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This study systematically reviews advancements in mathematical models for portfolio 

optimization, focusing on the integration of non-Gaussian distributions and artificial 

intelligence (AI) techniques to address evolving market complexities. Employing a 

systematic literature review (SLR) guided by the Search, Appraisal, Synthesis, and 

Analysis (SALSA) framework, data were extracted from 61 high- and moderate-quality 

studies published between 2009 and 2024, identified through comprehensive searches 

in the Scopus database. The study evaluates trends, challenges, and gaps in the 

application of mathematical models, emphasizing support vector regression (SVR), 

mean-variance optimization (MVO), neural networks, and Copulas. Quantitative 

analysis revealed a growing adoption of non-Gaussian models, particularly SVR, which 

accounted for 30% of the reviewed studies due to its robust handling of non-linear and 

non-Gaussian data. These models demonstrated superior performance in optimizing 

risk-adjusted returns, especially when combined with complementary algorithms such 

as LASSO. Qualitative synthesis highlighted the integration of AI techniques in 

sustainability-focused investments, with emerging trends in green finance and 

environmental, social, and governance (ESG) optimization. However, challenges such 

as computational inefficiencies, limited empirical validation in emerging markets, and 

inconsistent ESG metrics were identified as key barriers. The findings emphasize the 

transformative potential of integrating non-Gaussian models and AI in portfolio 

optimization, providing insights into their application across diverse financial contexts. 
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1. INTRODUCTION

Portfolio optimization stands as a cornerstone of financial 

strategy, enabling investors to achieve a calculated balance 

between returns and risks. These approaches incorporate 

essential factors such as expected returns, risk levels, and 

correlations between assets [1, 2]. Historically, portfolio 

optimization has been anchored in Markowitz's Modern 

Portfolio Theory (MPT) (1952), which established a 

quantitative framework for maximizing returns at a given level 

of risk. MPT employs variance as a measure of risk and mean 

returns as a reward indicator to formulate efficient investment 

strategies [3-5].  

Central to this approach is the principle of diversification, 

which mitigates the likelihood of significant losses by 

distributing investments across assets with low or negative 

correlations [6-9]. These models assume normally distributed 

asset returns, simplifying the analytical processes involved in 

risk and return management [2, 7]. However, real-world 

markets deviate significantly from Gaussian assumptions. 

Market returns frequently exhibit fat tails, skewness, and 

asymmetric distributions, leading to underestimation of 

extreme risks in traditional models [2, 7]. The assumption of 

normality fails to account for market anomalies such as 

financial crises, sudden price shocks, and contagion effects, 

where asset correlations become unstable and tail 

dependencies intensify. This shortcoming results in models 

that are ill-equipped to manage tail risks and systemic shocks, 

limiting their applicability in volatile market conditions. For 

instance, empirical evidence suggests that extreme events—

such as the 2008 global financial crisis and the COVID-19 

market collapse—produce return distributions that 

significantly deviate from the Gaussian framework, 

demonstrating heightened kurtosis and non-linear 

dependencies among assets.  

A notable example of Gaussian model failure occurred 

during the 2008 global financial crisis. Traditional Value-at-

Risk (VaR) models, which assume normally distributed 

returns, significantly underestimated the probability of 

extreme losses, leading to severe miscalculations in risk 

exposure [10, 11]. Financial institutions relying on these 

models faced catastrophic failures as their risk management 

frameworks could not capture the compounding effects of tail 

risk and systemic contagion [12]. Lehman Brothers and other 

major banks, for instance, experienced liquidity crises due to 

these miscalculations, ultimately leading to their collapse. 

Similarly, during the COVID-19 pandemic, equity markets 

experienced abrupt crashes, with indices like the S&P 500 and 

Dow Jones witnessing rapid declines of over 30% within 

weeks [13]. Gaussian-based portfolio models failed to 
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anticipate such extreme price movements, resulting in 

liquidity shortfalls and portfolio misallocations [14]. In 

contrast, non-Gaussian approaches, incorporating fat-tailed 

distributions and Copula models, provided more accurate risk 

estimates and improved downside protection [15]. These 

models demonstrated superior performance in capturing 

extreme tail events, reinforcing the necessity of adopting non-

Gaussian frameworks in modern portfolio optimization. 

Consequently, investors relying solely on MPT-based 

models may underestimate downside risks and misallocate 

capital, leading to suboptimal portfolio performance during 

market stress periods. This inadequacy has driven the 

evolution of more sophisticated mathematical frameworks that 

integrate advanced techniques like stochastic modeling, 

higher-order statistics, and machine learning algorithms to 

address the non-Gaussian characteristics inherent in real-

world financial markets. 

Recent trends in portfolio optimization have broadened the 

scope of mathematical models, integrating advanced statistical 

techniques, environmental, social, and governance (ESG) 

factors, and AI. Non-Gaussian models have emerged as 

transformative tools, addressing the shortcomings of 

traditional Gaussian-based methods by capturing complex 

market phenomena like extreme co-movements and dynamic 

correlations [16, 17]. Moreover, ESG integration underlines a 

shift toward sustainability-driven investing, emphasizing 

financial models that align with broader societal goals. 

The introduction of AI and machine learning techniques has 

further revolutionized portfolio optimization. Methods such as 

support vector regression (SVR), neural networks, and 

metaheuristic algorithms like genetic algorithms (GA) offer 

improved adaptability, scalability, and precision in navigating 

market complexities. For instance, SVR demonstrates superior 

performance in managing risk-adjusted returns and addressing 

non-linear dependencies in financial data [18]. These 

advancements allow for the modeling of non-linear 

relationships, heavy-tailed distributions, and dynamic 

correlations between assets, which are often overlooked by 

classical models.  

Given the increasing complexity and volatility 

characterizing contemporary financial markets, non-Gaussian 

models have become essential for effective portfolio 

management. These advanced approaches transcend the 

limitations of traditional Gaussian-based models by 

incorporating sophisticated mathematical techniques—such as 

higher-order co-moments and dynamic correlation 

structures—to provide a more accurate representation of 

market dynamics. These models account for real-world market 

anomalies, such as skewness, fat tails, and extreme 

dependencies, by leveraging advanced statistical techniques 

like Copulas, generalized hyperbolic distributions, and higher-

order moments. In parallel, AI has emerged as a transformative 

tool in financial modeling, offering powerful machine learning 

algorithms such as SVR, deep learning, and ensemble methods 

to enhance predictive accuracy and risk assessment. The 

integration of AI-driven approaches with non-Gaussian 

models in Figure 1 presents a compelling solution for modern 

portfolio management, enabling investors to construct more 

resilient, adaptive, and data-driven investment strategies in 

increasingly volatile and complex financial markets. By 

integrating these cutting-edge methodologies, non-Gaussian 

models offer investors comprehensive frameworks for 

effectively managing risks while optimizing returns in 

increasingly uncertain environments. So, are non-Gaussian 

models the future of portfolio optimization? 

Figure 1. Balancing advanced techniques for portfolio 

optimisation 

This paper aims to systematically review and synthesize the 

existing literature on recent advancements in mathematical 

models for portfolio optimization, focusing on non-Gaussian 

distributions and AI integration. Through this examination, we 

will highlight their potential to transform portfolio 

management practices within volatile and sustainable markets. 

Utilizing a systematic literature review (SLR) approach, this 

study will explore key mathematical advancements in the field 

while identifying emerging trends and research gaps that 

warrant further investigation. 

The remainder of this paper is organized as follows: Section 

2 outlines the research methodology used to identify relevant 

studies within the scope of this review. Section 3 presents 

findings on current mathematical models for portfolio 

optimization, with a focus on approaches accommodating non-

Gaussian distributions. Section 4 discusses the performance 

and adaptability of these models across financial markets, 

highlighting their sensitivity to market conditions and capacity 

to handle outliers. Finally, Section 5 concludes the paper by 

summarizing key insights and suggesting directions for future 

research. 

2. LITERATURE REVIEW

2.1 Advancements in portfolio optimization: From 

Gaussian to non-Gaussian models 

Historically, Gaussian-based models like Mean-Variance 

Optimization (MVO) have dominated portfolio optimization. 

These models assume that asset returns follow a normal 

distribution, allowing risk to be quantified using variance and 

return to be measured as the mean, variance, and covariance 

[2, 19]. This assumption simplifies the mathematical 

formulation of optimal portfolios, making MVO a widely 

adopted approach in modern finance. The appeal of Gaussian-

based models lies in their intuitive risk-return tradeoff, 

computational efficiency, and applicability in a broad range of 

investment strategies [9, 20, 21]. However, the assumption of 

normality often misrepresents the realities of financial 

markets, where asset returns often exhibit by heavy tails, 

skewness, and volatility clustering, and extreme dependencies. 

Gaussian models struggle with "fat tails," where extreme 

returns are more frequent than normal distributions predict, 

and assume stable, symmetrical distributions, limiting their 

efficacy in managing skewed or non-linear relationships [22]. 

Such limitations are particularly evident during periods of high 

volatility or market disruptions, where traditional Gaussian-

based methods can significantly underestimate risks [23]. The 
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2008 global financial crisis exposed these shortcomings, as 

Gaussian-based VaR models failed to anticipate extreme 

losses, leading to systemic failures [18]. These crises highlight 

the necessity for more sophisticated risk management 

frameworks that move beyond normality assumptions. 

To address these shortcomings, non-Gaussian models have 

emerged as a transformative tool in portfolio optimization. 

Empirical evidence highlights the efficacy of these models in 

capturing complex market phenomena such as heavy tails, 

skewness, and extreme co-movements between assets [24]. 

Unlike their Gaussian counterparts, these models integrate 

higher-order statistical moments (skewness and kurtosis), 

Copula theory, and stochastic processes to more accurately 

capture real-world market behaviors. Multivariate generalized 

hyperbolic distributions, for example, effectively model tail 

dependencies and asymmetric risk structures, making them 

particularly suitable for managing portfolio risk under extreme 

market conditions [24]. These models incorporate higher-

order statistical properties like skewness and kurtosis, 

providing a more realistic representation of financial market 

dynamics. For instance, multivariate generalized hyperbolic 

distributions effectively model tail dependencies and 

asymmetries, making them indispensable for managing 

portfolios in extreme market conditions.  

Furthermore, empirical evidence demonstrates that the 

Omega portfolio model, which accounts for non-normal 

distributions of returns, outperforms MVO in terms of risk-

adjusted returns and drawdown minimization, particularly 

during market crises such as the global financial downturn and 

COVID-19 pandemic [6, 25]. Similarly, local Gaussian 

correlation models, which adapt correlation structures 

dynamically, offer enhanced downside protection in volatile 

markets [16]. 

Non-Gaussian approaches are particularly adept at 

addressing intricate challenges such as market shocks, 

liquidity constraints, and behavioral biases, providing a robust 

framework for risk management [26]. Their effectiveness is 

most evident during market distress, where traditional 

Gaussian-based models often fail to capture the full extent of 

financial instability. Despite their advantages, non-Gaussian 

models present implementation challenges due to their 

reliance on computationally intensive algorithms and the need 

for advanced tools to manage high-dimensional data and 

asymmetric return distributions. Techniques such as global 

optimization are often employed in these models, to handle the 

complexities of asymmetric return distributions and high-

dimensional data structures [27, 28]. 

 

 
 

Figure 2. Conceptual summary of portfolio optimization 

models 

 

One notable advancement in this domain is the Non-

Gaussian Component (NGC) portfolio, which utilizes higher-

order co-moments of asset returns to enhance the estimation 

process and optimize asset allocation. Empirical studies reveal 

that the NGC portfolio consistently outperforms benchmark 

models, proving its efficacy in constructing robust and 

efficient portfolios [29]. These findings highlight the growing 

relevance of non-Gaussian models in modern financial 

markets, particularly for applications requiring advanced 

modeling of risk and return dynamics. As illustrated in Figure 

2, portfolio optimization has evolved from traditional MVO 

frameworks to more sophisticated non-Gaussian models that 

better reflect market realities. 

 

2.2 Risk minimization and return maximization in 

portfolio optimization 

 

Risk minimization and return maximization are 

foundational objectives in portfolio optimization, each tailored 

to distinct investor preferences and risk tolerance levels. 

Traditional risk minimization models, such as Markowitz's 

MVO, emphasize variance reduction to enhance portfolio 

stability. However, these models are limited in their ability to 

capture the complexities of modern financial markets, 

particularly during periods of heightened volatility or market 

anomalies. Contemporary approaches, including those by 

Harun et al. [17] and Lucey et al. [30], have incorporated 

advanced tail-risk measures like Conditional Value at Risk 

(CVaR) and CoVaR to address extreme market events and the 

irregularities associated with non-Gaussian distributions. 

These models have proven particularly effective in volatile 

environments, demonstrating superior capital preservation and 

downside risk mitigation. 

In contrast, return maximization models prioritize higher 

returns, often at the expense of increased volatility. 

Momentum investing, for example, exploits return persistence 

patterns, while alternative assets, such as green 

cryptocurrencies and ESG-themed funds, offer higher return 

potential but increased exposure to tail risk, as explored by 

Chaudhury and Islam et al. [3] and Lim et al. [8]. While these 

approaches offer potential for significant gains, they 

frequently rely on Gaussian assumptions, which may fail to 

adequately capture real-world complexities like fat tails and 

asymmetric risk profiles. Sustainability-focused frameworks, 

such as those developed by Abate et al. [31] and Zheng et al. 

[32], enhance return maximization by incorporating ESG-

weighted returns. Recent models [31, 33, 34] exemplify a 

multi-objective approach, balancing financial returns, ESG 

scores, and risk metrics. These models cater to socially 

conscious investors, integrating environmental, social, and 

governance considerations into portfolio decision-making 

processes. 

Addressing non-Gaussian distributions remains a critical 

challenge in portfolio optimization. Pioneering contributions 

by Harun et al. [17], Lucey et al. [30], and Pham et al. [35] 

explicitly tackle market irregularities, including fat tails, 

skewness, and quantile-based risks. By incorporating these 

non-Gaussian characteristics, modern models enhance their 

robustness and applicability, making them suitable for 

dynamic and irregular financial environments. 

 

2.3 ESG optimization and sustainability in portfolio 

management 

 

The integration of ESG criteria represents a paradigm shift 
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in portfolio optimization. By aligning investment strategies 

with sustainability goals, ESG-focused models offer advanced 

tools for managing financial risks while addressing broader 

societal concerns. For instance, multi-index frameworks and 

wavelet-based Conditional Value-at-Risk (CVaR) have 

proven effective in balancing risk and return in volatile 

markets while prioritizing ESG compliance [36, 37]. 

Similarly, fuzzy multi-objective chance-constrained 

optimization provides a robust decision-making framework 

that incorporates uncertainty into ESG-focused investment 

strategies [38]. While these innovative models improve 

understanding of risk-return dynamics in sustainable 

portfolios, their practical application remains a challenge due 

to the need for empirical validation across diverse market 

conditions. 

The rise of green finance and sustainable investing marks a 

profound shift in the global financial landscape, blending 

financial objectives with environmental and societal goals. 

Green finance initiatives, such as green bonds and renewable 

energy investments, often exhibit non-Gaussian characteristics 

like high volatility and skewness. These green assets have 

demonstrated potential for risk mitigation, diversification, and 

long-term financial success, even as their performance varies 

across different market conditions [39, 40].  

Beyond their ecological impact, green finance initiatives 

often demonstrate the ability to enhance financial outcomes, 

offering strategies to manage risks during the ecological 

transition while potentially delivering attractive returns [41-

44]. Advanced models that incorporate ESG-specific metrics, 

such as climate risk indices, help investors construct portfolios 

that are both profitable and socially responsible [18, 40, 41]. 

For instance, sustainability-focused optimization models have 

been instrumental in balancing financial returns with 

ecological impact, offering viable strategies to navigate the 

transition toward greener economies [41, 43]. Wu et al. [18] 

demonstrated the effectiveness of fused LASSO optimization 

in constructing socially responsible portfolios that integrate 

ESG scores. These models not only improve return predictions 

but also mitigate risks associated with regulatory and market 

uncertainties [18, 40]. Additionally, models like Zhao’s [40] 

adaptation of the Markowitz framework with root algorithms 

demonstrate the feasibility of managing green portfolios under 

non-Gaussian distributions. These models are particularly 

well-suited for handling extreme returns and market volatility, 

common in green assets such as renewable energy and green 

cryptocurrencies. The integration of ESG principles into 

investment strategies further reinforces the importance of 

aligning portfolio management practices with broader 

sustainability objectives. 

Modern portfolio optimization models, including those 

based on ESG criteria, emphasize a balanced approach to risk 

minimization and return maximization. Frameworks such as 

neutrosophic goal programming address the uncertainty and 

ambiguity inherent in ESG metrics, making them particularly 

effective for managing green assets in complex market 

environments [38]. Risk-adjusted return measures, such as the 

Sharpe Ratio, have also been adapted to account for ESG 

impact, further enhancing the relevance of these models in 

sustainable investing [6]. 

Metaheuristic algorithms like Genetic Algorithms and 

Simulated Annealing have been employed to improve the 

flexibility and scalability of ESG-integrated optimization 

frameworks. These algorithms effectively incorporate ESG 

metrics and carbon compliance measures, enabling investors 

to prioritize green energy projects and exclude non-compliant 

assets, such as fossil fuels, ensuring a socially responsible 

investment strategy [18, 41].  

 

2.4 The role of artificial intelligence in portfolio 

optimization 

 

AI has revolutionized portfolio optimization by enabling the 

modeling of non-linear relationships and dynamic market 

conditions. Techniques like SVR, neural networks, and 

metaheuristics such as GA have significantly enhanced the 

precision and adaptability of portfolio models [45, 46]. For 

instance, SVR outperforms traditional approaches by 

leveraging non-linear regression to predict returns and 

optimize asset allocation. Studies demonstrate that SVR, when 

combined with algorithms like LASSO and neural networks, 

achieves superior risk-adjusted returns, particularly in ESG-

focused portfolios [18, 47]. 

AI-driven frameworks also excel in managing market 

anomalies and adapting to evolving conditions. Hybrid models 

integrating machine learning with traditional optimization 

techniques have shown significant improvements in 

performance across various asset classes, including real estate 

investment trusts (REITs) and commodities [48]. By focusing 

on support vectors, SVR-based approaches mitigate the impact 

of outliers, ensuring robust predictions even in noisy datasets 

[18]. 

 

2.5 Applications of SVR in portfolio optimization 

 

SVR has emerged as a critical tool for portfolio 

optimization, offering notable advantages in predicting 

returns, managing risks, and enhancing portfolio resilience. 

Empirical evidence supports its effectiveness across diverse 

markets, including U.S. equities, REITs, and commodities 

such as gold and cocoa [49, 50]. SVR models improve risk-

return trade-offs, particularly in ESG-focused portfolios, and 

have consistently outperformed traditional methods in 

achieving higher Sharpe ratios [18]. 

The adaptability of SVR to fluctuating market conditions 

makes it a cornerstone of modern portfolio management. By 

addressing challenges such as volatility, shifting investor 

sentiment, and data irregularities, SVR-based models provide 

reliable predictions and robust performance across various 

financial contexts [45, 47].  

 

2.6 Synthesis of the literature review 

 

This review highlights the evolution of portfolio 

optimization, transitioning from traditional Gaussian models 

to advanced non-Gaussian frameworks that capture the 

complexities of modern financial markets. The limitations of 

Gaussian models, such as their inability to account for heavy 

tails, skewness, and dynamic market dependencies, have been 

increasingly addressed by non-Gaussian models. These 

models, including multivariate generalized hyperbolic 

distributions and non-Gaussian component frameworks, 

provide robust solutions for managing tail risks, asymmetry, 

and extreme co-movements, particularly during periods of 

market turbulence. Similarly, ESG integration has emerged as 

a critical advancement, aligning portfolio optimization 

practices with sustainability goals and societal values. Despite 

their promise, these approaches often face challenges in 

empirical validation, scalability, and computational 
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complexity. 

AI-driven methodologies, particularly SVR and hybrid 

models integrating machine learning techniques, have 

revolutionized portfolio optimization by enhancing 

adaptability, precision, and the handling of non-linear market 

behaviors. These innovations address significant gaps in 

traditional models, including the need for more accurate risk 

prediction, better resilience to market anomalies, and 

improved optimization of ESG-focused portfolios. However, 

the practical application of these models is constrained by 

challenges such as algorithmic complexity, data availability, 

and their ability to generalize across diverse financial contexts. 

Despite substantial progress, several gaps remain in the 

existing literature. First, while non-Gaussian models excel in 

capturing market irregularities, their integration with ESG-

focused and AI-driven frameworks is still underexplored. 

Second, there is a lack of comprehensive studies that 

synthesize the effectiveness of these models across different 

asset classes and market conditions. Lastly, the scalability of 

these advanced frameworks in real-world portfolio 

management remains a critical area for further exploration. 

This paper addresses these gaps by systematically 

reviewing and synthesizing the literature on recent 

advancements in mathematical models for portfolio 

optimization. It focuses on non-Gaussian distributions and the 

integration of AI techniques, offering insights into their 

transformative potential within volatile and sustainable 

markets. By utilizing a SLR approach, this study highlights 

key mathematical advancements while identifying emerging 

trends and research directions. The findings aim to bridge 

theoretical innovations with practical applications, providing 

a comprehensive understanding of how these models can 

reshape portfolio management in increasingly complex 

financial environments. 

 

 

3. METHODOLOGY  

 

This study adopts a SLR approach to comprehensively 

explore recent advancements in mathematical models for 

portfolio optimization, with a specific focus on non-Gaussian 

distributions and AI integration. The SLR methodology 

ensures a structured, transparent, and replicable process for 

identifying, selecting, and synthesizing relevant studies. This 

section outlines the systematic process employed to achieve 

the objectives of this study, including the identification of 

research gaps and emerging trends. 

 

3.1 SLR 

 

3.1.1 Search, Appraisal, Synthesis, and Analysis (SALSA) 

framework  

The SLR methodology employed in this study follows the 

SALSA framework, as proposed by Grant and Booth [51]. 

This framework provides a robust structured methodology for 

defining search protocols, evaluating study quality, 

synthesizing results, and analyzing research trends, ensuring 

methodological rigor and reproducibility. The SALSA 

framework emphasizes systematic processes to mitigate 

publication bias and enhance the credibility of findings [4]. 

The SALSA framework guides the review process through the 

following stages: 

• Search: Systematic identification of relevant studies using 

precisely defined search strings and Boolean operators in 

academic databases. 

• Appraisal: Evaluation of retrieved studies based on 

predefined inclusion and exclusion criteria to ensure 

quality and relevance. 

• Synthesis: Organization of extracted data into quantitative 

and qualitative categories to identify meaningful patterns. 

• Analysis: Critical interpretation of synthesized data to 

highlight trends, identify gaps, and propose future 

research directions. 

Numerous studies [52-54] have demonstrated the 

effectiveness of the SALSA framework in ensuring 

thoroughness and systematization in literature reviews. This 

study modified the standard SALSA framework by 

incorporating preferred reporting items for systematic reviews 

and meta-analyses (PRISMA) methodology to enhance 

transparency in study selection and minimize bias in research 

inclusion. The adaptation of the framework is summarized in 

Table 1. 

Data Sources and Search Strategy: 

A comprehensive search was conducted using the Scopus 

database, widely recognized for its extensive coverage of 

multidisciplinary academic literature. The search phase 

involved designing and executing a precise query string to 

retrieve relevant documents. The strategy targeted articles 

focusing on portfolio optimization, mathematical models, and 

related concepts. 

The search query included primary keywords, such as 

"Portfolio optimization", "Non-Gaussian distribution", 

"Machine learning". Additional terms were incorporated to 

expand the review, including "Mathematical model", 

"Copula", "SVR", "MVO", "Sustainable investing", and 

"Green investment". Boolean operators "AND" and "OR" 

were used to refine the search, ensuring maximum coverage 

while minimizing irrelevant results. To enhance transparency 

and reproducibility, Table 2 presents a detailed breakdown of 

the search strings and the number of retrieved articles. 

To complement the electronic search, manual hand-

searching was performed in leading financial journals and 

references cited in selected studies. Articles published 

between 2009 and 2024 were included to capture recent 

advancements in portfolio optimization models. 

The search process adhered to established guidelines to 

ensure alignment with the study’s objectives. References 

deemed irrelevant during initial screening were excluded, 

focusing only on studies that addressed the core research 

questions.  

 

3.1.2 SALSA framework and its application in this study 

To tailor the SALSA framework to the objectives of this 

study, modifications were made in the search and appraisal 

stages to accommodate: 

1. An expanded search strategy using Boolean operators and 

keyword variations to ensure a comprehensive retrieval of 

literature related to non-Gaussian models, portfolio 

optimization, AI, and ESG investing. 

2. A two-phase appraisal process combining automated 

filtering (database inclusion criteria) with manual quality 

assessment based on peer-reviewed status, 

methodological rigor, and research contributions. 

3. A mixed-method synthesis approach integrating both 

quantitative (statistical trends in model adoption) and 

qualitative (comparative assessment of model 

strengths/limitations) analyses as shown in Table 3. 
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Table 1. SALSA framework of the systematic analysis 
 

Step Outcomes Methods 

Protocol Defined study scope 
This review will highlight advancements in handling non-Gaussian behaviour in financial 

models and identify potential areas for further research. 

Search 
Search strategy 

Searching strings; primarily focused on "portfolio optimization" and "non-Gaussian 

distribution." Additionally, other terms, including "mathematical model," "Copula," "SVR," 

"MVO," "sustainable invest," "machine learning," and "green invest". 

Search studies Search databases; Scopus database 

Appraisal 
Selecting studies 

Defining inclusion and exclusion criteria 

Inclusion criteria: 

⚫ Studies published in peer-reviewed journals within the last 15 years 

⚫ Research focusing on portfolio optimization and non-Gaussian distributions 

⚫ Articles exploring mathematical models for risk management. Studies on SVR, MVO, or 

other advanced optimization models 

Exclusion criteria: 

⚫ Conference abstracts, review articles, or gray literature 

⚫ Studies focusing only on Gaussian distribution models 

⚫ Non-English articles 

Quality assessment of studies Quality criteria 

Synthesis 

Extract data Extraction: selected papers to derive insights and conclusions. 

Categorize the data 

Organize the data based on its iterative definition and prepare it for further analysis. Synthesize 

the information into thematic areas: mathematical models, AI integration, optimization focus, 

and model effectiveness. Include both qualitative and quantitative analyses. 

Analysis 

Data analysis Quantitative categories, description, and narrative analysis of the organized data. 

Result and discussion Based on the analysis, show the trends, identify gap and result. 

Conclusion Deriving conclusion and recommendation. 

Report 
Report writing PRISMA methodology. 

Journal article production Summarizing the report result for the larger public. 

 

Table 2. The searching terms used and the total number of publications from Scopus database 
 

Searching String 
No. of 

Articles 

Date of 

Acquisition 

(“Portfolio optimization" OR "Portfolio optimisation”) AND "Mathematic* model" 233 08/10/2024 

"Portfolio optimi*" AND ("non-Gaussian distribution" OR "fat-tailed distribution" OR "heavy-tailed 

distribution") 
18 08/10/2024 

"Non-Gaussian asset returns" AND ("optimi* models" OR "risk-adjusted returns" OR "portfolio 

construction") 
1 08/10/2024 

"Copula" AND "Portfolio optimi*" AND (“non-Gaussian distribution" OR "fat-tailed distribution" OR 

"heavy-tailed distribution”) 
5 08/10/2024 

"Green" AND (“risk management" OR "Portfolio optimi*”) AND (“non-Gaussian distribution" OR "fat-

tailed distribution" OR "heavy-tailed distribution”) 
1 08/10/2024 

"Portfolio optimi*" AND ("non-Gaussian distribution" OR "fat-tailed distribution" OR "heavy-tailed 

distribution") AND ("stochastic models" OR "mathematical model")" 
5 08/10/2024 

(“SVR" OR "Support Vector Regression”) AND (“Portfolio optimi*" OR "risk management”) 115 08/10/2024 

(“MVO" OR "Median Variance Optimization “) AND (“Portfolio optimi*" OR "risk management”) 22 08/10/2024 

"Portfolio optimi*" AND (“Sustainable invest*" OR "green invest*”) 23 09/10/2024 

"Portfolio optimi*" AND (“machine learning" OR "artificial intelligence”) AND "Mathematic* model" 10 09/10/2024 

"Portfolio optimi*" AND (“machine learning" OR "artificial intelligence”) AND (“Sustainable invest*" OR 

"green invest*”) 
1 09/10/2024 

 

Table 3. How each stage of the SALSA framework was applied 
 

Stage Application in This Study Modifications 

Search 

Systematic retrieval of relevant studies using Scopus. A 

well-defined search query with primary and secondary 

keywords was used. 

Expanded search scope with Boolean operators, synonyms, and 

truncations to capture diverse modeling approaches and AI 

techniques. 

Appraisal 

Studies were screened using inclusion and exclusion 

criteria, followed by a quality assessment to ensure 

relevance. 

Adopted a two-phase screening:  

1) Automated filtering using database selection criteria,  

2) Manual quality assessment to verify methodological rigor 

and empirical contributions. 

Synthesis 

Data were categorized into thematic areas, including 

mathematical models, AI integration, risk measures, and 

ESG considerations. 

Employed thematic coding for qualitative synthesis and 

frequency analysis for model adoption trends. 

Analysis 
Evaluated trends, model effectiveness, gaps, and future 

research directions. 

Incorporated comparative model evaluation to assess strengths 

and weaknesses of non-Gaussian vs. Gaussian approaches. 

3.2 Screening and quality assessment 

 

The screening process adhered to the PRISMA protocol, 

ensuring transparency and reproducibility. To ensure the 

inclusion of high-quality and relevant studies, a two-stage 

screening process and a rigorous quality assessment were 
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conducted. These steps ensured the methodological rigor and 

reliability of the findings. 

 

3.2.1 Screening process 

The screening process followed a systematic approach: 

1. Initial Screening: 

Titles and abstracts of the unique studies were evaluated 

against the predefined inclusion and exclusion criteria. This 

step eliminated irrelevant articles while retaining studies 

aligned with the research objectives. 

• Studies clearly unrelated to portfolio optimization, non-

Gaussian models, or AI integration were excluded. 

• Papers with ambiguous relevance were flagged for further 

review during the full-text screening phase. 

2. Full-Text Screening: 

The remaining articles identified during the initial screening 

underwent a comprehensive full-text review. This phase 

assessed the depth of the study, the methodology employed, 

and the alignment of findings with the study's objectives. 

• Key focus areas included the mathematical framework 

used, the incorporation of AI techniques, and the 

treatment of non-Gaussian characteristics. 

• Articles failing to provide sufficient methodological rigor 

or practical insights were excluded, leaving the remaining 

studies for in-depth analysis. 

 

3.2.2 Inclusion and exclusion criteria  

A rigorous appraisal phase followed the search, evaluating 

articles based on predefined inclusion and exclusion criteria 

(Table 4). These criteria were developed to ensure that only 

high-quality and relevant studies were included in the review. 

 

Table 4. SLR study selection of literature using inclusion and 

exclusion criteria 

 
Criteria Decision 

When the predefined keywords exist as a 

whole or at least in title, keywords, or 

abstract section of the paper 

Inclusion 

Studies published in peer-reviewed journals Inclusion 

Studies published within the last 15 years Inclusion 

Articles exploring mathematical models for 

risk management in financial only 
Inclusion 

Conference abstracts, review articles, or 

gray literature 
Exclusion  

Studies focusing only on Gaussian 

distribution models 
Exclusion  

Non-English articles Exclusion  

Inaccessible publications Exclusion  

 

Inclusion Criteria: 

1. Studies addressing mathematical models for portfolio 

optimization, with a focus on non-Gaussian 

distributions. 

2. Research incorporating AI techniques (e.g., SVR, 

neural networks, genetic algorithms). 

3. Papers exploring sustainability and ESG integration 

in portfolio optimization. 

4. Empirical studies demonstrating real-world 

applications or simulations. 

5. Peer-reviewed journal articles and conference papers 

published between 2009 and 2024. 

Exclusion Criteria: 

1. Studies unrelated to portfolio optimization or 

mathematical modeling. 

2. Papers focusing solely on Gaussian-based models 

without addressing non-Gaussian features. 

3. Non-peer-reviewed articles, editorials, or 

commentaries. 

4. Duplicate studies identified across multiple 

databases. 

The inclusion period reflects the rapid advancements in 

computational power and data availability over the last 15 

years, particularly during the rise of deep learning and neural 

network innovations. Table 4 provides a summary of study 

selection criteria. 

 

3.3.1 Quality assessment tools and checklist 

A tailored approach was used for the quality assessment of 

the included studies, employing tools specific to the type of 

research: 

1. Empirical Studies: 

For empirical research, the Cochrane Risk of Bias Tool was 

applied. This tool evaluates the methodological quality of 

studies by identifying potential biases that could affect the 

validity of results. The following domains were assessed: 

• Selection Bias: Adequacy of sampling methods and data 

sources. 

• Performance Bias: Transparency and consistency in 

experimental conditions. 

• Detection Bias: Objectivity and reliability of data 

collection instruments. 

• Attrition Bias: Completeness of reported data and 

handling of missing information. 

• Reporting Bias: Consistency between reported results and 

the study’s objectives. 

2. Theoretical Studies: 

For theoretical and conceptual studies, a customized 

checklist was developed. The checklist evaluated the 

following aspects: 

• Clarity of Objectives: Whether the research question and 

objectives were explicitly defined and aligned with the 

theoretical framework. 

• Mathematical Rigor: Robustness of mathematical 

derivations, equations, and assumptions. 

• Relevance of the Model: Applicability of the proposed 

model to real-world portfolio optimization, particularly 

under non-Gaussian distributions. 

• Innovative Contributions: Introduction of novel 

methodologies or extensions to existing models. 

• Validation: Evidence supporting the theoretical 

propositions, such as simulations or comparative analyses 

with established models. 

 

3.3.2 Scoring and categorization 

Each study was assigned a score based on its performance 

across the quality assessment criteria. Studies were 

categorized as: 

• High Quality: Fully addressed the objectives, 

demonstrated methodological rigor, and provided 

actionable insights. 

• Moderate Quality: Partially met the objectives but lacked 

depth or robustness in certain areas. 

• Low Quality: Did not meet the required standards for 

inclusion. 

Only studies categorized as high or moderate quality were 

included in the final synthesis, ensuring the reliability and 

relevance of findings. 
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3.3.3 Additional quality assurance measures 

• A dual-reviewer process was employed during the full-

text screening and quality assessment phases to minimize 

reviewer bias. Any disagreements were resolved through 

discussion or consultation with a third reviewer. 

• The assessment criteria were piloted on a subset of studies 

to refine the process and ensure consistency across 

evaluations. 
 

3.4 Data synthesis 
 

The data synthesis process aimed to systematically organize 

and analyze the findings from the selected studies to address 

the research objectives of this paper. This process involved 

categorizing and summarizing data to uncover patterns, 

emerging trends, and gaps in the literature on non-Gaussian 

models and AI-driven portfolio optimization. 

 

 
 

Figure 3. SALSA framework 

 

3.4.1 Quantitative and qualitative analysis 

To address the research objectives comprehensively, the 

data synthesis employed both quantitative and qualitative 

methods: 

1. Quantitative Analysis: 

• Frequencies and trends were identified to quantify the 

usage of specific mathematical models, AI techniques, 

and sustainability-focused approaches over time. 

• Metrics such as the prevalence of non-Gaussian models, 

the adoption of AI algorithms, and their application across 

asset classes were tabulated. 

2. Qualitative Analysis: 

• The strengths, limitations, and applications of each model 

or approach were compared to identify recurring themes 

and insights. 

• Emerging trends, such as the increasing integration of AI 

in ESG-focused portfolios, were highlighted. 

• Challenges, including scalability and computational 

complexity, were noted to pinpoint research gaps. 

The extracted data from the final selected papers were 

organized into an Excel spreadsheet and analyzed to derive 

meaningful insights. Both qualitative and quantitative 

approaches were employed to address the research questions. 

Meta-analyses identified trends and evaluated the impact of 

specific mathematical models, while qualitative comparative 

analyses assessed their strengths and limitations. The whole 

methodology is summarized in Figure 3.  
 

 

4. RESULTS 

 

The results and discussion section presents the findings 

from the SLR, aligning them with the objectives of the study. 

This section synthesizes quantitative and qualitative insights, 

highlights emerging trends, and identifies research gaps in the 

application of mathematical models for portfolio optimization, 

with a focus on non-Gaussian distributions and AI integration. 
 

4.1 Screening and study selection 
 

The general screening process and the selection flow of 

relevant literature are illustrated in Figure 4. These studies 

were categorized using the PRISMA protocol, guided by the 

SALSA framework. From an initial pool of 443 studies 

retrieved through Scopus, the screening process reduced the 

dataset to 61 high- and moderate-quality studies that aligned 

with the research objectives. The initial phase involved 

eliminating studies based on exclusion criteria, including 

conference abstracts, non-peer-reviewed articles, and works 

unrelated to portfolio optimization or mathematical modeling. 

Following title and abstract reviews, a total of 177 studies 

remained for full-text evaluation. The PRISMA flow diagram 

summarizing the study selection process present in Figure 4. 

During the comprehensive full-text screening, studies were 

critically appraised for methodological rigor, relevance to non-

Gaussian models, and incorporation of AI techniques. 

Duplicate studies and those lacking empirical focus or robust 

analysis methods were excluded. The final selection reflects a 

highly curated dataset, ensuring that only studies addressing 

the core aspects of non-Gaussian distribution models and AI 

integration in portfolio optimization were included. 

 

4.2 Quantitative analysis of non-Gaussian models 

 

The application of mathematical models in portfolio 

optimization has evolved significantly over the years, with a 

growing emphasis on non-Gaussian distributions to address 

complex financial market dynamics. The increasing number of 

published studies highlights the importance of these 

advancements. 

 

4.2.1 Annual trends in non-Gaussian models 

Figure 5 illustrates the increasing number of publications 

between 2009 and 2024, reflecting heightened interest in non-

Gaussian models.  

Notably, 2024 experienced a surge in research, indicating a 

shift towards advanced modeling techniques that account for 

fat tails, skewness, and asymmetric market behaviors. 
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Figure 4. General screening process and the selection flow 

using PRISMA protocol guided by SALSA method 

 

 
 

Figure 5. Annual trends in portfolio optimization research 

(2009–2024) 

 

This trend underlines the increasing recognition of non-

Gaussian models as superior alternatives to traditional 

Gaussian-based portfolio optimization methods, particularly 

in the face of market anomalies and financial crises. 

 

4.2.2 Most common mathematical models and algorithms for 

portfolio optimization 

The review identified seven prominent mathematical 

models frequently applied in portfolio optimization: SVR, 

MVO, neural networks, Copulas, VaR and CVaR, GA, and 

GARCH. Table 5 summarizes the usage frequency of these 

models. 

 

Table 5. Usage frequency of paper publication year for the 

most used model types 

 

Year 
Model Types 

SVR MVO NN Copula VaR / CVaR GA GARCH 

2009 1       

2010  1      

2011    1 1   

2012  1    1  

2013 1     1 1 

2014 1       

2015 1 2    1  

2016  1  1 1  1 

2017        

2018 3     1  

2019 2 1     1 

2020 3 2 2    1 

2021 3 1   1  1 

2022  2  1 1 2  

2023 2 1 1     

2024 1 1 1  2  2 

Total 18 13 4 3 6 6 7 

 

Among them, SVR emerged as the most widely used model, 

appearing in 30% of the reviewed papers. This dominance is 

attributed to its ability to handle non-linear relationships and 

non-Gaussian data distributions, making it particularly 

suitable for volatile and high-risk financial environments. In 

contrast, traditional models like MVO remain popular for their 

simplicity, despite their limitations in real-world market 

scenarios. 

SVR outperformed other models in optimizing risk-adjusted 

returns and managing market volatility. Enhanced by 

complementary algorithms like LASSO and neural networks, 

SVR consistently improved allocation strategies and Sharpe 

ratios, making it particularly effective in ESG-focused 

portfolios [54]. 

Table 6 highlights SVR’s dominance, with list of highly 

cited studies supporting its application. Around 30% of the 

papers that were identified used the SVR model, 

demonstrating the model's high level of accuracy for 

mathematical models for portfolio optimization, particularly 

those addressing non-Gaussian distributions. By contrast, 

traditional models such as MVO (21%) remain widely used 

due to their simplicity, but they often fail to capture real-world 

market complexities, particularly under conditions of extreme 

volatility. 

Table 7 illustrates the growing integration of algorithms into 

mathematical models for portfolio optimization over the past 

six years. Notably, approximately half of the reviewed studies 

have employed machine learning algorithms to enhance 

existing mathematical models, thereby improving 

optimization performance. Among these, regression emerges 

as the most widely applied and effective algorithm for tackling 

portfolio optimization challenges. It is followed by 

metaheuristics, deep learning, neural networks, regularization 

techniques, and ensemble methods. 

Prominent non-Gaussian techniques identified in the review 

include multivariate generalized hyperbolic distributions and 

Copula models. These methods have demonstrated superior 

performance in modeling asset dependencies and capturing 

market extremes. For instance, Copula-based models 

effectively address asymmetric dependencies, making them 

indispensable for volatile financial conditions. 
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4.2.3 Optimization objectives in portfolio models 

Portfolio optimization models prioritize various objectives, 

including return maximization, risk minimization, and ESG 

alignment. Table 8 outlines the different areas of focus in 

portfolio optimization over the past 15 years. 

Among these, risk-adjusted returns optimization emerges as 

the most prominent, highlighting its effectiveness in balancing 

risk and return under volatile market conditions. ESG 

optimization has gained traction recently, reflecting growing 

interest in sustainable investments. Models incorporating 

ESG-specific metrics, such as climate risk indices, provide 

investors with tools to achieve financial and societal goals. 

This trend highlights the increasing consideration of outliers 

and extreme market behaviours that deviate from the 

traditional Gaussian distribution. 

 

Table 6. Frequency of top 5 mathematical models in portfolio optimization research (2009–2024) 

 

Models Mostly Cited Papers 
Count of Papers 

from 2009 to 2024 

The Proportion of Papers to the Total 

Number of Papers 
Accumulated Proportion 

SVR [11, 18, 49, 55] 18 0.3 0.295 

MVO [27, 43, 56] 13 0.21 0.508 

NN [7, 52] 4 0.07 0.574 

Copula [19, 47] 3 0.05 0.623 

GARCH [16, 47, 55] 7 0.11 0.738 

 

Table 7. Usage ranking of the six most used algorithms in in portfolio optimization research (2009–2024) 

 

Year 
Algorithms 

Regression Meta-Heuristics Neural Networks Deep Learning Ensemble Regularization 

2009 1      

2010       

2011       

2012       

2013 1      

2014 1      

2015  1     

2016       

2017       

2018 3      

2019 1  1    

2020 2 1  2   

2021 2 1     

2022  1 1    

2023 2   1 1  

2024 2 1    2 

Total 15 5 2 3 1 2 

 

Table 8. Focus areas on portfolio optimization models (2009–2024) 

 

Year  
Portfolio Optimization Focus 

Return Maximization Variance/Risk Minimization Risk-Adjusted Returns Optimization ESG Optimization 

2009 1    

2010  1   

2011  1   

2012 1  2  

2013  2   

2014  1 1  

2015 1 2 1  

2016  1 1  

2017     

2018 2  1  

2019  2 2  

2020  2 3  

2021 2 1 1  

2022  2 3  

2023 1 2 1 2 

2024  3 7 1 

Total 8 20 24 3 

 

4.2.4 Relevance and application to green investments and 

sustainability 

The application of non-Gaussian models in green 

investments has emerged as a key research area, addressing the 

unique risks and opportunities of sustainable assets. ESG 

optimization models incorporating advanced metrics have 

demonstrated effectiveness in aligning financial returns with 

environmental and social goals. Table 9 further supports the 

findings presented in Table 8. The results outline the growing 

relevance of green investments in portfolio optimization 
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research, highlighting their increasing prominence in 

addressing global sustainability challenges over the past three 

years. Specifically, ESG optimization, green finance, 

sustainable investment, and green investment have emerged as 

key areas of focus during this period. This trend emphasizes a 

growing interest in addressing global sustainability challenges 

and prioritizing environmentally focused projects, reflecting 

the rising importance of green investments in the financial 

landscape. 
 

Table 9. Relevance of green investments in portfolio 

optimization studies (2009–2024) 
 

Year of Publication 
Green Investment Relevance 

Addressed Not Addressed 

2009 - 1 

2010 - 1 

2011 - 1 

2012 - 3 

2013 1 1 

2014 - 2 

2015 - 4 

2016 - 2 

2017 - - 

2018 - 4 

2019 1 3 

2020 1 5 

2021 - 5 

2022 2 5 

2023 3 4 

2024 8 4 

Total 16 45 

 

4.3 Emerging trends and research gaps 
 

This systematic review synthesized both qualitative and 

quantitative findings to uncover critical insights into the 

advancements in portfolio optimization models, particularly 

those addressing non-Gaussian distributions and AI 

integration. By evaluating the selected studies, the research 

identified emerging trends and significant research gaps, 

offering a roadmap for future developments in this field. 

 

4.3.1 Emerging trends 

a) Hybridization of Non-Gaussian and AI Models 

The findings reveal a growing trend toward hybrid 

approaches that combine non-Gaussian models with AI 

techniques. These approaches enhance risk-adjusted returns, 

improve asset allocation strategies, and optimize portfolio 

performance. For instance, SVR models, when integrated with 

complementary algorithms such as LASSO and neural 

networks, consistently demonstrated superior performance in 

risk-adjusted returns optimization and asset allocation 

strategies [47]. These hybrid models effectively address 

complex market behaviors, including tail risks, skewness, non-

linear dependencies between assets, and market anomalies that 

traditional Gaussian models fail to capture, making them 

indispensable for navigating modern financial markets. 

For portfolio managers, the adoption of AI-enhanced non-

Gaussian models allows for more adaptive risk management 

strategies, enabling real-time adjustments in asset allocation, 

volatility forecasting, and market trend identification. 

Investors benefit from more precise return predictions and 

enhanced downside protection, reducing exposure to market 

crashes. These models provide an edge over traditional 

optimization techniques, particularly during financial crises 

and black swan events, where Gaussian assumptions fail. 

b) Sustainability-Driven Investments 

The increasing emphasis on ESG integration is 

transforming portfolio optimization frameworks, with 

investors prioritizing sustainable investment strategies. 

Advanced models now incorporate sustainability metrics, such 

as climate risk indices, green investment scores, and carbon 

exposure constraints, enabling investors to align financial 

objectives with environmental and societal goals. Studies 

utilizing ESG-enhanced frameworks have shown improved 

Sharpe ratios and risk mitigation, with long-term financial 

stability, particularly in volatile markets [18]. The adoption of 

non-Gaussian methods further enhances the reliability of these 

models in managing the unique characteristics of green assets, 

such as high volatility and non-linear return distributions. 

For investors, these models help align financial goals with 

sustainability objectives, allowing for responsible investing 

without sacrificing returns. Portfolio managers leveraging 

non-Gaussian frameworks can better capture the risk-return 

trade-offs of green assets, which often exhibit high volatility, 

asymmetric return distributions, and sector-specific market 

shocks. 

Moreover, regulatory developments promoting green 

finance are accelerating the adoption of AI-driven ESG 

models. Governments and financial institutions are 

increasingly incorporating non-Gaussian risk modeling 

techniques into climate stress tests and ESG risk assessments, 

reinforcing their role in shaping future investment landscapes. 

c) Scalability and Computational Advancements 

With the expanding complexity of financial datasets, 

portfolio optimization models must handle high-dimensional 

data, multi-asset class portfolios, and dynamic correlations. 

AI-driven solutions, such as metaheuristic algorithms (e.g., 

Genetic Algorithms) and deep learning architectures, have 

been applied to enhance computational efficiency while 

maintaining accurate risk-return estimations. The adoption of 

non-Gaussian methods further enhances the reliability of these 

models in managing the unique characteristics of green assets, 

such as high volatility and non-linear return distributions. 

For portfolio managers, these advancements streamline 

decision-making, allowing for real-time optimization of 

investment strategies in response to market fluctuations. By 

integrating machine learning techniques, investors gain faster, 

data-driven insights, reducing reliance on outdated static 

models that fail to adapt to market changes. 

 

4.3.2 Research gaps 

Despite the promising performance of non-Gaussian models 

and AI-driven approaches, their empirical validation across 

diverse market conditions remains a notable limitation. The 

majority of existing studies concentrate on developed markets, 

such as the U.S. and European financial sectors, while 

applications in emerging or less liquid markets are 

significantly underexplored. Expanding research into these 

regions is crucial to establish the generalizability and broader 

applicability of these models, ensuring they are effective 

across varied financial contexts. 

The integration of ESG principles into portfolio 

optimization introduces additional challenges, primarily due 

to the lack of standardized metrics. Inconsistent definitions 

and varied methodologies for assessing ESG factors hinder the 

comparability of findings across studies. This inconsistency 
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limits the practical adoption of ESG-focused models and their 

ability to serve as reliable decision-making tools. To address 

this issue, the development of universally accepted ESG 

evaluation frameworks is imperative. These frameworks could 

provide a consistent basis for future research and serve as 

benchmarks for aligning sustainability-focused investment 

practices. 

While scalable models leveraging AI techniques hold 

considerable promise, the literature reveals a scarcity of 

studies tackling the computational challenges associated with 

high-dimensional data. The increasing complexity of financial 

datasets necessitates the development of efficient algorithms 

that strike a balance between computational efficiency and 

predictive accuracy. Addressing this gap is critical for 

advancing the scalability and robustness of portfolio 

optimization models in practical applications. 

Moreover, the robustness of optimization models under 

varying market scenarios, such as economic crises or periods 

of extreme volatility, requires more comprehensive 

investigation. Current studies often overlook sensitivity 

analyses that evaluate how models perform under diverse 

conditions. Expanding the scope of sensitivity analyses is 

essential to assess the adaptability and reliability of these 

models, ensuring their practical utility in real-world scenarios. 

Such efforts would enhance the resilience of portfolio 

optimization frameworks in the face of market uncertainties 

and dynamic financial environments. 
 

 

5. CONCLUSION 
 

This systematic review critically evaluates whether non-

Gaussian models represent the future of portfolio optimization 

by analyzing 61 studies published between 2009 and 2024. 

The findings provide strong evidence supporting the pivotal 

role of non-Gaussian models, particularly SVR, in addressing 

the limitations of traditional Gaussian-based approaches. Non-

Gaussian models excel in capturing complex financial 

phenomena, such as skewness, kurtosis, and fat tails, enabling 

more accurate risk management and return forecasting in 

volatile and asymmetric markets. The increasing adoption of 

hybrid AI-enhanced approaches, which integrate SVR with 

machine learning techniques such as LASSO and deep neural 

networks, further enhances the scalability and predictive 

accuracy of these models. As financial markets become 

increasingly unpredictable, non-Gaussian methodologies 

appear well-positioned to serve as the foundation for future 

portfolio optimization strategies. 

Another critical advancement identified in this review is the 

integration of ESG factors into portfolio optimization models. 

The application of multi-objective frameworks incorporating 

sustainability metrics, such as green investment scores and 

climate risk indices, enables investors to align financial 

objectives with broader societal and environmental 

considerations. These models have been shown to improve 

risk-adjusted returns while maintaining ethical investment 

standards, reinforcing the importance of ESG-focused 

decision-making in modern portfolio management.  

Additionally, the review identifies emerging trends in AI-

driven metaheuristic algorithms, which significantly enhance 

the scalability, efficiency and adaptability of optimization 

models. Hybrid models that merge traditional mathematical 

frameworks with advanced AI techniques, such as deep 

learning, ensemble methods, and evolutionary algorithms, 

demonstrate remarkable potential in handling non-Gaussian 

distributions and sustainability-focused portfolios. This 

facilitates the transition toward data-driven, real-time 

investment strategies. 

Despite these advancements, several key research gaps 

remain that require further investigation. First, computational 

efficiency and scalability remain a significant challenge. 

While AI-driven non-Gaussian models improve accuracy, 

their high computational demands can limit their practical 

applications in real-time portfolio management. Future 

research should explore optimization techniques, such as 

model compression, parallel computing, and cloud-based AI 

frameworks, to enhance the accessibility and efficiency of 

these models for both institutional and retail investors. 

Second, while AI-enhanced non-Gaussian models have 

shown strong predictive capabilities, their integration with 

advanced mathematical models, such as Bayesian networks, 

stochastic processes, and Copula-based risk modeling, 

remains limited. Future research should explore hybrid 

approaches that combine deep learning with probabilistic 

financial models, which could improve both interpretability 

and predictive power in highly volatile and nonlinear financial 

environments. 

In conclusion, non-Gaussian models, particularly when 

integrated with AI and ESG considerations, represent a 

transformative step forward in portfolio optimization. These 

models address the challenges of traditional Gaussian-based 

approaches while enabling investors to adapt to dynamic 

market conditions and sustainability priorities. To solidify 

their position as the future of portfolio optimization, future 

research must focus on addressing computational 

inefficiencies and advancing hybrid AI-finance 

methodologies. By addressing these challenges, non-Gaussian 

models have the potential to revolutionize portfolio 

management, paving the way for more resilient, adaptive, and 

sustainable investment strategies in the era of data-driven 

finance. 
 

 

ACKNOWLEDGMENT 

 

This work is funded by the Ministry of Higher Education 

(MOHE) Malaysia under the Fundamental Research Grant 

Scheme (Ref: FRGS/1/2024/STG06/UMT/02/2).  
 

 

REFERENCES  

 

[1] Valaei, M., Khodakarami, V. (2023). A new multi-

dimensional framework for start-ups lifespan assessment 

using Bayesian networks. Journal of Risk and Financial 

Management, 16(2): 88. 

https://doi.org/10.3390/jrfm16020088 

[2] Zhang, Y. (2024). Application of financial mathematical 

models combined with root algorithms in finance. 

Scalable Computing: Practice and Experience, 25(4): 

2146-2158. https://doi.org/10.12694/scpe.v25i4.2447 

[3] Chaudhury, R., Islam, S. (2022). Multi-objective 

mathematical model for asset portfolio selection using 

neutrosophic goal programming technique. Neutrosophic 

Sets and Systems, 50: 356-371 

[4] de Freitas, R.A., Vogel, E.P., Korzenowski, A.L., Rocha, 

L.A.O. (2020). Stochastic model to aid decision making 

on investments in renewable energy generation: Portfolio 

diffusion and investor risk aversion. Renewable Energy, 

162: 1161-1176. 

1332



 

https://doi.org/10.1016/j.renene.2020.08.012 

[5] Semmler, W., Lessmann, K., Tahri, I., Braga, J.P. (2024). 

Green transition, investment horizon, and dynamic 

portfolio decisions. Annals of Operations Research, 

334(1): 265-286. https://doi.org/10.1007/s10479-022-

05018-2 

[6] Frausto Solis, J., Purata Aldaz, J.L., González del Angel, 

M., González Barbosa, J., Castilla Valdez, G. (2022). 

Saipo-taipo and genetic algorithms for investment 

portfolios. Axioms, 11(2): 42. 

https://doi.org/10.3390/axioms11020042 

[7] Kolari, J.W., Liu, W., Pynnönen, S. (2024). Portfolio 

theory and practice. In Professional Investment Portfolio 

Management: Boosting Performance with Machine-

Made Portfolios and Stock Market Evidence, 

Switzerland, pp. 3-23. https://doi.org/10.1007/978-3-

031-48169-7_1 

[8] Lim, S., Kim, M.J., Ahn, C.W. (2020). A genetic 

algorithm (GA) approach to the portfolio design based on 

market movements and asset valuations. IEEE Access, 8: 

140234-140249. 

https://doi.org/10.1109/ACCESS.2020.3013097 

[9] Zhang, Y.D., Mandal, J.K., So-In, C., Thakur, N.V. 

(Eds.). (2020). Smart trends in computing and 

communications. In Smart Innovation, Systems and 

Technologies, Springer: Singapore. 

https://doi.org/10.1007/978-981-15-0077-0 

[10] Degiannakis, S., Floros, C., Livada, A. (2012). 

Evaluating value-at-risk models before and after the 

financial crisis of 2008: International evidence. 

Managerial Finance, 38(4): 436-452. 

https://doi.org/10.1108/03074351211207563 

[11] Board, F.S. (2009). Risk management lessons from the 

global banking crisis of 2008. Basel, Switzerland: Senior 

Supervisors Group. 

https://www.fsb.org/uploads/r_0910a.pdf. 

[12] Franzolini, B., Beskos, A., De Iorio, M., Poklewski 

Koziell, W., Grzeszkiewicz, K. (2024). Change point 

detection in dynamic Gaussian graphical models: The 

impact of COVID-19 pandemic on the US stock market. 

The Annals of Applied Statistics, 18(1): 555-584. 

http://doi.org/10.1214/23-AOAS1801 

[13] Cardenas, V. (2024). Managing financial climate risk in 

banking services: A review of current practices and the 

challenges ahead. arXiv preprint arXiv:2405.17682. 

https://doi.org/10.48550/arXiv.2405.17682 

[14] Ahn, K., Jang, H., Kim, J., Ryu, I. (2024). COVID-19 

and REITs crash: Predictability and market conditions. 

Computational Economics, 63(3): 1159-1172. 

https://doi.org/10.1007/s10614-023-10431-1 

[15] Cinciulescu, D. (2024). The impact of tail risk and black 

swan events on modern portfolio theory. A reassessment 

of risk assumptions in extreme market conditions. Young 

Economists Journal Revista Tinerilor Economisti, 

21(43): 83 

[16] Ghanbari, H., Mohammadi, E., Fooeik, A.M.L., Kumar, 

R.R., Stauvermann, P.J., Shabani, M. (2024). 

Cryptocurrency portfolio allocation under credibilistic 

CVaR criterion and practical constraints. Risks, 12(10): 

163. https://doi.org/10.3390/risks12100163 

[17] Harun, H.F., Bakar, M.A., Abdullah, M.H. (2024). 

Semiparametric option-implied information and median-

variance approach: A game-changer in integrating 

sustainable practices in portfolio optimization. 

International Journal of Sustainable Development & 

Planning, 19(6): 2229-2241. 

https://doi.org/10.18280/ijsdp.190622 

[18] Wu, Z., Yang, L., Fei, Y., Wang, X. (2023). 

Regularization methods for sparse ESG-valued multi-

period portfolio optimization with return prediction using 

machine learning. Expert Systems with Applications, 

232: 120850. 

https://doi.org/10.1016/j.eswa.2023.120850 

[19] Katsikis, V.N., Mourtas, S.D., Stanimirović, P.S., Li, S., 

Cao, X. (2021). Time-varying mean-variance portfolio 

selection under transaction costs and cardinality 

constraint problem via beetle antennae search algorithm 

(BAS). Operations Research Forum, 2: 1-26. 

https://doi.org/10.1007/s43069-021-00060-5 

[20] Bhatnagar, C.S., Bhatnagar, D., Kumari, V., Bhullar, P.S. 

(2023). Sin versus green investment: A retrospective 

study on investor choice during pre-and through COVID 

regime. Managerial Finance, 49(9): 1474-1501. 

https://doi.org/10.1108/MF-10-2022-0477 

[21] Ta, V.D., Liu, C.M., Tadesse, D.A. (2020). Portfolio 

optimization-based stock prediction using long-short 

term memory network in quantitative trading. Applied 

Sciences, 10(2): 437. 

https://doi.org/10.3390/app10020437 

[22] Barbosa Filho, A.C.B., da Silva Neiro, S.M. (2022). 

Fine-tuned robust optimization: Attaining robustness and 

targeting ideality. Computers & Industrial Engineering, 

165: 107890. https://doi.org/10.1016/j.cie.2021.107890 

[23] Danielsson, J., James, K.R., Valenzuela, M., Zer, I. 

(2016). Model risk of risk models. Journal of Financial 

Stability, 23: 79-91. 

https://doi.org/10.1016/j.jfs.2016.02.002 

[24] Zhang, Y. (2024). Application of financial mathematical 

models combined with root algorithms in finance. 

Scalable Computing: Practice and Experience, 25(4): 

2146-2158. https://doi.org/10.12694/scpe.v25i4.2447 

[25] Min, L., Han, Y., Xiang, Y. (2023). A two-stage robust 

omega portfolio optimization with cardinality 

constraints. IAENG International Journal of Applied 

Mathematics, 53(1): 86 

[26] Paolella, M.S., Polak, P., Walker, P.S. (2021). A non-

elliptical orthogonal GARCH model for portfolio 

selection under transaction costs. Journal of Banking & 

Finance, 125: 106046. 

https://doi.org/10.1016/j.jbankfin.2021.106046 

[27] Bianchi, M.L., Tassinari, G.L. (2020). Forward-looking 

portfolio selection with multivariate non-Gaussian 

models. Quantitative Finance, 20(10): 1645-1661. 

https://doi.org/10.1080/14697688.2020.1733057 

[28] Saâdaoui, F., Rabbouch, H. (2024). Financial forecasting 

improvement with LSTM-ARFIMA hybrid models and 

non-Gaussian distributions. Technological Forecasting 

and Social Change, 206: 123539. 

https://doi.org/10.1016/j.techfore.2024.123539 

[29] Lu, W., Huang, G. (2022). Estimating the higher-order 

co-moment with non-Gaussian components and its 

application in portfolio selection. Statistics, 56(3): 537-

564. https://doi.org/10.1080/02331888.2022.2074006 

[30] Lucey, B., Yahya, M., Khoja, L., Uddin, G.S., Ahmed, 

A. (2024). Interconnectedness and risk profile of 

hydrogen against major asset classes. Renewable and 

Sustainable Energy Reviews, 192: 114223. 

https://doi.org/10.1016/j.rser.2023.114223 

1333



 

[31] Abate, G., Basile, I., Ferrari, P. (2024). The integration 

of environmental, social and governance criteria in 

portfolio optimization: An empirical analysis. Corporate 

Social Responsibility and Environmental Management, 

31(3): 2054-2065. https://doi.org/10.1002/csr.2682 

[32] Zheng, Y., Shukla, K.N., Xu, J., Wang, D.X., O’Leary, 

M. (2023). MOPO-LSI: An open-source multi-objective 

portfolio optimization library for sustainable 

investments. Software Impacts, 16: 100499. 

https://doi.org/10.1016/j.simpa.2023.100499 

[33] Xidonas, P., Essner, E. (2024). On ESG portfolio 

construction: A multi-objective optimization approach. 

Computational Economics, 63(1): 21-45. 

https://doi.org/10.1007/s10614-022-10327-6 

[34] Zheng, J., Wang, Y., Li, S., Chen, H. (2021). The stock 

index prediction based on SVR model with bat 

optimization algorithm. Algorithms, 14(10): 299. 

https://doi.org/10.3390/a14100299 

[35] Pham, S.D., Nguyen, T.T., Do, H.X. (2024). Impact of 

climate policy uncertainty on return spillover among 

green assets and portfolio implications. Energy 

Economics, 134: 107631. 

https://doi.org/10.1016/j.eneco.2024.107631 

[36] Ameur, H.B., Ftiti, Z., Louhichi, W., Yousfi, M. (2024). 

Do green investments improve portfolio diversification? 

Evidence from mean conditional value-at-risk 

optimization. International Review of Financial 

Analysis, 94: 103255. 

https://doi.org/10.1016/j.irfa.2024.103255 

[37] Varmaz, A., Fieberg, C., Poddig, T. (2024). Portfolio 

optimization for sustainable investments. Annals of 

Operations Research, 341(2): 1151-1176. 

https://doi.org/10.1007/s10479-024-06189-w 

[38] Chiadamrong, N., Suthamanondh, P. (2022). Fuzzy 

multi-objective chance-constrained portfolio 

optimization under uncertainty considering investment 

return, investment risk, and sustainability. International 

Journal of Knowledge and Systems Science, 13(1): 1-39. 

https://doi.org/10.4018/IJKSS.302660 

[39] D’Orazio, P., Popoyan, L. (2019). Fostering green 

investments and tackling climate-related financial risks: 

Which role for macroprudential policies? Ecological 

Economics, 160: 25-37. 

https://doi.org/10.1016/j.ecolecon.2019.01.029 

[40] Zhao, L., Zhang, Y., Sadiq, M., Hieu, V.M., Ngo, T.Q. 

(2023). Testing green fiscal policies for green 

investment, innovation and green productivity amid the 

COVID-19 era. Economic Change and Restructuring, 

56(5): 2943-2964. https://doi.org/10.1007/s10644-021-

09367-z 

[41] Argentiero, A., Bonaccolto, G., Pedrini, G. (2024). Green 

finance: Evidence from large portfolios and networks 

during financial crises and recessions. Corporate Social 

Responsibility and Environmental Management, 31(3): 

2474-2495. http://doi.org/10.1002/csr.2687 

[42] Guerard, J., Jin, H., Qiao, Y., Wang, Y., Zhang, H. 

(2023). ESG integration in portfolio management: Focus 

on climate change. SSRN. 

https://doi.org/10.2139/ssrn.4577403 

[43] Luo, D., Shan, X., Yan, J., Yan, Q. (2023). Sustainable 

investment under ESG volatility and ambiguity. 

Economic Modelling, 128: 106471. 

https://doi.org/10.1016/j.econmod.2023.106471 

[44] Fang, M., Tan, K.S., Wirjanto, T.S. (2019). Sustainable 

portfolio management under climate change. Journal of 

Sustainable Finance & Investment, 9(1): 45-67. 

https://doi.org/10.1080/20430795.2018.1522583 

[45] Behera, J., Pasayat, A.K., Behera, H., Kumar, P. (2023). 

Prediction based mean-value-at-risk portfolio 

optimization using machine learning regression 

algorithms for multi-national stock markets. Engineering 

Applications of Artificial Intelligence, 120: 105843. 

https://doi.org/10.1016/j.engappai.2023.105843 

[46] Valaei, M., Khodakarami, V. (2024). A framework for 

valuation and portfolio optimization of venture capital 

deals with contractual terms. Mathematical Problems in 

Engineering, 2024(1): 3427721. 

https://doi.org/10.1155/2024/3427721 

[47] Habbab, F.Z., Kampouridis, M. (2024). An in-depth 

investigation of five machine learning algorithms for 

optimizing mixed-asset portfolios including REITs. 

Expert Systems with Applications, 235: 121102. 

https://doi.org/10.1016/j.eswa.2023.121102 

[48] Ampountolas, A. (2024). Enhancing forecasting 

accuracy in commodity and financial markets: Insights 

from GARCH and SVR models. International Journal of 

Financial Studies, 12(3): 59. 

https://doi.org/10.3390/ijfs12030059 

[49] Kara, M., Ulucan, A., Atici, K.B. (2019). A hybrid 

approach for generating investor views in Black-

Litterman model. Expert Systems with Applications, 

128: 256-270. 

https://doi.org/10.1016/j.eswa.2019.03.041 

[50] Niu, Z., Wang, C., Zhang, H. (2023). Forecasting stock 

market volatility with various geopolitical risks 

categories: New evidence from machine learning 

models. International Review of Financial Analysis, 89: 

102738. https://doi.org/10.1016/j.irfa.2023.102738 

[51] Grant, M.J., Booth, A. (2009). A typology of reviews: An 

analysis of 14 review types and associated 

methodologies. Health Information & Libraries Journal, 

26(2): 91-108. https://doi.org/10.1111/j.1471-

1842.2009.00848.x 

[52] Bathaei, A., Štreimikienė, D. (2023). A systematic 

review of agricultural sustainability indicators. 

Agriculture, 13(2): 241. 

https://doi.org/10.3390/agriculture13020241 

[53] Holgado, A.G., Pablos, S.M., Peñalvo, F.J.G. (2020). 

Guidelines for performing systematic research projects 

reviews. International Journal of Interactive Multimedia 

and Artificial Intelligence, 6(2): 136-144. 

https://doi.org/10.9781/ijimai.2020.05.005 

[54] Saunders-Smits, G.N., Cruz, M.L. (2020). Towards a 

typology in literature studies & reviews in engineering 

education research. In 48th Annual Conference on 

Engaging Engineering Education, SEFI 2020, Society for 

Engineering Education, pp. 441-450. 

[55] Ali, F., Khurram, M.U., Sensoy, A., Vo, X.V. (2024). 

Green cryptocurrencies and portfolio diversification in 

the era of greener paths. Renewable and Sustainable 

Energy Reviews, 191: 114137. 

https://doi.org/10.1016/j.rser.2023.114137 

[56] Aboussalah, A.M., Xu, Z., Lee, C.G. (2022). What is the 

value of the cross-sectional approach to deep 

reinforcement learning? Quantitative Finance, 22(6): 

1091-1111. http://doi.org/10.2139/ssrn.3748130 

 

1334




