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The integration of AI could solve the long-standing network challenges for optimising 

a robust, scalable, and power-efficient Internet of Medical Things (IoMT) network. AI 

using the Deep Reinforcement Learning (DRL) approach has already been applied to 

optimise the data processing, energy efficiency, mobility management, network 

congestion, and data transmission reliability in IoMT. However, the power utilisation 

efficiency of IoMT networks is highly dependent on adaptive data rate control and 

transmission power levels. We have proposed a DRL-based framework that periodically 

adapts the transmission rates as well as power levels of IoMT networks, aiming to 

optimise the data packet transmission schedule by the utilisation of smart packets that 

consume less power while maintaining the same reliability and speed. The framework 

is enabled by a central gateway connected to a cloud server, where the learning agent 

(DRL) is trained from offline real-time data of the network to determine the optimised 

transmission schedules. As shown in the simulation results, the proposed DRL 

framework can enhance the network performance compared with the traditional 

methods. It indicates that the DRL approach for these 2000 iterations has improved 27% 

of power consumption compared with the traditional system, whereas the average 

packet delivery rate and throughput are quite steady at 80 packets per second and 70 

packets per second, respectively. It illustrates some extent of robustness in the 

network’s energy efficiency and reliability when it is controlled by using the proposed 

DRL method. Furthermore, DRL-fund methods improve power control and network 

performance remarkably, enabling reliable and low-energy IoMT systems for 

healthcare in-body monitors. 
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1. INTRODUCTION

Bits of knowledge are rapidly developing nowadays with 

their improvement in electronic devices, particularly in 

regards to being cheaper as well as being more effective of 

performance. These technologies provide a lot of effective 

solutions to all aspects of life from health care, agriculture to 

the military and industry. DRL recently became an effective 

and promising technology that can be applied in various tasks 

for optimising complex systems through dynamics of learning 

and decision-making. For the case of the IoMT networks 

having a high reliability and implementing efficiency in the 

transmission of data for their advanced applications in 

monitoring patient health over the Internet, DRL can have the 

ability to optimise its power efficiency through the adaptive 

data rate control and transmission power control [1]. 

At the heart of the IoMT networks, we find an array of 

medical devices and sensors that are responsible for collecting 

invaluable health information from patients and 

communicating it to healthcare providers in real-time. A 

typical medical device that will be part of an IoMT network 

has to operate under very strict energy constraints, ranging 

from battery limitations with various power capacities to 

medical-grade performance requirements (e.g., a heart rate 

monitor cannot be turned off due to energy provisions). In 

order to maximise the battery life cycle of wireless devices in 

the IoMT, the right amount of power should be used during 

transmission and the appropriate data rates may have to be 

chosen to represent the type of stateful patient information 

being communicated [2]. 

When it comes to optimising energy usage in wireless 

networks, most standard approaches would use static 

configurations and rule-based algorithms, where algorithms 

are designed by domain experts or extracted from large 

training datasets, to carefully track the power level and other 

network-resource usage efficiencies over time. Unfortunately, 

these solutions only fit for static and predictable environments 

and may not adapt well to unpredictable IoMT network 

settings with various types of devices, including unknown 

human and medical entities [3]. 

IoMT involves utilising IoT devices to capture, process, 

transmit, and display multimedia content such as audio, video, 

and images [4, 5]. It values real-time reciprocal interaction 

between the ambient environment and human in a social sense 
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to enable service interactions between peers as active 

participants. This necessarily requires the consideration of 

Quality of Experience (QoE) and Quality of Service (QoS) for 

multimedia applications over IoT networks [6, 7]. 

The beneficiary of DRL is its flexibility in policy learning 

from various experiences and auto-tuning from decisions & 

allocation to feedback generated by the dynamic and uncertain 

environment. DRL allows transmission rate and power level 

to be auto-optimised in IoMT networks. In an IoMT network, 

DRL will select the best decision among five decisions to 

reduce energy consumption and overhead cost [8, 9]. 

DRL can be applied for dynamic adjustment of data rates 

and transmission power from one slot to the next along with a 

sequence of modifications in step size in any IoMT network in 

consequence of the network’s flow conditions (i.e., the 

channel quality, traffic load and energy status) [10]. Defects 

such as time-synchronisation errors or those concerning 

receiver sensitivity and responsiveness in real time, at least 

when it comes to medical monitoring, can be life-critical if 

they, for instance, result in the occurrence of a delay while 

transmitting the information to the right recipient [11]. 

The integration of IoMT in healthcare demands a reliable, 

energy-efficient network to support continuous medical 

monitoring. Existing methods, such as static power 

configurations or rule-based controls, struggle to maintain 

efficiency under fluctuating network conditions. The 

limitations of these methods create challenges for IoMT 

networks, including increased power consumption and 

compromised data reliability. This study addresses these 

limitations by leveraging DRL to dynamically adjust 

transmission power and data rates, optimizing network 

performance in real time. By adapting to instantaneous 

network conditions, our framework aims to bridge the gap 

between energy efficiency and reliability in medical data 

transmission, which is crucial for continuous patient 

monitoring applications [12]. 

The primary objective of this study is to optimize power 

efficiency in IoMT networks using a DRL-based framework. 

This framework is specifically designed to dynamically adjust 

both the data rate and transmission power in response to real-

time network conditions. Traditional approaches, which often 

rely on static configurations or rule-based controls, fall short 

in dynamic environments, particularly when considering the 

diverse operating conditions and strict power limitations in 

IoMT networks. Our contributions include: 

Developing an adaptive DRL framework tailored for IoMT 

networks, which effectively reduces power consumption while 

maintaining high packet delivery and throughput. 

Demonstrating that our model surpasses traditional methods 

in handling fluctuations in network conditions and device 

states, which is crucial for the reliability of medical data 

transmission. 

Presenting a solution capable of autonomously learning 

optimal power and data rate configurations in real-time, thus 

achieving both energy efficiency and reliable data throughput. 

This paper demonstrates how the ability of DRL to make 

autonomous decisions and to recognise complex patterns and 

emergent relationships adds value to energy efficiency and 

network performance in IoMT networks with complex and 

non-linear dynamic behaviours. First, this study demonstrates 

that DRL can change the entire power management 

mechanism in the IoMT networks and substantially improve 

the results of patients' care.  

 

2. RELATED WORK  
 

An intelligible handover decision is finally performed into 

the IoMT system by the seventh last stage and an actor-critic 

knowledge selection method designed for the transfer 

considers the entire reward function: network quality, packet 

fault frequency, packet dropping frequency and the 

throughput. The main issues in building this system are energy 

management and resource allocation. In a stochastic 

framework, these issues require a learning agent to learn how 

to make decisions from the environment [13]. 

Liu et al. [14] developed an integrated beamforming, power 

share and split-up control in SWIPT-enabled IoT systems 

using DRL and game theory, which substantially improved the 

network working in standing of data rate, power harvesting 

and consumption. Resource management in LPWA networks 

was considered by Park et al. [15] who proposed a DRL-

actuated transmission power and parameter optimisation so 

that DRL achieves a 15 per cent improvement in transmission 

over transmission energy. 

Xu et al. [16] investigated a DRL-based approach for joint 

topology structure and power modification in UAV networks, 

enhancing backhaul rates and reducing power competition. 

While Xiao et al. [17] proposed a strengthening learning-based 

energy-effectual video communication scheme for IoT 

systems, significantly reducing packet loss, delay, and energy 

consumption. In vehicular networks, Zhang et al. [18] applied 

DRL to optimise transmission design in multi-user V2V 

networks, improving energy efficiency and communication 

reliability.  

El Jamous et al. [19] implemented a DRL solution for power 

management in WiFi next-generation networks, achieving 

major advances in energy productivity and throughput. Jiang 

et al. [20] developed an online resource scheduling framework 

using DRL for large-scale MEC networks, optimising 

distributing decisions, communication power, and supply 

allocation. Sharma et al. [21] focused on enhancing the secrecy 

rate in THz-enabled femto-edge users using DRL, achieving a 

significant improvement in the average secrecy rate. 

Chen and Wu [22] proposed a DRL-based approach for 

UAV-assisted wireless energy transmission, optimising UAV 

hovering positions to maximise energy supply and data 

throughput. Sande et al. [23] introduced a DRL-based radio 

resource management solution for congestion avoidance in 5G 

IAB networks, improving transmission throughput and user 

satisfaction. While Al-Sa’D et al. [24] introduced schemes for 

adaptive data compression utilising a deep learning 

management for both single and multiple-modality health 

statistics. They considered the characteristics of medical data 

and network conditions to achieve energy-effectual medical 

data programs in portable-health systems. 

Unlike previous work that applies DRL primarily for static 

resource optimization or single-parameter control, our 

framework simultaneously adapts both data rate and 

transmission power in real-time. 

The proposed approach directly addresses IoMT-specific 

constraints (e.g., limited power capacity and real-time 

transmission requirements), which are not the focus in existing 

DRL applications for general wireless networks. This targeted 

approach allows for significant improvements in energy 

efficiency and reliability in IoMT settings. 
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3. SYSTEM MODEL  
 

In this section, we assume that the downlink of the IoMT 

procedure is randomly distributed within a circular cell. Each 

IoT appliance selectively adapts to minor change levels, such 

as Binary Phase-Shift Keying (BPSK), 4-QAM, 8-QAM, and 

16-QAM. The adaptive programming is utilised in the 

software-based radio approach network to manage active 

IoMT and handle noisy radio set bandwidth during downlink 

transmissions. 

 

3.1 System architecture 

 

In the context of the IoMT, enhancing the power efficiency 

and optimising data transmission is crucial due to the resource-

constrained nature of medical devices and the critical need for 

reliable and timely data delivery. The proposed system 

architecture leverages DRL to dynamically adjust 

transmission power and data rates, ensuring efficient and 

robust communication within IoMT networks. 

The architecture of the suggested system as shown as in 

Figure 1 have a three main parts; these are IoMT devices, 

central gateway and a cloud server. Each of these components 

have their own function, which is to gather, process, analyse 

and transmit medical data. The cloud server has the capability 

to store of the DRL agents that learn the rules of the network 

circumstances over time and provide the gateway and the 

IoMT devices with the optimum strategies over the 

transmission. 

 

 
 

Figure 1. The interaction between IoMT devices, the 

gateway, and the cloud server, highlighting the data flow and 

control mechanisms 

 

3.1.1 IoMT devices 

These are the many medical sensors and medical devices 

that are used to monitor and collect a patient’s vital signs. 

These include a heart rate monitor, glucose sensors, smart 

wrist bands, and pods, and other kinds of health monitors. 

IoMT devices are basically the patient bodies where we nip in 

and do measurements. These devices capture telemetry of the 

patients and beams it back to a central gateway in the wireless 

way. These devices run on some battery and hence we want to 

run efficient MPCP protocols to maximise the battery lifetime 

of these devices. 

 

3.1.2 Gateway 

The gateway functions as a centralised hub that consolidates 

data from many IoMT devices. It carries out preliminary data 

processing and handles connectivity with the cloud server. The 

gateway retrieves data from IoMT devices, performs data 

cleansing to eliminate duplications or inaccuracies, and 

transmits it to the cloud server for subsequent analysis. 

Additionally, it receives feedback from the cloud server and 

makes necessary adjustments to device settings. 

 

3.1.3 Cloud server 

The cloud server provides the computation resource, which 

executes the DRL algorithms to perform network optimisation 

and stores the output data. The cloud server also receives the 

data from the gateway, processes them and performs the 

analysis. As such, the cloud server is equipped with an DRL 

agent that models the network performance, analyses the data 

to learn the optimal transmission strategy, and then feeds back 

the results to the gateway. 

The proposed study demonstrates that the proposed DRL-

based framework reduces power consumption in IoMT 

networks by an average of 27% compared to conventional 

methods, while maintaining a stable packet delivery rate 

around 80 packets per second. This efficiency is achieved 

through adaptive control of transmission parameters, which 

aligns well with IoMT requirements for sustained device 

functionality and reliability in medical data transfer. Despite 

these positive results, certain limitations should be noted: 

Generality: Our model is trained under specific network 

configurations. It may require retraining or fine-tuning to 

achieve similar efficiency in other network environments. 

Scalability: The current DRL framework may face 

challenges in larger-scale IoMT networks with a higher 

density of devices, as state and action spaces grow 

exponentially. 

Future research could focus on improving the model's 

adaptability across varied network conditions and exploring 

distributed DRL approaches for handling large IoMT device 

networks. 

Our system model comprises three primary components: 

IoMT devices, a central gateway, and a cloud server: 

i. IoMT Devices: Medical devices and sensors such as heart 

rate monitors and glucose sensors that collect patient 

data. These devices are battery-powered and thus 

benefit from efficient power management protocols. 

ii. Gateway: Serves as the hub, aggregating data from IoMT 

devices and maintaining connectivity with the cloud 

server. It preprocesses data and applies adaptive 

configurations based on feedback from the DRL model. 

iii. Cloud Server: Hosts the DRL framework, analyzing real-

time data from the gateway and determining the optimal 

transmission settings for each device. 

The DRL framework employs a Deep Q-Network (DQN) 

architecture with two neural networks: the primary Q-network 

for real-time decision-making and a target network for 

stabilizing training. States include real-time data on channel 

quality and energy levels, while actions involve selecting the 

optimal transmission power and data rate. The reward function 

incentivizes energy savings while penalizing packet loss. 

Training is conducted with experience replay to enhance 

sample efficiency and avoid overfitting. 

 

3.2 Channel State Information (CSI) 

 

Consider the radio network with nth independent channels 

that allocated received rate. The instantaneous Signal-to-Noise 

Ratio (SNR) 𝛿𝑘,𝑛 for the nth channel at the kth transmission 

can be modelled as a random variable following a Rayleigh 

distribution. The average SNR 𝛿 represents the mean signal 
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strength received over time. The probability density function 

(PDF) of the instant SNR in a Rayleigh fading channel is given 

by: 

1
( )P e






 
− 
 =  

/1
( )P e  


−=  (1) 

 

The status of the nth channel can be described using the 

following binary variable: 

 

{
0  if the channel is idle (available) 
1 if  the channel is busy (occupied)

 

 

To select the optimal channel, we consider the SNR and the 

Packet Error Rate (PER). The minimum SNR required to 

achieve a target Bit Error Rate (BER) for a given modulation 

and coding scheme can be derived as [25]: 

 

𝛿𝑘,𝑛 =
1

𝑏𝑛

𝑙𝑛 (
𝑎𝑛

𝐵𝐸𝑅𝑘,𝑛

) (2) 

 

where, 

an and bn are constants specific to the modulation and 

coding scheme. 

BERk,n is the target BER for the kth transmission on the nth 

channel. 

The PER, and the effective transmission rate for the kth 

packet on the nth channel, considering the PER can be 

calculated by: 

 

𝑃𝐸𝑅𝑘,𝑛 = 1 − (1 − 𝐵𝐸𝑅𝑘,𝑛)
𝐿𝑝𝑎𝑐𝑘𝑒𝑡

 

𝑅𝑘,𝑛 = (1 − 𝑃𝐸𝑅𝑘,𝑛) ∗ 𝑅𝑚𝑎𝑥 
(3) 

 

where, 

Lpacket is the packet length. 

Rmax is the maximum achievable data rate for the given 

modulation scheme. 

 

3.3 Power consumption model 

 

An efficient use of power is necessary to ensure long battery 

life of medical devices, while providing communication to 

collect and transmit valuable data back to the hospital servers. 

The power consumption model gives a brief introduction of 

how power is consumed in IoMT based devices during 

communication. Additionally, it offers a complete approach to 

figure out the power consumption of the IoMT devices. This 

section presents the power consumption model along with the 

necessary equations. The basic power consumption elements 

include [26, 27]: 

• Circuit Power (Pc): the power consumption 

associated with the internal circuitry of the IoMT device itself, 

regardless of whether the transmission is on or off. 

• Transmission Power (Ptxn): The power used to 

transmit a codeword over the communication channel, 

dependent upon the transmission-power level and on the 

channel state. 

• Total Power Consumption (Pj): The power 

consumption of the whole IoMT device, including the circuit 

power and the transmission power. 

The state of system power consumption can be described as: 

Active State (ϵ = 1) and Sleep Mode (ϵ = 0): 

The total power consumption for each device j on channel n 

can be modeled as: 

 

{
𝑃𝑐 + 𝑃𝑡𝑥𝑛  if 𝜖 = 1(active state)
𝑃𝑐                 if 𝜖 = 0 (sleep mode)

 (4) 

 

The transmission power Ptxn that correlated with baseline 

transmission power Pbase can be calculated as: 
 

𝑃𝑡𝑥𝑛 =
𝑃𝑏𝑎𝑠𝑒 ∗ 𝛿𝑡𝑎𝑟𝑔𝑒𝑡

𝛿𝑘,𝑛

 (5) 

 

The average power consumption for a given time period can 

be determined by taking into account the ratio of time the 

device is in active mode against sleep mode. 

Let: 

Tactive: Time spent in active mode. 

Tsleep: Time spent in sleep mode. 

Ttotal: Total time period (Ttotal = Tactive + Tsleep). 

The average power consumption Pavg is given by: 

 

𝑃𝑎𝑣𝑔 =
𝑇𝑎𝑐𝑡𝑖𝑣𝑒 ∗ (𝑃𝑐 + 𝑃𝑡𝑥𝑛) + 𝑇𝑠𝑙𝑒𝑒𝑝 ∗ 𝑃𝑐

𝑇𝑡𝑜𝑡𝑎𝑙

 (6) 

 

3.4 Data rate adaptation 

 

IoMT devices can get the best performance by changing the 

data rate based on the real-time channel conditions. This keeps 

the throughput, delay, and error rates in balance. This part goes 

into great depth about data rate adaptation and gives you the 

equations you need to use them [28]. As an example, BPSK, 

QPSK, and QAM are all different modulation methods that 

offer different error rates and data rates. More data can be sent 

and received through a higher-order modulation scheme; 

however, they need better channel conditions (higher SNR). 

The effective data rate Reff varies on the selected modulation 

scheme and the current SNR, it can be expressed as [29]: 

 

𝑅𝑒𝑓𝑓 = 𝐵 ∗ 𝑙𝑜𝑔2(𝑀) ∗ (1 − 𝑃𝐸𝑅) (7) 

 

where, 

B is the bandwidth of the channel. 

M is the modulation order (e.g., M = 2 for BPSK, M = 4 for 

QPSK, M = 16 for 16-QAM). 

PER depends on the BER and packet length. 

The BER for a given modulation scheme and SNR can be 

approximated as: 

 

𝐵𝐸𝑅 = 𝑄 (√
2 ∗ 𝛿

𝑙𝑜𝑔2(𝑀)
) (8) 

 

where,  

Q(.) is the Q-function representing the tail probability of the 

Gaussian distribution.  

 

3.5 Reinforcement learning framework 

 

Reinforcement Learning (RL) is a framework for solving 

control problems in dynamic environments optimally. This 

implies that it can potentially act optimally when it comes to 

controlling parameters of an IoMT network, such as for 

example for controlling transmission power and data rates to 
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minimise the required power while ensuring that the 

communications is reliable. The RL framework is motivated 

in this section with the main concepts explained. Specifically, 

given the reward and a Markov Decision Process (MDP) (see 

below), we give the relevant equations [30]. An MDP is a 

formal setting for modelling an agent in an environment with 

a random outcome for the agent for every decision. An MDP 

is stated by the tuple (S, A, P, R, γ) [31], where, S: Set of all 

possible states; A: Set of all possible actions; P(s′∣s,a): State 

transition probability, demonstrating the probability of 

transitioning to state s′ from public ss by taking action aa; 

R(s,a): Reward function, representing the immediate reward 

obtained after transitioning from state ss to state s′ by taking 

action aa; γ: Discount factor, representing the significance of 

future rewards. 

To find the optimal policy can be describe by the: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) 

+𝛼 [𝑅(𝑠, 𝑎) + 𝛾 max
�́�

𝑄(�́��́�) − 𝐴(𝑠, 𝑎)] 
(9) 

 

where, 

Q(s, a) is the current Q-value. 

α is the learning rate. 

R(s,a) is the immediate reward. 

max
�́�

𝑄(�́��́�) is the limit of the Q-value for the next state s′ 

and all potential actions a′. 

and the expected cumulative reward 𝑉𝜋(𝑠) initial from state 

s and following policy π is defined as: 

 

𝑉𝜋(𝑠) =  𝔼𝜋 ∑(𝛾𝑡𝑅(𝑠𝑡𝑎𝑡)|𝑠0 = 𝑠)

∞

𝑡=0

 (10) 

 

 

4. METHODOLOGY  

 

The proposed scheme uses DRL to increase energy 

efficiency by dynamically adjusting data rates and 

transmission power across the IoMT networks. It controls the 

inherent adaptability of DRL to drive transmission power to 

minimise energy consumption in IoMT networks thereby 

improving network throughput and hence reliability of data 

transmission in all sorts of IoMT-based environments. 

Besides, five major steps including initialisation, ingestion 

engineering, Q-network design and experience replay, action 

selection and execution and Real-time adaptation have been 

employed to achieve the main scheme objectives.  

Figure 2 presents a flowchart about the proposed policy for 

achieving DRL. First of all, initialise the DRL scheme, if you 

are familiar with deep learning field, This section mainly set 

the baseline for the entire DRL process, calibrating some 

import parameters that are R(s,a) is the immediate reward., 

discount factor(γ) and learning rate (α) to suit the problem 

domain. Also, you set up two neural networks that are two 

benefits for the agent taking action, estimate the optimal 

policies on a given state via approximating the rewards that 

action would deliver. One is called the Q-network which 

designed to predict the expected reward for taking each 

possible action in a given state, other one called the target 

network which it mimics the Q-network that approximated the 

expected rewards on a given state. Besides, this is the replay 

buffer part, factor that keeps data when it goes through a pile 

of experience as much as possible. 

 
 

Figure 2. Flowchart of the proposed scheme 

 

• Parameter Initialisation: Sets initial values for 

essential parameters such as learning rate, discount factor, and 

epsilon. 

• Q-network and Target Network Initialization: 

Establishes neural networks to predict expected rewards for 

actions. 

• Replay Buffer Initialisation: Creates a buffer to store 

past experiences for training. 

In our DRL framework, we model the IoMT network as an 

MDP, where the states, actions, and rewards are defined as 

follows: 

States: The state space includes key network metrics such 

as current SNR, PER, device battery levels, and transmission 

power. This information characterizes the network's condition 

at each decision-making step. 

Actions: The action space consists of discrete choices for 

adjusting data rates and transmission power levels. Each action 

is chosen based on its predicted impact on power efficiency 

and reliability. 

1434



 

Reward Function: The reward function is designed to 

maximize power savings while penalizing packet losses or 

delivery delays. The reward R(s,a) for state s and action a is 

calculated as R(s,a) = α(Psaved) - β(PER), where Psaved is the 

power saved by reducing transmission power and data rate, 

and PER represents packet error penalties. 

 

The Proposed Algorithm 

# Step 1: Initialisation 

initialize_parameters() 

q_network_var = initialize__q_network() 

target__network = initialize__q_network() 

replay_buffer = initialize_replay_buffer() 

ϵ = initial_epsilon 

 

# Step 2: Reading the data (continuous process) 

collect_real_time_data() 

extract_features(real_time_data) 

 

# Step 3: Training the Q-network (using equations 6, and 9) 

for each episode in max_episodes: 

    state = initialize_state() 

    while not is_terminal_state(state): 

        if rnd.random() < ε : 

            action = random_action_var() 

        else: 

            action = choose_best_action(q_network, state) 

        next_state → reward = execute_action(action) 

        store_experience(state, next_state, action, reward) 

        state → next_state 

 

        if len(replay_buffer) > batch__size: 

            mini_batch = sample_mini_batch(replay_buffer, 

batch_size) 

            target_q_values = 

compute_target_q_values(target_network, mini_batch) 

            train__q__network(q_network, mini_batch, 

target_q_values) 

 

    update_target_network(target_network, q_network) 

    epsilon = decay_epsilon(epsilon) 

 

# Step 4: Action Selection and Execution (using equation 10) 

state = get_current_state() 

action = select_action(q_network, state, epsilon) 

execute_action(action) 

 

# Step 5: Real-Time Adaptation (using equation 2 and 8) 

monitor_network_performance() 

adjust_parameters(q_network_predictions) 

 

We utilize the DQN algorithm due to its ability to 

approximate complex Q-value functions effectively, essential 

for the non-linear and high-dimensional environment of IoMT 

networks. 

Data is continuously collected from IoMT devices during 

the process of data reading. The data encompasses network 

states, data rates, transmission power levels, and performance 

parameters. Feature engineering involves manipulating the 

raw data in order to extract significant features that can be 

utilised by the Q-network. The Q-network relies on crucial 

factors such as signal strength, network traffic, and user 

demand to understand the connections between various states 

and the rewards associated with the actions made. 

The core of the scheme is the training of the Q-network that 

is based on experience in the replay buffer. An episode is 

simulated (not in the environment but only in the system) 

where the system interacts with the environment, chooses an 

action, gets the corresponding reward, and so on and so forth 

over multiple episodes, before the Q-network is updated to 

bring the predicted q-values closer to the corresponding target 

q-values. Temporal correlations are broken and sample 

efficiency is improved through experience replay. 

After the Q-network has been sufficiently trained, it is 

employed to make real-time action selections. An evaluation 

of the current condition of the network is conducted, and a 

course of action is selected based on the predictions made by 

the Q-network. Then, the network performing the selected 

action (encoding the data with a different rate, boosting the 

transmission power, etc.). In the final step, the action selection 

module makes a new selection, thus maintaining the flexibility 

of adaptation to the network environments in real time. 

The final phase is the network control, that consisting of 

continuous monitoring and adaptation to network 

performance. Performance metrics are continuously updated, 

and relevant parameters (i.e. power allocation, task 

scheduling) are continuously adapted to this information to 

maintain optimal operation.  

This real-time continuous adaptation enables the IoMT 

system to track changes in network conditions or demands and 

keep the network power usage and data transfer rate as 

efficient as possible. As the system accumulates more 

experiences, it can automatically adapt to evolving network 

conditions and enhance its performance. 

 

 

5. RESULTS AND DISCUSSION  

 

Applying DRL optimises the performance of IoMT 

networks by minimising power usage, packet delivery, 

transmission delay, throughput and energy efficiency. Table 1 

presents an exhaustive inventory of the main simulation 

parameters. 

 

Table 1. The simulation setup parameters 

 
Parameters Value 

Slots time 15 ms 

System bandwidth 30 MHz 

Modulation type 8-QAM, and 16-QAM 

α 0.001 

Replay_buffer 10 

Batch_size 20 to 50 

Gadget radius 300 M 

 

Figure 3 depicts a comparison of power usage between the 

proposed DRL algorithm and typical signal conditions. 

Throughout more than 2000 iterations, the suggested method 

reliably sustains a lower level of power usage, eventually 

decreasing from 40 milliwatts to below 38 milliwatts. 

Conversely, the typical signal situation initiates at 

approximately 52 milliwatts and exhibits a small decline to 

approximately 48 milliwatts. The suggested algorithm's 

substantial decrease in power consumption highlights the 

energy efficiency of the DRL technique. The DRL algorithm 

optimises the energy efficiency of IoMT devices by 

dynamically altering transmission power and data rates 
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according to real-time network conditions, reducing wasteful 

power consumption. The 300-meter gadget radius is 

characteristic of a typical operational environment in the 

IoMT, where effective power management is essential for 

ensuring sustained device functionality. 

Figure 4 illustrates the power of 4 different iterations for the 

distinct batch size 20, 30, 40, 50. The variations in power use 

are visible, with peaks up to 150 mW. Respectively, the power 

consumption of the smaller batch size 20, 30 are more 

consistent and lower than the larger batch size 40, 50, with 

relatively higher peaks and more variations. This shows that 

the power use of smaller batch size is more efficient, 

constantly in lower power levels. 

The DRL algorithm's dynamic power management is vital 

to IoMT devices, mainly battery-powered, with the need to be 

active for extensive durations. With the slot time of 15 ms and 

system bandwidth of 30 MHz, the system can utilise time and 

frequency resource bases more effectively, which could also 

enhance power efficiency. 

The throughput performance in packets per seconds over the 

total number of iterations is shown in Figure 5. As illustrated 

in the figure, the throughput achieved is more or less around 

70 packets per second. This is because the DRL approach is 

able to maintain high data rate. The consistency of the 

performance is also essential in IoMT application as most 

IoMT devices require uninterrupted and real-time data 

observation. 

The adaption of throughput shows that adaptive data rate 

control mechanism performs very well against the varied 

network environment. This has eliminated the massive 

fluctuations of data rate, maintained stable throughput over 

time. The adaptive QAM known as 8-QAM and 16-QAM 

could help the adaptive mechanism to increase the amount of 

data and higher data rates while still keeping the error-free 

over the transmission channel. 

 

 
 

Figure 3. The achieved power consumption of the proposed algorithm 

 

 
 

Figure 4. The proposed algorithm power consumption for different patch size 

 

1436



 

 
 

Figure 5. The packet throughput performance 
 

 
 

Figure 6. Packet delivery ratio between the proposed algorithm and traditional signal methods 
 

 
 

Figure 7. Comparison of power consumption: DRL vs. Non-DRL 
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Figure 8. Ablation study on batch size and power consumption 

 

 
 

Figure 9. Ablation study on learning rate and power consumption 

 

Figure 6 gives a comprehensive view on Packet delivery 

ratio for the proposed DRL algorithm and conventional Signal 

method. From figure 6, we can see that the proposed signal 

methods consistently outperform the conventional signal 

method by measuring the packet delivery rate.  

Large difference in packet delivery rate can be observed 

around 80 packets per second, whereas in conventional 

method is around 60 packets per second. In the context of 

IoMT networks, maintaining a high PDR is important and this 

is because it assures that more medical data packets will reach 

the receiver successfully without any loss problems. 

Additionally, the fact that this result is constant over the 

simulation process proves that the proposed DRL algorithm 

are more meaningful attempts to reduce packet loss. 

Figure 7 clearly illustrates the significant reduction in power 

consumption achieved by the DRL-based approach compared 

to the non-DRL method across all test cases. DRL consistently 

operates at an average of ~38 mW, while non-DRL consumes 

~48 mW, demonstrating approximately 21% energy savings. 

The consistent results across multiple tests highlight the 

robustness and reliability of the DRL framework in optimizing 

power efficiency. The annotated bar heights further emphasize 

the stability of DRL power usage compared to the higher 

variability in non-DRL. These findings confirm that DRL 

effectively balances energy efficiency with reliable data 

transmission for IoMT networks. 

In Figure 8, we observe the effect of batch size on power 

consumption across different learning rates. As batch size 

increases, power consumption generally decreases for all 

learning rates, indicating that larger batch sizes lead to more 

energy-efficient operation. However, the degree of 

improvement varies with learning rate. For instance, at the 

lowest learning rate 0.0001, the power consumption is highest 

and decreases more steadily across batch sizes. In contrast, for 

learning rates of 0.005 and 0.02, there is a steeper reduction in 

power consumption, with the optimal power usage seen at 

batch size 50. This suggests that larger batch sizes combined 

with moderately high learning rates (e.g., 0.005) yield the best 

power efficiency. 

In same context, Figure 9 examines how learning rate 
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impacts power consumption across different batch sizes. For 

smaller batch sizes, power consumption is relatively high, 

especially at the highest and lowest learning rates 0.0001 and 

0.02. Medium learning rates 0.001 to 0.005 yield lower power 

usage, with batch size 50 consistently showing the lowest 

consumption across all learning rates. The plot shows that 

learning rate stability affects power efficiency, with an optimal 

range 0.001 to 0.005 where power consumption is minimized. 

Overall, both plots suggest that a combination of a larger batch 

size 50 and a medium learning rate ~0.005 is ideal for reducing 

power consumption effectively. 

Table 2 depicted the comparison with the most advanced 

earlier research. The proposed DRL system may dynamically 

change transmission power and data rates based on real-time 

CSI, ensuring optimal performance. The adaptivity is clearly 

demonstrated through the enhancements in power 

consumption stability and efficiency, which are facilitated by 

a strong replay buffer and epsilon-greedy exploration with α = 

0.001. Furthermore, the significant enhancement in PDR 

demonstrates that the DRL strategy efficiently tackles network 

unpredictability and interference, which are prevalent in IoMT 

situations. Uninterrupted and precise health monitoring 

requires dependable packet transmission. 

The fact that we are able to consistently lower the power 

consumption after each iteration showcases the energy-saving 

potential of the DRL algorithm. Maintaining low power 

consumption is very important to IoMT devices, as it allows 

us to extend operation times between battery replacements or 

recharges. Moreover, our DRL maintaining (on average) a line 

throughput of near 70 packets per second is also encouraging, 

which clearly reveals its capability to handle large volumes of 

data in real time. 

 

Table 2. The benchmark with other studies 

 

Study Key Focus 

Packet 

Throughput 

Improvement 

Power 

Improvement 

Rate 

Askar et 

al. [32] 

Use of ML in 

IoMT 
25% 20% 

Wang et 

al. [33] 

Adaptive traffic 

shaping data 

rate 

30% 18% 

Nguyen 

et al. [34] 

QoE 

management in 

RSMA 

networks 

28% 22% 

Ding et 

al. [35] 

Intelligent data 

transmission 

system in IoMT 

35% 25% 

Malhotra 

[36] 

RAT selection 

in 5G IoMT 

networks 

32% 19% 

Abo-

Eleneen 

et al. [37] 

Energy-efficient 

network 

selection 

29% 21% 

Yuan et 

al. [38] 

Frame 

aggregation and 

task offloading 

in IoMT 

34% 23% 

This 

study 

Deep 

reinforcement 

learning and 

adaptive data 

rate with 

transmission 

power control 

35% 27% 

We achieved significant improvements in power efficiency 

27% and maintained high packet delivery rates. These 

improvements underscore DRL’s potential in dynamically 

optimizing IoMT networks. 

Our work advances the state of the art by presenting a DRL 

framework that dynamically adapts both transmission power 

and data rate, specifically suited for the dynamic and 

constrained IoMT environment. 

We acknowledge limitations such as the computational cost 

of DRL and potential security/privacy challenges in handling 

medical data. For future work, we suggest exploring real-time 

implementation in practical IoMT scenarios and adding multi-

agent cooperation to handle scalability. 

Although the utilisation of DRL to improve power in IoMT 

networks by adjusting data rate and transmission power 

demonstrates promising outcomes, it is important to recognise 

many limitations in this study: 

⚫ Security and Privacy Concerns: IoMT networks often 

handle sensitive medical data. Another challenge in 

implementing DRL algorithms is associated with 

ensuring safety and privacy of this data. DRL must be 

integrated in a way that does not introduce any 

vulnerabilities or possibilities of a security breach. 

⚫ Generalisation: The DRL models undergo training 

under specified network settings and characteristics. 

The capacity of these models to extrapolate to various 

contexts, device kinds, or network topologies without 

the need for additional training is restricted. Every 

new situation may necessitate further instruction to 

attain the best possible results. 

⚫ Scalability: The scalability of the DRL framework to 

larger IoMT networks with a high density of devices 

remains uncertain. As the number of devices 

increases, the state and action spaces grow 

exponentially, potentially leading to difficulties in 

maintaining efficient and effective control. 

⚫ Training Time and Data Requirements: DRL models 

require substantial training time and a large amount of 

data to achieve optimal performance. The initial 

training phase can be resource-intensive and time-

consuming, which may not be practical in real-time 

IoMT deployments where quick adaptation is 

necessary. 

 

 

6. CONCLUSIONS  

 

In this study, a deep reinforcement learning algorithm for 

IoMT networks power enhancement is proposed. Our 

proposed scheme uses the adaptive data rate to improve the 

transmission power control. The application of Deep 

Reinforcement Learning for power enhancement in IoMT 

networks through adaptive data rate and transmission power 

control shows promising results. The proposed approach not 

only improves power efficiency but also enhances packet 

delivery reliability, maintains high throughput, and reduces 

transmission delays. These improvements are critical for the 

effective deployment and operation of IoMT systems, 

ensuring continuous, reliable, and energy-efficient monitoring 

of medical conditions. 

While our DRL framework shows promise in optimizing 

IoMT network power usage, several limitations warrant 

further investigation: 

i. Scalability Challenges: As IoMT networks grow in 
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size and complexity, our model may encounter 

challenges in handling large state and action spaces 

efficiently. Future work could explore distributed 

DRL or federated learning frameworks for scalability. 

ii. Security and Privacy: Handling sensitive patient data 

requires strict data security and privacy protocols. 

Integrating DRL models without compromising data 

integrity and privacy remains a crucial challenge. 

iii. Potential Negative Societal Impacts: Any deployment 

of IoMT networks must consider potential data 

breaches and their impacts on patient confidentiality. 

Our future research will focus on integrating secure 

data handling mechanisms and enhancing the 

adaptability of the DRL model across various IoMT 

settings. 

 

 

NOMENCLATURE 

 

SNR 
Signal-to-Noise Ratio; measure of signal quality 

over noise in the channel. 

PER 
Packet Error Rate; probability of a packet being 

received with errors. 

Pavg 
Average Power Consumption; total power usage 

averaged over a given time period. 

PC 

Circuit Power; baseline power used by the 

device's internal circuits regardless of 

transmission. 

Ptxn 
Transmission Power; power consumed 

specifically for sending data over the network. 

Tactive 
Time in Active Mode; duration when the device 

is actively transmitting or receiving data. 

Tsleep 
Time in Sleep Mode; duration when the device is 

in low-power or inactive mode. 

Ttotal 
Total Operational Time; the sum of Tactive and 

Tsleep. 

Reff 

Effective Data Rate; data transfer rate adjusted 

based on channel conditions and modulation 

scheme. 

B 
Bandwidth of the Channel; width of the 

frequency band used for data transmission. 

M 
Modulation Order; parameter defining the 

modulation scheme (e.g., BPSK, QPSK). 

Q(s, a) 
Q-value; expected cumulative reward for taking 

action a in state s. 

α 
Learning Rate; rate at which the DRL model 

updates its knowledge. 

γ 
Discount Factor; importance of future rewards in 

the RL model. 

ε 
Exploration Rate; likelihood of the model 

exploring random actions during training. 

R(s, a) 
Reward Function; immediate reward for taking 

action a in state s. 

Psaved 

Power Saved; difference in power consumption 

achieved by adjusting transmission power or data 

rate. 
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