕

𝜕𝑥
(𝑢0 + 𝑓𝑢1 +⋯) +

𝜕

𝜕𝑥
(𝑢0 + 𝑓𝑢2 +⋯)) = 0

}
 
 
 
 

 
 
 
 

 (31) 

 

Eq. (31) gives 

 
𝑑

𝑑𝑡
ℎ0 +

𝑑

𝑑𝑡
𝑓ℎ1 +⋯

+ℎ0
𝜕

𝜕𝑥
𝑢0 + ℎ0

𝜕

𝜕𝑥
𝑓𝑢1 + 𝑓ℎ1

𝜕

𝜕𝑥
𝑢0

+𝑓2ℎ1
𝜕

𝜕𝑥
𝑓𝑢1 +⋯+= 0

𝑑

𝑑𝑡
ℎ0 +

𝑑

𝑑𝑡
𝑓ℎ2 +⋯

+ℎ0
𝜕

𝜕𝑥
𝑢0 + ℎ0

𝜕

𝜕𝑥
𝑓𝑢2 + 𝑓ℎ2

𝜕

𝜕𝑥
𝑢0

+𝑓2ℎ2
𝜕

𝜕𝑥
𝑓𝑢2 +⋯+= 0 }

 
 
 
 
 
 

 
 
 
 
 
 

 (32) 

 

Substituting Eq. (30) in Eq. (26), we get, 
 

(ℎ 0 + 𝑓ℎ1 +⋯)
𝑑

𝑑𝑡
(𝑢0 + 𝑓𝑢1 +⋯) 

+𝑎𝑓(ℎ0 + 𝑓ℎ1 +⋯)
𝜕

𝜕𝑥
(ℎ0 + 𝑓ℎ1 +⋯ 

= −𝑎𝑓
𝜕𝜉

𝜕𝑥
+ 𝑓(𝑢0 + 𝑓𝑢1 +⋯) 

ℎ0
𝑑

𝑑𝑡
𝑢0 + 𝑓ℎ0

𝑑

𝑑𝑡
𝑢1 + 𝑓ℎ1

𝑑

𝑑𝑡
𝑢0 + 𝑓

2ℎ1
𝑑

𝑑𝑡
𝑢1 +⋯

+𝑎𝑓ℎ0
𝜕

𝜕𝑥
ℎ0 + 𝑎𝑓

2ℎ0
𝜕

𝜕𝑥
ℎ1 +

𝑎𝑓2ℎ1
𝜕

𝜕𝑥
ℎ0 + 𝑎𝑓

3ℎ1
𝜕

𝜕𝑥
ℎ1 +⋯

+= −𝑎𝑓
𝜕𝜉

𝜕𝑥
+ 𝑓𝑢0 + 𝑓

2𝑢1 +⋯

 

(33) 

 

Substituting Eq. (30) in Eq. (28), we obtain 
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(ℎ0 + 𝑓ℎ1 +⋯)
𝑑

𝑑𝑡
(𝑢0 + 𝑓𝑢2 +⋯) 

+𝑎𝑓(ℎ0 + 𝑓ℎ2 +⋯)
𝜕

𝜕𝑥
(

ℎ0
+𝑓ℎ2 +⋯

) 

= −𝑎𝑓
𝜕𝜉

𝜕𝑥
+ 𝑓 (

𝑢0
+𝑓𝑢1 +⋯

) 

ℎ0
𝑑

𝑑𝑡
𝑢0 + 𝑓ℎ0

𝑑

𝑑𝑡
𝑢2 + 𝑓ℎ2

𝑑

𝑑𝑡
𝑢0 + 𝑓

2ℎ2
𝑑

𝑑𝑡
𝑢2

+⋯

+𝑎𝑓ℎ0
𝜕

𝜕𝑥
ℎ0 + 𝑎𝑓

2ℎ0
𝜕

𝜕𝑥
ℎ2 +

𝑎𝑓2ℎ2
𝜕

𝜕𝑥
ℎ0 + 𝑎𝑓

3ℎ2
𝜕

𝜕𝑥
ℎ2 +⋯

+= −𝑎𝑓
𝜕𝜉

𝜕𝑥
+ 𝑓𝑢0 + 𝑓

2𝑢2 +⋯

 

(34) 

 

Substituting Eq. (30) in Eq. (29), we obtain: 

 

ℎ0
𝑑

𝑑𝑡
𝑢0 + 𝑓ℎ0

𝑑

𝑑𝑡
𝑢3 + 𝑓ℎ3

𝑑

𝑑𝑡
𝑢0 + 𝑓

2ℎ3
𝑑

𝑑𝑡
𝑢3

+⋯+ 𝑎𝑓ℎ0
𝜕

𝜕𝑥
ℎ0 + 𝑎𝑓

2ℎ0
𝜕

𝜕𝑥
ℎ3 +

𝑎𝑓2ℎ3
𝜕

𝜕𝑥
ℎ0 + 𝑎𝑓

3ℎ3
𝜕

𝜕𝑥
ℎ3+⋯+

= −𝑎𝑓
𝜕𝜉

𝜕𝑥
+ 𝑓𝑢0 + 𝑓

2𝑢2 +

 (35) 

 

Comparing the coefficient of powers of 𝑓 from Eqs. (33)-

(35), we have: 

 

𝑓0: ℎ0
𝑑𝑢0

𝑑𝑡
= 0;         𝑢1(𝑥, 0) = 𝑢1 (36) 

 

ℎ0
𝑑𝑢0
𝑑𝑡

= 0;         𝑢2(𝑥, 0) = 𝑢2 (37) 

 

ℎ0
𝑑𝑢0
𝑑𝑡

= 0;         𝑢3(𝑥, 0) = 𝑢3 (38) 

 
𝑑ℎ0
𝑑𝑡

= −ℎ0 (
𝜕𝑢1
𝜕𝑥
) ; ℎ0(𝑥, 0) = 𝑚𝑒−𝑠(𝑥

2) − 𝜉(𝑥, 0) 

𝑑ℎ0
𝑑𝑡

= −ℎ0 (
𝜕𝑢2
𝜕𝑥
) ; ℎ0(𝑥, 0) = 𝑚𝑒−𝑠(𝑥

2) − 𝜉(𝑥, 0) 

𝑑ℎ0
𝑑𝑡

= −ℎ0 (
𝜕𝑢3
𝜕𝑥
) ; ℎ0(𝑥, 0) = 𝑚𝑒−𝑠(𝑥

2) − 𝜉(𝑥, 0) 

(39) 

 

𝑓1: 

ℎ0
𝑑𝑢1
𝑑𝑡

+ ℎ1
𝑑𝑢0
𝑑𝑡

+ 𝑎ℎ0
𝜕ℎ0
𝜕𝑥

= −𝑎
𝜕𝜉

𝜕𝑥
+ 𝑢0;

𝑢1(𝑥, 0) = 0

ℎ0
𝑑𝑢2
𝑑𝑡

+ ℎ2
𝑑𝑢0
𝑑𝑡

+ 𝑎ℎ0
𝜕ℎ0
𝜕𝑥

= −𝑎
𝜕𝜉

𝜕𝑥
+ 𝑢0;

 𝑢2(𝑥, 0) = 0 }
 
 
 
 
 

 
 
 
 
 

 
(40) 

 
𝑑ℎ1
𝑑𝑡

+ ℎ0
𝜕𝑢1
𝜕𝑥

+ ℎ1
𝜕𝑢0
𝜕𝑥

= 0 (41) 

 
𝑑ℎ2
𝑑𝑡

+ ℎ0
𝜕𝑢2
𝜕𝑥

+ ℎ2
𝜕𝑢0
𝜕𝑥

= 0 (42) 

 

𝑓2: 

ℎ1
𝑑

𝑑𝑡
𝑢1 + 𝑎ℎ0

𝜕

𝜕𝑥
ℎ1 + 𝑎ℎ1

𝜕

𝜕𝑥
ℎ0

= 𝑢1;

 𝑢1(𝑥, 0) = 0

ℎ2
𝑑

𝑑𝑡
𝑢2 + 𝑎ℎ0

𝜕

𝜕𝑥
ℎ2 + 𝑎ℎ2

𝜕

𝜕𝑥
ℎ0

= 𝑢2;

 𝑢2(𝑥, 0) = 0 }
 
 
 

 
 
 

 
(43) 

 

Now integrating Eq. (36) with respect to t, we have: 

 

𝑢0(𝑥, 𝑡) = 𝑐1 = 𝑐𝑜𝑛𝑠𝑡 𝑎𝑛𝑡 
𝑢0(𝑥, 0) = 𝑐1 = 𝑢0 

𝑢0(𝑥, 𝑡) = 𝑢0 

(44) 

 

Integrating Eq. (37) with respect to t, we have: 

 

𝑢1(𝑥, 𝑡) = 𝑐2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

𝑢1(𝑥, 0) = 𝑐2 = 𝑢1 

 

Then 

 

𝑢1(𝑥, 𝑡) = 𝑢1 (45) 

 

By using Eqs. (44) and (45), Eq. (37) reduces to 

 
𝑑ℎ0

𝑑𝑡
= −ℎ0(0) = 0, 

𝑑ℎ0

𝑑𝑡
= 0, 

ℎ0(𝑥, 0) = 𝑑 − 𝜉(𝑥, 0) = 𝑚𝑒−𝑠(𝑥
2) − 𝛽 sin(𝛼𝑥) 

= 𝑚𝑒−𝑠𝑥
2
− 𝛽 sin(𝛼𝑥) 

 

Integrating with respect to, gives: 

 

ℎ0(𝑥, 𝑡) = 𝑐3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

ℎ0(𝑥, 0) = 𝑐3 = 𝑚𝑒
−𝑠 (𝑥2) − 𝜉(𝑥, 0) 

ℎ0(𝑥, 𝑡) = 𝑚𝑒
−𝑠𝑥2 − 𝛽 sin(𝛼𝑥) 

(46) 

 

Using Eqs. (45)-(47), Eq. (39) reduces to 

 

𝑑𝑢1
𝑑𝑡

=
−ℎ1

𝑑𝑢0
𝑑𝑡

− 𝑎ℎ0
𝜕ℎ0
𝜕𝑥

− 𝑎
𝜕𝜉
𝜕𝑥
+ 𝑢0

ℎ0

= −
ℎ1
ℎ0

𝑑𝑢0
𝑑𝑡

− 𝑎
𝜕ℎ0
𝜕𝑥

−
𝑎

ℎ0

𝜕𝜉

𝜕𝑥
+
𝑢0
ℎ0

 

𝑑𝑢1
𝑑𝑡

= 2𝑔
𝜌1 − 𝜌0
𝜌0

𝑚𝑠𝑥𝑒−𝑠(𝑥
2) + 𝑔

𝜌1 − 𝜌0
𝜌0

𝛼𝛽𝑐𝑜𝑠𝛼𝑥 

−
𝑔
𝜌1 − 𝜌0
𝜌0

𝛼𝛽𝑐𝑜𝑠𝛼𝑥 

𝑚𝑒−𝑠𝑥
2
−  𝛽 sin 𝛼𝑥

+
𝑢0

𝑚𝑒−𝑠𝑥
2
−  𝛽 sin 𝛼𝑥

 

 

Integrating with respect to 𝑡, we have 

 

𝑢1 = (2𝑔
𝜌1 − 𝜌0
𝜌0

𝑚𝑠𝑥𝑒−𝑠(𝑥
 2) + 𝑔

𝜌1 − 𝜌0
𝜌0

𝛼𝛽𝑐𝑜𝑠𝛼𝑥

−
𝑔
𝜌1 − 𝜌0
𝜌0

𝛼𝛽𝑐𝑜𝑠𝛼𝑥

𝑚𝑒−𝑠𝑥
2
− 𝛽 sin 𝛼𝑥

+
𝑢0

𝑚𝑒−𝑠𝑥
2
− 𝛽 sin 𝛼𝑥

) 𝑡 + 𝑐4 
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But 𝑢1(𝑥, 0) = 0 ⟹ 𝑐4 = 0 

 

𝑢1(𝑥, 𝑡) = +2𝑔𝑡
𝜌1 − 𝜌0
𝜌0

𝑚𝑠𝑥𝑒−𝑠𝑥
2

 

+𝑔𝑡
𝜌1 − 𝜌0
𝜌0

𝛼𝛽𝑡𝑐𝑜𝑠𝛼𝑥 − 𝑡
𝑔
𝜌1 − 𝜌0
𝜌0

𝛼𝛽𝑐𝑜𝑠𝛼𝑥 

𝑚𝑒−𝑠𝑥
2
− 𝛽 sin 𝛼𝑥

 

+𝑡
𝑢0

𝑚𝑒−𝑠𝑥
2
−  𝛽 sin 𝛼𝑥

 

(47) 

 

Eq. (47) is the speed of the stratified deep water at the first 

layer. 

Using Eqs. (45)-(47), Eq. (39) reduces to 

 

𝑑𝑢2
𝑑𝑡

=
−ℎ2

𝑑𝑢0
𝑑𝑡

− 𝑎ℎ0
𝜕ℎ0
𝜕𝑥

− 𝑎
𝜕𝜉
𝜕𝑥
+ 𝑢0

ℎ0
 

= −
ℎ2
ℎ0

𝑑𝑢0
𝑑𝑡

− 𝑎
𝜕ℎ0
𝜕𝑥

−
𝑎

ℎ0

𝜕𝜉

𝜕𝑥
+
𝑢0
ℎ0

 

 
𝑑𝑢2
𝑑𝑡

= 2𝑔
𝜌2 − 𝜌1
𝜌1

𝑚𝑠𝑥𝑒−𝑠(𝑥
2)

 

+𝑔
𝜌2 − 𝜌1
𝜌1

𝛼𝛽𝑐𝑜𝑠𝛼𝑥 −
𝑔
𝜌2 − 𝜌1
𝜌1

𝛼𝛽𝑐𝑜𝑠𝛼𝑥

𝑚𝑒−𝑠𝑥
2
−  𝛽 sin 𝛼𝑥

+
𝑢0

𝑚𝑒−𝑠𝑥
2
− 𝛽 sin 𝛼𝑥

  

 

Integrating with respect to 𝑡, we get 

 

𝑢2 = (2𝑔
𝜌2 − 𝜌1
𝜌1

𝑚𝑠𝑥𝑒−𝑠(𝑥
 2) + 𝑔

𝜌2 − 𝜌1
𝜌1

𝛼𝛽𝑐𝑜𝑠𝛼𝑥

−
𝑔
𝜌2 − 𝜌1
𝜌1

𝛼𝛽𝑐𝑜𝑠𝛼𝑥

𝑚𝑒−𝑠𝑥
2
− 𝛽 sin 𝛼𝑥

+
𝑢0

𝑚𝑒−𝑠𝑥
2
−  𝛽 sin 𝛼𝑥

) 𝑡 + 𝑐5 

 

But 𝑢2(𝑥, 0) = 0 ⇒ 𝑐5 = 0 

 

𝑢2(𝑥, 𝑡) = +2𝑔𝑡
𝜌2 − 𝜌1
𝜌1

𝑚𝑠𝑥𝑒−𝑠𝑥
2

 

+𝑔𝑡
𝜌2 − 𝜌1
𝜌1

𝛼𝛽𝑡𝑐𝑜𝑠𝛼𝑥 − 𝑡
𝑔
𝜌2 − 𝜌1
𝜌1

𝛼𝛽𝑐𝑜𝑠𝛼𝑥

𝑚𝑒−𝑠𝑥
2
− 𝛽 sin 𝛼𝑥

 

+𝑡
𝑢0

𝑚𝑒−𝑠𝑥
2
− 𝛽 sin 𝛼𝑥

 

(48) 

 

Now using Eqs. (45)-(48), Eq. (41) becomes: 

 
𝑑ℎ1
𝑑𝑡

= −ℎ0 (
𝜕𝑢1
𝜕𝑥
) − ℎ1 (

𝜕𝑢0
𝜕𝑥

) 

 

That is 

 
𝑑ℎ1
𝑑𝑡

= −ℎ0 (
𝜕𝑢1
𝜕𝑥
) 

 

This implies that, 

 

 

𝜕𝑢1
𝜕𝑥

 

=

(

 
 
 
 
 

2𝑎𝑚𝑠𝑥𝑒−𝑠𝑥
2

− 4𝑎𝑚𝑠2𝑥2𝑒−𝑠𝑥
2

+𝑎𝛼2𝛽 sin(𝛼𝑥) −

𝑚𝛼𝛽𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥) + 𝑎𝛼2𝛽2(sin2 𝛼𝑥 + cos2 𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

+𝑢0
(2𝑚𝑥𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2
)

 
 
 
 
 

𝑡 

𝑑ℎ1
𝑑𝑡

= −(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥) 

(

 
 
 
 
 
 

2𝑎𝑚𝑠𝑥𝑒−𝑠𝑥
2

− 4𝑎𝑚𝑠2𝑥2𝑒−𝑠𝑥
2
+

𝑎𝛼2𝛽 sin(𝛼𝑥) −

𝑚𝛼𝛽𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥)

+𝑎𝛼2𝛽2(sin2 𝛼𝑥 + cos2 𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

+𝑢0
(2𝑚𝑥𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2
)

 
 
 
 
 
 

𝑡 

 

Integrating with respect to t, we get 

 

ℎ1 = −(𝑚𝑒
−𝑠𝑥2 − 𝛽𝑠𝑖𝑛𝛼𝑥) 

(

 
 
 
 
 
 
 
 

2𝑔
𝜌1 − 𝜌0
𝜌0

𝑚𝑠𝑥𝑒−𝑠𝑥
2

− 4𝑔
𝜌1 − 𝜌0
𝜌0

𝑚𝑠2𝑥2𝑒−𝑠𝑥
2

+𝑔
𝜌1 − 𝜌0
𝜌0

𝛼2𝛽 sin(𝛼𝑥) −

𝑚𝑔
𝜌1 − 𝜌0
𝜌0

𝛽𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥) + 𝑎𝛼2𝛽2

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

+𝑢0
(2𝑚𝑥𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2
)

 
 
 
 
 
 
 
 

𝑡2
2⁄ + 𝑐7 

 

Since sin2 𝛼𝑥 + cos2 𝛼𝑥 = 1 
 

∴ ℎ1(𝑥, 𝑡) = −𝑡
2𝑔
𝜌1 − 𝜌0
𝜌0

𝑚2𝑠𝑥𝑒−2𝑠𝑥
2
 

+𝑡2𝛽𝑠𝑖𝑛𝛼𝑥𝑔
𝜌1 − 𝜌0
𝜌0

𝑚𝑠𝑥𝑒−𝑠𝑥
2

 

+2𝑡2𝑔
𝜌1 − 𝜌0
𝜌0

𝑚2𝑠2𝑥2𝑒−2𝑠𝑥
2
 

−2𝑡2𝛽 sin(𝛼𝑥) 𝑔
𝜌1 − 𝜌0
𝜌0

𝑚𝑠2𝑥2𝑒−𝑠𝑥
2

−
1

2
𝑡2𝑚𝑒−𝑠𝑥

2
𝑔
𝜌1 − 𝜌0
𝜌0

𝛼2𝛽 sin(𝛼𝑥) 

+
1

2
𝑡2𝑔

𝜌1 − 𝜌0
𝜌0

𝛼2𝛽2 sin2(𝛼𝑥) 

+
1

2
𝑡2

𝑚2𝛼𝛽𝑒−2𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥)

+𝑚𝑒−𝑠𝑥
2
𝑔
𝜌1 − 𝜌0
𝜌0

𝛼2𝛽2

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

−
1

2
𝑡2

𝑚𝛼𝛽2 sin(𝛼𝑥) 𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥)

+𝑔
𝜌1 − 𝜌0
𝜌0

𝛼2𝛽3 sin(𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

−
1

2
𝑡2𝑢0𝑚𝑒

−𝑠𝑥2
(2𝑚𝑥𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

+
1

2
𝑡2𝑢0𝛽sin (𝛼𝑥)

(2𝑚𝑥𝑒−𝑠𝑥
2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2  

(49) 
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Eq. (49) is the perturbed height of the first stratified deep 

water column in series form. 

From Eq. (41): 

 
𝑑ℎ2

𝑑𝑡
+ ℎ0

𝜕𝑢2

𝜕𝑥
+ ℎ2

𝜕𝑢0

𝜕𝑥
= 0; 

𝑑ℎ2

𝑑𝑡
= −ℎ0 (

𝜕𝑢2

𝜕𝑥
) 

So 

 

𝜕𝑢2
𝜕𝑥

=

(

 
 
 
 
 
 

2𝑎𝑚𝑠𝑒−𝑠𝑥
2

− 4𝑎𝑚𝑠2𝑒−𝑠𝑥
2

+𝑎𝛼2𝛽 sin(𝛼𝑥) −

𝑚𝛼𝛽𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥)

+𝑎𝛼2𝛽2(sin2 𝛼𝑥 + cos2 𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

+𝑢0
(2𝑚𝑠𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2
)

 
 
 
 
 
 

𝑡 

𝑑ℎ2
𝑑𝑡

= −(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

(

 
 
 
 
 
 

2𝑎𝑚𝑠𝑥𝑒−𝑠𝑥
2

− 4𝑎𝑚𝑠2𝑥2𝑒−𝑠𝑥
2

+𝑎𝛼2𝛽 sin(𝛼𝑥) −

𝑚𝛼𝛽𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥)

+𝑎𝛼2𝛽2(sin2 𝛼𝑥 + cos2 𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

+𝑢0
(2𝑚𝑥𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2
)

 
 
 
 
 
 

𝑡 

 

Integrating with respect to t, we get 

 

ℎ2 = −(𝑚𝑒
−𝑠𝑥2 − 𝛽𝑠𝑖𝑛𝛼𝑥) 

(

 
 
 
 
 

2𝑎𝑚𝑠𝑥𝑒−𝑠𝑥
2

− 4𝑎𝑚𝑠2𝑥2𝑒−𝑠𝑥
2

+𝑎𝛼2𝛽 sin(𝛼𝑥) −

𝑚𝛼𝛽𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥) + 𝑎𝛼2𝛽2

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2

+𝑢0
(2𝑚𝑥𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2
)

 
 
 
 
 

𝑡2
2⁄ + 𝑐8 

 

Since sin2 𝛼𝑥 + cos2 𝛼𝑥 = 1 

 

∴ ℎ2(𝑡, 𝑥) = −𝑡
2𝑔
𝜌2 − 𝜌1
𝜌1

𝑚2𝑠𝑥𝑒−2𝑠𝑥
2
 

+𝑡2𝛽𝑠𝑖𝑛𝛼𝑥𝑔
𝜌2 − 𝜌1
𝜌1

𝑚𝑠𝑥𝑒−𝑠𝑥
2

 

+2𝑡2𝑔
𝜌2 − 𝜌1
𝜌1

𝑚2𝑠2𝑥2𝑒−2𝑠𝑥
2
 

−2𝑡2𝛽 sin(𝛼𝑥) 𝑔
𝜌2 − 𝜌1
𝜌1

𝑚𝑠2𝑥2𝑒−𝑠𝑥
2
 

−
1

2
𝑡2𝑚𝑒−𝑠𝑥

2
𝑔
𝜌2 − 𝜌1
𝜌1

𝛼2𝛽 sin(𝛼𝑥) 

+
1

2
𝑡2𝑔

𝜌2 − 𝜌1
𝜌1

𝛼2𝛽2 sin2(𝛼𝑥) 

+
1

2
𝑡2

𝑚2𝛼𝛽𝑒−2𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥)

+𝑚𝑒−𝑠𝑥
2
𝑔
𝜌2 − 𝜌1
𝜌1

𝛼2𝛽2

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2  

−
1

2
𝑡2

𝑚𝛼𝛽2 sin(𝛼𝑥) 𝑒−𝑠𝑥
2
(2𝑐𝑜𝑠𝛼𝑥 − 𝑠𝑖𝑛𝛼𝑥)

+𝑔
𝜌2 − 𝜌1
𝜌1

𝛼2𝛽3 sin(𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2  

−
1

2
𝑡2𝑢0𝑚𝑒

−𝑠𝑥2
(2𝑚𝑥𝑒−𝑠𝑥

2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2  

+
1

2
𝑡2𝑢0𝛽sin (𝛼𝑥)

(2𝑚𝑥𝑒−𝑠𝑥
2
+ 𝛼𝛽𝑐𝑜𝑠𝛼𝑥)

(𝑚𝑒−𝑠𝑥
2
− 𝛽𝑠𝑖𝑛𝛼𝑥)

2  

(50) 

 

Eq. (50) is the series solution of the height for the second 

column. 

 

 

6. RESULTS AND DISCUSSION 

 

Figure 5 shows the effect of density on stratification. At 

density of 1000 kg/cm3 the deep water is uniformly stratified. 

At 1037.13 kg/cm3 the deep water is dense and stratified. At 

density of 1090 kg/cm3 the deep water is denser and more 

stratified than at densities of 1000 kg/cm3, 1037.13 kg/cm3 and 

1069 kg/cm3. Higher density causes more stratification in deep 

water since stratification refers to the layering of water masses 

with different densities. 

At 𝛽 = 0.05, the deep water is less stable with speed of 

about (1.5-3.0 m/s). At 𝛽 = 0.1 the stratified deep water is 

slightly stable than at 𝛽 = 0.05 with speed of (2.0-3.0 m/s). At 

𝛽 = 0.3 the stability of the stratified deep water at second 

layer increases at speed (2.5-4.0 m/s) as shown in Figure 6. 

At 𝛽 = 0.05  for the first layer, stratification occurred at 

depth of 0.150m and time of 0.50 secs. At 𝛽 = 0.3, the deep 

water is stratified at depth of 10m and time of 0.50 secs. At 

𝛽 = 0.1 for the second layer, the deep water is stratified at 

depth of 0.100 m and time 1.25 secs. At 𝛽 = 0.5,  the 

stratification in the second layer occurred at temperature that 

is below freezing. Figure 7 shows the variation of depth under 

modified gravity with different values of beta which were the 

measure of the stability of the system. In stratified deep water 

under modified gravity the larger beta value indicates a more 

stable system, which means the system is less likely to undergo 

significant changes when perturbed during stratification 

process. A smaller beta value indicates a less stable system 

which is likely susceptible to perturbations. The depth of the 

first stratified layer is influenced by the wave’s interaction 

with the water surface as shown with the simulation. 

At varied values of α=0.6283185307179586, 

1.5707963267948966, 3.141592653589793 and 

6.283185307179586 the strength of stratification increases 

and more layering occurred respectively. 

Figure 8 shows how variation in alpha values which is the 

measure of strength of the system affects deep water 

stratification under modified gravity. 

Figure 9 shows the oscillatory nature of the stratified deep 

water with unsteady amplitude which goes far to show that 

deep water is never stable. Figure 9(a) shows how velocity 

affect the amplitude of stratified deep water under modified 

gravity. Figure 9(b) shows the impact of depth on the 

amplitude of stratified deep water under modified gravity. 

In Figure 10, at α=0.3141592653589793, the amplitude 

critically dampened. At α=1.5707963267948966 the 

amplitude rises with speed 0.06 m/s. When 

α=2.199114857512855 the speed rises above 0.06 m/s and 

system acquired maximum amplitude for the oscillation. 

Therefore, the higher value of 𝛼 which is the strength of the 

system then the higher the amplitude of oscillation. Similarly, 

at 𝛽 = 0.05  and 𝛽 = 0.1  the speed of the oscillatory wave 

motion is far below 0.25 m/s. At 𝛽 = 0.3,  the speed rises 

above 0.25 m/s to 0.50 m/s. At 𝛽 = 0.5, the speed rises from 

above 0.5 m/s to 1.00 m/s. This shows that increase in stability 

of the system increases the speed and amplitude of the wave 

in deep water. 
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Figure 5. Effect of density on stratification/density variation with depth 

 

 
 

Figure 6. Effect of salinity and temperature on stratification 
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Figure 7. Variation of depth 

 

 
 

Figure 8. Measure of strength of the system 
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(a) 

 
(b) 

 

Figure 9. (a) The impact of velocity on amplitude under modified gravity; (b) The impact of depth on amplitude of deep water 

 

 
(a) 

 
(b) 

 

Figure 10. (a) Damping effect on the amplitude; (b) Deep water stability under modified gravity 
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Figure 11. Effect of modified gravity on the first layer of the stratified deep water 

 

 
 

Figure 12. Effect of modified gravity on second layer of the stratified deep water 

 

In Figure 10(a), this is damping effect on the amplitude of 

stratified deep water under modified gravity. As our 

simulation shows, a larger alpha value indicates a stronger 

perturbation, which can lead to more significant changes in the 

stratified deep water condition and a smaller alpha value 

indicates a weaker perturbation. In Figure 10(b), the stability 

of the stratified deep water under modified gravity. Our 

numerical simulation shows that larger beta value means 

stronger perturbation, which leads to more significant changes 

in the stratified deep water condition. 

There is no vertical movement of water masses due to 

gravity modification. The spec observed when the gravity is 

not modified is at instant the deep water bubbles due to 

instability on the water body as shown in Figure 11. 

The effect of speed in stratified deep water shows that without 

modified gravity, the system typically exhibits oscillatory 

motion which means that the system moves back and forth 

around an equilibrium position. However, when modified 

gravity is quickly introduced into the system, our simulated 

result shows that the behaviour changes to horizontal line 

along the x-axis. This signifies that the system is now moving 

with constant velocity in the horizontal direction, rather than 

oscillating as shown in Figure 12. 

 

 

 

7. CONCLUSIONS 

 

Our findings demonstrate that the mathematical model of 

stratified deep water flow under modified gravity, analyzed 

through the perturbation method, offers valuable insights into 

the behavior of deep water systems. By considering the effects 

of modified gravity, we understood the dynamics of stratified 

flows in environments where the gravitational force is altered. 

The perturbation method allowed us to identify instability 

mechanisms and predict the emergence of new flow regimes, 

which is crucial for understanding the complex behavior of 

deep water systems. 

The key conclusions of our study are as follows: 

1). The model captures the behavior of stratified flows in 

environments with altered gravitational properties, providing 

insights into the dynamics of deep water systems under 

modified gravity. 

2). The perturbation analysis reveals the conditions under 

which the stratified flow becomes unstable and transitions to 

turbulent or other complex states, which is essential for 

understanding the dynamics of deep water systems. 

3). Our findings have implications for various fields, such 

as oceanography, geophysics, and planetary science, where the 

understanding of stratified deep water flow under modified 

gravity is crucial. 
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Overall, our study contributes to the advancement of 

knowledge in the field of stratified deep water flow under 

modified gravity, offering new insights that can be applied in 

diverse scientific disciplines. The effect of modified gravity in 

stratified deep water indicate that the speed of the system is 

affected by both oscillatory and uniform motion. High density 

evidently causes more stratification in deep water. In deep 

water, denser water masses tend to sink and form distinct 

layers below less dense water masses and thereafter creates a 

stable stratification with different density and temperature 

profile for each layer. 
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NOMENCLATURE 

 

u=(u, v, w) The three dimensional velocity vector 

𝜌 The density 

𝑝 The pressure 

𝑔 The gravity constant 

𝑔ˈ Modified gravity 

𝑓 Coriolis parameter 

Ω The angular velocity 

𝑢 Velocity in the horizontal x direction 

𝑣 Velocity in the horizontal y direction 

𝐿 Length scale 

𝑅0 Rossby number 

(𝑇) Temperature 

𝜌0, 𝑇0, 𝑝0 Are reference values of density, temperature 

and salinity respectively 

ℎ Vertical length scale 

𝐻∗ Vertical height of deep water at thermocline 

𝜍 Free surface elevation 

𝑥 Horizontal, x direction 

𝑦 Horizontal, y direction 

𝑧 Vertical z direction 

𝑡 Time 
𝐷

𝐷𝑡
 

Material derivative 

ℎ(𝑥, 𝑦, 𝑡) The height of water surface from the same 

reference height 

𝜉(𝑥, 𝑦) The thermocline regime 

𝐻 Deep water dept 

ℎ The water height above each stratified column 

𝛿𝑥 Width in the x  ̶  direction 

𝛿𝑦 Width in the y  ̶ direction 

𝑢1 Velocity in the first layer in the x  ̶  direction 

𝑢2 Velocity in the second layer in the x  ̶  direction 

𝑣1 Velocity in the first layer in the y  ̶  direction 

𝑣2 Velocity in the second layer in the y  ̶  direction 

𝛼 Measure of strength of the system 

𝛽 Measure of stability of the system 

𝐹 Sum of all forces 

𝑚 Mass 

𝑎 Acceleration of the block of water 

K Wave number 
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