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Kriging is a statistical approach that takes into account spatial autocorrelation data. 

Accordingly, it allows better prediction of soil particle sizes than with simple 

interpolation methods such as linear and spline interpolation. In this paper, we analyze 

the soil texture in the Kalikonto Watershed, Batu City, using a Kriging simulation, and 

150 points obtained with simultaneous field investigation and digital DEM generation. 

The Silt variable was used for interpolation to map where soil particles are distributed 

in space. Simulation results show that the Spherical variogram Kriging model has a 

strong spatial relationship, reaching significant levels of significance. Thus, its 

predicted values exhibit little divergence from real-world data quality. The Mean 

Square Error (MSE) is 0.002084. The predicted distribution of soil particles matches 

closely with field observations and thus provides a more accurate analysis space for 

land management. The innovativeness of this paper lies in optimizing a model for the 

Spherical variogram to act as a predictor and using more forecast points than previously 

done studies. This approach enables representation of more accurate spatial relations in 

land management for land use and soil conservancy practices. 
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1. INTRODUCTION

Soil particles are one of the fundamental components of the 

geological environment, playing a crucial role in soil 

formation, fertility, and stability, which in turn have 

significant implications for various aspects of human life [1]. 

Understanding soil particle size distribution is essential for 

optimizing land use, managing soil erosion, and enhancing 

agricultural productivity. The quality and characteristics of 

soil greatly influence construction, agriculture, water 

management, and the preservation of the natural environment. 

In this context, surface soil particle size is a critical parameter 

that needs to be understood as it affects many soil properties 

and processes [2]. 

Soil particle size refers to the relative size of solid soil 

particles, including sand, silt, and clay. These particle sizes 

affect the physical and chemical properties of the soil, such as 

texture, water retention, drainage, aeration, and the soil's 

ability to support plant growth [3]. Therefore, a good 

understanding of surface soil particle size distribution is 

crucial in various applications, such as construction planning, 

natural resource management, agriculture, and disaster risk 

mitigation [4]. 

Although many previous studies have examined the 

relationship between soil particle size and various soil 

characteristics, there is a gap in understanding how spatial 

factors influence soil particle distribution accurately [5]. 

Spatial factors such as topography, hydrology, and land cover 

significantly impact the heterogeneity of soil particle 

distribution, affecting erosion patterns, sediment deposition, 

and nutrient availability. Previous studies, such as those by [6, 

7] have attempted to model soil particle distribution using

traditional interpolation techniques, but these approaches

often failed to capture local spatial variability effectively.

Additionally, previous studies [8, 9] have explored remote

sensing-based methodologies, but these lacked ground-truth

validation, limiting their reliability. Conventional approaches,

such as direct laboratory methods, are often limited in spatial

coverage and require significant costs and time [10].

Additionally, some previous studies have not fully integrated

field data with digital terrain analysis to improve the accuracy

of soil particle mapping [11]. Therefore, this study aims to

address these limitations by applying a more advanced Kriging

method in modeling soil particle size distribution [12].

Kriging is one of the popular methods in geostatistics used 

to predict values at unmeasured locations based on measured 

data in the surroundings [13]. This method has been widely 

used in various geological and geotechnical applications to 

model and predict soil parameters, such as soil water content, 

mineral concentration, and soil particle size distribution [14]. 

However, the application of Kriging in previous studies still 

faces several challenges, such as limitations in capturing 

complex spatial variability in various regions with different 

geological characteristics [15]. This study introduces 

improvements by integrating Kriging with high-resolution 

digital terrain analysis and machine learning techniques to 
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enhance prediction accuracy. Additionally, the research 

incorporates a more refined variogram modeling approach, 

allowing for better spatial interpolation and addressing 

anisotropic variations in soil particle distribution. Therefore, 

this study focuses on applying Kriging to predict soil particle 

size distribution by utilizing a combination of field data and 

digital terrain analysis in specific areas with high soil 

heterogeneity [16]. 

This study aims to develop a more accurate Kriging 

Prediction Model for mapping surface soil particle size 

distribution and analyzing its spatial variability in greater 

detail [17]. Thus, the results of this research can provide 

significant contributions in various fields, such as construction 

planning, natural resource management, agriculture, and 

disaster risk mitigation, as well as open opportunities for 

developing more sophisticated prediction methods in 

geological and geotechnical studies [18]. The novelty of this 

study lies in the integration of the Kriging method with digital 

terrain data in a more comprehensive manner compared to 

previous studies. With this approach, the resulting model is 

expected to provide higher accuracy in predicting soil particle 

distribution and be applicable in regions with diverse 

geological conditions. 

 

 

2. METHOD 

 

2.1 Data 

 

The primary data in this study were soil texture field 

measurements and digital terrain modeling analysis. Field data 

were used to both develop the model (training data) and to 

validate the model obtained. The data set consists of 150 

observations collected in 2023. Soil samples were gathered 

using a systematic grid method, under which sampling points 

are evenly distributed across the study area at predetermined 

intervals. This approach ensured good coverage of soil texture 

variations in the region. The measurements were carried out in 

the Kalikonto Watershed, Batu City, an area representing 

many different kinds of soil properties and that is of 

considerable significance for soil resource management. 

Additionally, sampling was carried out in the dry season in 

order to avoid the influence of fluctuating soil moisture levels 

on soil texture analysis results. During this period, soil 

moisture is more stable, and this allows a better evaluation of 

soil particle distribution, especially for the silt variable, which 

was used in the interpolation process. 

 

2.2 Kriging model 

 

Spatial statistics and geostatistics have been developed to 

explain and analyze the diversity of natural and man-made 

phenomena, both above and below the ground surface [19]. 

Spatial statistics includes formal techniques that study entities 

that have spatial indices [20]. Geostatistics is included in this 

general term, yet it was initially more concentrated on 

continuously varying processes, namely those with continuous 

spatial index. 

 

2.2.1 Variogram estimation 

This section describes two methods for estimating 

variograms from data, namely the Matheron moment and the 

Residual Maximum Likelihood (REML) method, along with 

the main features a variogram may have. 

Estimation method moment 

Empirical semi-variance can be estimated from the data, 

z(x1), z(x1), …, with reference [21]: 

 

𝛾(ℎ) =
1

2𝑚(ℎ)
∑ {𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)}

2𝑚(ℎ)
𝑖=1   (1) 

 

where, z(x1) and z(xi++h) are the actual values of Z in place 

z(x1), and m(h) is the number of pairwise comparisons at h. By 

changing h, a semi-variant ordered set is obtained; this is an 

experimental variogram or sample variogram. Eq. (1) is the 

usual formula for calculating semi-variance, often referred to 

as Matheron's method of moments (MoM) estimator method 

[21]. The Matheron's MoM estimator method is a widely used 

technique in geostatistics to estimate the variogram, which 

helps describe how spatial patterns change across a given area. 

Simply put, it works by calculating the average squared 

differences between sample points at various distances, 

allowing researchers to understand how similar or different 

nearby soil properties are. In this study, MoM was chosen 

because it is both computationally efficient and reliable for 

estimating spatial structures, even when working with datasets 

that have limited or unevenly spaced sampling points. This 

method plays a crucial role in developing an accurate 

variogram model, which serves as the foundation for Kriging 

interpolation. By applying MoM, the study ensures that 

predictions of soil particle size at unsampled locations remain 

precise and reflect actual spatial patterns observed in the field. 

This equation is implemented as algorithms depend on the data 

configuration. For ordinary latitudes, the lag becomes a scalar, 

h=|h|, where the semi-variance can be calculated only over 

integral multiples of the sampling interval [22]. 

 

REML variogram estimation method 

The REML variogram estimation method is an advanced 

statistical technique used to estimate spatial correlation while 

reducing bias caused by data variability. Unlike traditional 

variogram estimation methods, REML accounts for both fixed 

and random effects in the data, making it particularly effective 

for datasets where variability arises from multiple sources. 

In simpler terms, REML works by isolating the true spatial 

structure of the data while minimizing distortions caused by 

external factors such as sampling inconsistencies or non-

uniform spatial distribution. This makes it highly suitable for 

soil studies, where environmental conditions and 

measurement variations can introduce noise in spatial models. 

In this study, REML was chosen because it provides more 

reliable and unbiased variogram estimates, especially when 

working with complex or heterogeneous soil properties. By 

incorporating this method, the study ensures that the estimated 

variogram represents the true spatial variation in soil particle 

size, leading to more accurate Kriging predictions for 

unmeasured locations. 

In contrast to the MoM approach, parametric ML methods 

assume that the process, Z is second-order stationary. It is 

assumed that the data, (xi), i=1, …, n, a realization of this 

process, follows a Gaussian multivariate distribution with a 

joint probability density function (pdf) of the measurements 

defined by references [21, 23]: 

 

𝑝(𝑧|𝛽, 𝜃) = (2𝜋)−
𝑛
2|𝑉|−

1
2 

𝑒𝑥𝑝 {−
1

2
(𝑧 − 𝑋𝛽)𝑇𝑉−1(𝑧 − 𝑋𝛽)} 

(2) 
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where, 𝑧 is a vector containing 𝑛 data, 𝜃 has the covariance 

matrix parameters, 𝑉 is the n×n variance-covariance matrix, 

and 𝑋𝛽 is the trend. The matrix 𝑉 can be described as: 

 

𝑉 = 𝜎2𝐴 (3) 

 

where, σ2 is the variance, and A is the autocorrelation matrix. 

The probability density function can be rewritten as: 

 

𝑝(𝑧|𝛽, 𝜎2, 𝜃) 

= (2𝜋)−
𝑛

2|𝐴|−
1

2 𝑒𝑥𝑝 {−
1

2𝜎2
(𝑧 − 𝑋𝛽)𝑇𝐴−1(𝑧 − 𝑋𝛽)}  

(4) 

 

where, 𝜃  is the set of covariance parameters excluding the 

variance. The parameters β, σ2, θ, are estimated in such a way 

as to minimize the negative log-likelihood function given by: 

 

𝑙𝑛 𝐿 (𝛽, 𝜎̂2, 𝜃|𝑧) =
𝑛

2
(2𝜋) + 𝑛 𝑙𝑛(𝜎) +

1

2
𝑙𝑛 | 𝐴| 

+
1

2𝜎2
(𝑧 − 𝑋𝛽)𝑇𝐴−1(𝑧 − 𝑋𝛽) 

(5) 

 

In the ML approach, the shift parameter, β is estimated with 

the set of covariance parameters. 

 

2.2.2 Variogram modeling 

MoM experimental variograms consist of discrete estimates 

at specific lag intervals, subject to errors arising primarily 

from sampling fluctuations [24]. To obtain an approximation 

for this, we can fit what is known as a conditional negative 

semi-definitive formal function (CNSD) to the experimental 

values [25]. Some simple functions only include the above 

features, namely CNSD. The formula for the selected function 

is given in its isotropic form, for h=|h|. A nugget variance, 𝑐0, 

has been included because most experimental variograms, if 

extended to the ordinate, will have a positive intercept [26]. 

Here is the Variogram model [25, 27]: 

Circular model: The equation for a circular function is: 

 

𝛾(ℎ) =

{
 

 𝑐0 + 𝑐 {1 −
2

𝜋
𝑐𝑜𝑠−1 (

ℎ

𝑎
) +

2ℎ

𝜋𝑎
√1 −

ℎ
2

𝑎2
} ;    ℎ ≤ 𝑎

𝑐0 + 𝑐;                ℎ > 𝑎
0;                ℎ = 0

  
(6) 

 

where, 𝛾(ℎ) is the semi-variance at lag ℎ, 𝑐 is a priori variance 

of the autocorrelation process, c0 is the nugget variance, which 

is spatially uncorrelated variation at distances less than the 

sampling interval and measurement error, and 𝛼 is the distance 

parameter, range of spatial dependence or spatial 

autocorrelation. 

Spherical function: This is one of the two most widely 

used models in environmental science. The equation is: 

 

𝛾(ℎ) = {
𝑐0 + 𝑐 {

3ℎ

2𝑎
+

1

2
(
ℎ

𝑎
)
3

} ; ℎ ≤ 𝑎

𝑐0 + 𝑐; ℎ > 𝑎
0; ℎ = 0

  (7) 

 

The symbols have the same meaning as above. This model 

curves more slowly when the limit is reached than the circular 

model. In this study, the spherical model was chosen to 

describe the variogram, as it is one of the most widely used 

models in environmental science. This model provides a 

realistic approach to spatial variability patterns, making it 

particularly suitable for soil studies. 

The spherical model features a gradual increase in 

semivariance before reaching a plateau (range), offering a 

smoother transition compared to the circular model. This 

characteristic makes it well-suited for representing soil 

properties that change progressively over a certain distance. 

The decision to use the spherical model over the exponential 

or Gaussian models was based on an initial exploration of the 

data. Preliminary variogram analysis revealed that 

semivariance values reached stability within a specific range, 

which aligns with the behavior of the spherical model. In 

contrast, the exponential model, which assumes an infinite 

increase towards the sill, and the Gaussian model, which tends 

to exhibit a much smoother initial rise, did not accurately 

reflect the observed spatial variation in the dataset. Therefore, 

the spherical model was determined to be the most appropriate 

representation of soil particle size distribution in this study. 

Exponential functions: Exponential and spherical 

functions account for most of the installed models in 

environmental science. The equation is: 

 

𝛾(ℎ) = 𝑐0 + 𝑐 {1 − 𝑒𝑥𝑝 (−
ℎ

𝑟
)}  (8) 

 

where, 𝑐0  and 𝑐  have the meaning of nugget and priori 

variance; however, the distance parameter now is 𝑟 . The 

exponential model approaches its threshold more gently than 

the previous model and is also asymptotic. Hence, it does not 

have a limited range. 

 

2.3 Kriging weighting 

 

The Kriging weighting system plays a crucial role in 

predicting surface soil particle size distribution, as it 

determines how much influence each sampled point has on an 

estimated location. Unlike traditional interpolation methods, 

where weights are assigned arbitrarily, Kriging assigns 

weights based on the variogram model and the spatial 

arrangement of sample points within a defined search radius 

[28]. 

In this study, weights were calculated using the variogram 

parameters, including nugget effect, sill, range, and model 

type. The weighting process accounts for spatial continuity, 

meaning that data points closer to an estimated location have 

higher influence than those farther away [26]. This confirms 

that Kriging operates as a local predictor, making it well-suited 

for analyzing soil texture variability. 

The impact of the nugget effect is particularly important in 

soil studies, as it represents small-scale spatial variations that 

might arise due to measurement errors or micro-scale 

differences in soil composition. In cases where the nugget 

variance is high, Kriging weighting becomes more sensitive, 

potentially reducing the reliability of predictions. Similarly, 

anisotropy effects, where spatial variation differs in different 

directions, influence how weights are distributed, affecting the 

accuracy of soil particle size estimates [29]. 

Moreover, research comparing Kriging with other 

interpolation methods has demonstrated that Kriging often 

provides superior accuracy in soil texture mapping due to its 

ability to incorporate spatial autocorrelation effectively. For 

example, studies have shown that Kriging performs better than 

inverse distance weighting (IDW) and other deterministic 

methods in estimating soil particle distribution [30]. 

By incorporating these factors, the Kriging weighting 
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method ensures that soil particle size distribution is estimated 

with high precision, allowing for a more reliable spatial 

representation of soil texture variations across the study area. 

The use of robust variogram estimation, such as isometric log-

ratio transformation, has further been shown to enhance 

Kriging’s predictive capabilities, leading to improved soil 

mapping accuracy [31].  

 

2.4 Geostatistical prediction: Kriging 

 

Kriging is a method of prediction or estimation in 

geographic space, frequently known as the best linear bias 

predictor (BLUP) [21]. It is a geostatistical method of 

interpolation for random spatial processes. Kriging provides a 

solution to the fundamental problem faced by environmental 

scientists in predicting values from sparsely sampled data 

based on stochastic models of spatial variation. Most 

environmental properties (soil, vegetation, rocks, water, 

oceans, and atmosphere) can be measured at an unlimited 

number of places, yet for economic reasons, the measurements 

are relatively small [32]. 

Ordinary Kriging assumes that the mean is unknown and the 

process is locally stationary [33]. Simple Kriging, which 

assumes that the mean is known, is of little use since the mean 

is generally unknown. Lognormal Kriging is the ordinary 

Kriging of strongly positively skewed data transformed by 

logarithms to approximate a lognormal distribution. 

Ordinary Kriging is the most widely used type of Kriging. 

This is based on the assumption that the mean is unknown, 

where the random variable, 𝑍, has been measured at the 

sampling point, xi=1, …, n, and this information is used to 

estimate its value at point x0 (timely Kriging) with the same 

support as the data [34]: 

 

𝑍̂(𝑥0) = ∑𝜆𝑖𝑧(𝑥𝑖)

𝑛

𝑖=1

 (9) 

 

where, 𝑛 is usually a data point in the local neighborhood 𝜆, 

and is much smaller than the total number of samples, N, and 

λi is the weight. To ensure that the estimates are not biased, the 

weights, when added together, are one. 

 

∑𝜆𝑖 = 1

𝑛

𝑖=1

 (10) 

 

and the expected error is 𝐸[𝑍̂(𝑥0) − 𝑍(𝑥0)] = 0 . The 

predicted variance is [35]: 

 

𝑣𝑎𝑟[𝑍̂(𝑥0)] = 𝐸 [{𝑍̂(𝑥0) − 𝑍(𝑥0)}
2
] =

2∑ 𝜆𝑖𝛾(𝑥𝑖 , 𝑥0) −
𝑛
𝑖=1 ∑ ∑ 𝜆𝑖𝜆𝑗𝛾

𝑛
𝑗=1

𝑛
𝑖=1 (𝑥𝑖 , 𝑥𝑗)  

(11) 

 

where, γ(xi, xj) is the Z semi-variance between points xi and xj, 

γ(xi, x0) is the semi-variance between the i-th sampling point 

and target x0. The semi-variance is derived from the variogram 

model because the experimental semi-variance is discrete and 

over a finite range. 

 

2.5 Kriging simulation 

 

Kriging, like most interpolation techniques, provides 

ideally smooth results. This is because the minimum estimated 

variance as an optimality criterion produces fewer variable 

estimators [36]. If the experimental variogram is calculated 

from Kriged values, it differs from those obtained from 

measurements. The variance corresponding to different 

distances is usually much more minor for Kriged values. In 

many cases, the variability of regional variables plays a central 

role in decision-making (e.g., reliability aspects) [37]. As a 

result, a procedure is needed to obtain an interpolation that 

reproduces the variogram of the original variable. Then, 

Simulation is a method for doing this. 

The simulation must reproduce the variability of regional 

variables. The simulated values must have the same mean, 

variance, and variogram as the measured values [22]. 

Simulations must produce one possible reality. Simulation is 

beneficial when it comes to parameters that are not the final 

product of the analysis. 

 

Turning band simulation 

Turning Band Simulation combines a collection of one-

dimensional simulations into a two- (or three-) dimensional 

simulation [21]. One-dimensional simulations are carried out 

for various possible “rotating” directions around a central 

point. Depending on the variogram, different covariance 

structures must be used for one-dimensional simulations. The 

advantage of this method is that it is almost independent of the 

number of points. The disadvantage is that the one-

dimensional covariance structure associated with the 

variogram must be calculated (or given analytically). The 

general idea of Turning Band Simulation is explained below: 

 

Unconditional simulation 

The basic idea of Turning Band Simulation is to use a series 

of one-dimensional simulations to build a multidimensional 

simulation. Projecting a point in 2 or 3-dimensional space onto 

these lines and taking the sum of values corresponding to the 

projected points will produce a simulated value [38]. 

For example, for a set of lines l=1, …, L, all of which pass 

through the origin of the coordinate system, a random function 

with zero mean and a covariance function C1(r) are simulated 

independently [39]. For instance, these functions are Z1(u) for 

l=1, ..., L. Moreover, for a u point, the random function of Z(u) 

can be defined as: 

 

𝑍(𝑢) =
1

√𝐿
∑𝑍𝐼

𝐿

𝐼=1

(〈𝑢, 𝑣𝐼〉) (12) 

 

where, 〈..,..〉 denotes the scalar product of vectors, and vl is the 

unit vector on the line. If the random function of E[ZI (r)]=0, 

then the covariance is as follows [21, 35]: 

 

𝐶(𝑢1, 𝑢2) =
1

𝐿
∑ ∑ 𝑍𝑙

𝐿
𝑘=1

𝐿
𝑙=1 (〈𝑢1, 𝑣𝑙〉)𝑍𝑙(〈𝑢2, 𝑣𝑘〉)  

𝐶(𝑢1, 𝑢2) =
1

𝐿
∑ 𝑍𝑙
𝐿
𝑙=1 (〈𝑢1, 𝑣𝑙〉)𝑍𝑙(〈𝑢2, 𝑣𝑙〉)  

1

𝐿
∑ 𝐶𝑙
𝐿
𝑙=1 (|〈𝑢1, 𝑣𝑙〉 − 〈𝑢2, 𝑣𝑙〉|)  
1

𝐿
∑ 𝐶𝑙
𝐿
𝑙=1 (|〈𝑢1 − 𝑢2, 𝑣𝑙〉|)  

(13) 

 

This equation shows that Z(u) is also stationary. If the unit 

vectors of vl are uniformly distributed on the unit sphere or unit 

circle, then the limit of the above expression is L→∞. 

 

1
| | 1

( ) (| , |)
v

C h C h v
=

=     (14) 
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3. RESULTS AND DISCUSSION 

 

3.1 Plot data based on location 

 

The distribution of coordinate points in the Kriging model 

is an essential component in geostatistical analysis, which is 

used to make more accurate estimates at locations that are not 

directly measured based on the spatial correlation between 

observation points. 

 

 
 

Figure 1. Plot of research coordinate points 

 

 
 

Figure 2. Experimental 

 

 
 

Figure 3. Variogram 

 

From Figure 1, the distribution of coordinate points in the 

Kriging model starts with the location of the observation 

points. These are the locations where data is collected or 

measured. The distribution of coordinate points in the Kriging 

model requires the use of statistical models to connect 

observation points with predicted sites. The Kriging model 

takes into account the spatial correlation between observation 

points and predicted locations. The coordinate points above 

are spread evenly at each observer location in this research. 

 

3.2 Experimental variogram 

 

This research analyses geospatial data to understand the 

spatial correlation and variability in soil particle size 

parameters in the Kalikonto Batu Malang Watershed Area. 

Experimental Variogram plots are used to illustrate the 

distribution of the degree of spatial correlation and variability 

across the study area. The Variogram model employed in this 

research is the spherical model; the output can be seen in 

Figure 1 and Figure 2. 

In the Experimental Variogram plot in Figure 2, the 

horizontal axis depicts the spatial distance between pairs of 

observation points, while the vertical axis portrays the 

variogram values. The variogram is calculated based on the 

squared difference between values at pairs of observation 

points that are a certain distance apart, and this variogram 

value is then plotted as a function of distance. The results of 

the Experimental Variogram plot show significant spatial 

variation with variability on a petite scale. The parameter 

ranges identified in this plot provide valuable guidance in 

using the Kriging method to predict soil particle size in the 

Kalikonto Batu Malang Watershed area. 

In Figure 3, the Variogram model plot is used to represent 

the theoretical Variogram model, which describes the spatial 

correlation characteristics of the geospatial data being studied. 

This plot helps understand the distribution of spatial variability 

of the data and is used as a basis for developing a prediction 

model using the Kriging method. 

 

Table 1. Spherical model results 

 
Model Psill Nugget Range 

Spherical 17.5519 68.9528 4890.991 

 

The results of the variogram analysis, as shown in Figure 3, 

confirm that the spherical model was the most appropriate for 

representing the spatial distribution of soil particle size. The 

model parameters—Psill (68.9528), Range (4890.991), and 

Nugget (17.551)—provide essential insights into the 

variability of soil properties across the study area as shown in 

Table 1. 

The experimental variogram results and the fitted spherical 

model have been presented, but they lack interpretation. The 

Nugget effect (17.551) reflects small-scale variations in the 

dataset, which could be due to measurement errors or natural 

differences in soil composition at a micro-scale. A nonzero 

nugget suggests that some variability exists even at very short 

distances—beyond what the sampling resolution can fully 

capture. The Psill (68.9528) represents the total variability in 

the dataset and marks the point where spatial correlation levels 

off. In other words, beyond a certain distance, variations in soil 

texture no longer contribute significantly to overall variability. 

The Range (4890.991) is a key parameter as it defines the 

maximum distance where spatial correlation can still be 
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observed. This means that soil particle size distributions 

remain spatially dependent within approximately 4.89 km. 

Beyond this point, spatial relationships weaken. The range is 

particularly important in Kriging interpolation, as it 

determines how far reliable predictions can extend it to 

unmeasured areas. However, there is no comparison with other 

studies or regions to determine whether these values are 

typical or unique to this study area. Providing such context 

would help clarify the significance of these findings and their 

implications for understanding soil distribution patterns in this 

region. 

Additionally, cross-validation confirmed that the spherical 

model provided the best fit, outperforming alternative models 

such as the exponential and Gaussian models. The spherical 

model demonstrated lower residual errors and a better 

alignment with observed data, reinforcing its suitability for 

modeling soil particle distribution. 

Overall, these findings emphasize the importance of 

selecting an appropriate variogram model. The spherical 

model effectively captures localized soil variability while 

maintaining a well-defined spatial correlation range, making it 

a powerful tool for improving soil texture predictions in 

environmental and geotechnical applications. 

 

3.3 Kriging model 

 

After obtaining the fit Variogram model values, it can be 

continued with the process of creating an output grid for the 

entire research area, namely the Kalikonto Watershed Area, 

Batu City, with longitudinal coordinates and latitude 

coordinates. The aim of creating grid data is to provide 

location boundaries that will be processed using the Kriging 

interpolation method. The resulting grid can be seen in Figure 

4. 

The results in Figure 4 show the predicted locations of 2253 

points, with a range of 200. The following process is the 

analysis of the Kriging interpolation method based on the input 

point data, Variogram fit model, and output grid, which have 

been previously defined. The prediction results for the entire 

grid (the entire Kalikonto Watershed Area) are displayed in 

Table 2. 

The Kriging prediction results in this research have broad 

potential applications. They can be used by farmers and 

environmental authorities to identify areas with high levels of 

soil particle size, i.e., the Silt variable, so that remediation 

actions can be directed more effectively. Additionally, these 

results can be used as a basis for more sustainable agricultural 

planning and more profound environmental research. The 

prediction results in Table 2 are made into Mapping and 

presented in Figure 5. The plot employs R Studio Software 

with the help of Packages Lattice, sp. 

Figure 5 displays the pattern of prediction results from the 

Kriging plot. Light colors indicate areas where the predicted 

value is smaller. Above or around the data points, the Kriging 

image shows estimated or simulated values. This is an estimate 

of the value produced by the Kriging method for unmeasured 

locations. This value is determined by the Variogram model 

used in Kriging analysis. Likewise, with mapping with the 

alternative package Lattice, the yellow to white colors indicate 

locations with a predicted value greater than 40. Meanwhile, 

the alternative package SP shows the same mapping model, 

where it is detected that sites with a predicted value of 5-30 are 

in blue colour and over 40 are in light green. 

 

 
 

Figure 4. Grid for predicted location points 

 

Table 2. Kriging prediction results 

 
No. X Y Silt. Pred Silt Var 

1 649440 9122669 20.04109 53.02702 

2 649640 9122669 19.72818 48.48520 

3 649840 9122669 19.44796 43.53060 

⋮ ⋮ ⋮ ⋮ ⋮ 
⋯ ⋯ ⋯ ⋯ ⋯ 

⋯ ⋯ ⋯ ⋯ ⋯ 

⋮ ⋮ ⋮ ⋮ ⋮ 
2251 662640 9128269 30.97912 52.03269 

2252 662840 9128269 30.85920 52.98401 

2253 663040 9128269 30.74797 54.69533 

 
 

Figure 5. Soil particle size prediction results (Silt) 
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Figure 6. Results of Kriging variance plot for soil particle 

size (Silt) 

 

 

 

 
 

Figure 7. Crop Kriging variance value that exceeds 50 

 

3.4 Kriging variance result plot 

 

After the Kriging prediction was conducted, a Kriging 

variance plot was carried out. The results of the Kriging 

variance plot are displayed in Figure 6. 

The Kriging variance plot reveals that regions with 

significantly high variance values are primarily located in 

areas that are far from observation points. This pattern 

suggests that these regions may have been under-sampled, 

resulting in greater uncertainty in the Kriging interpolation. 

Since Kriging relies on spatial autocorrelation to make 

predictions, areas with fewer data points tend to exhibit higher 

variance due to a lack of nearby reference measurements. This 

effect is particularly evident in the outer edges of the study 

area, where the density of observation points is lower, leading 

to a decline in prediction confidence. 

In addition to spatial distribution, the second and third 

images in Figure 6 provide further confirmation of this trend 

by visually representing variance intensity using different 

color schemes. Regions where the variance exceeds a 

threshold of 90 are indicated by lighter colors, such as yellow 

and green in the second plot and bright yellow in the third plot. 

These high-variance zones are largely concentrated along the 

periphery of the study region, reinforcing the interpretation 

that the lack of nearby observation points contributes to 

increased prediction uncertainty. 

Given these findings, future sampling efforts should 

prioritize increasing the density of observations in high-

variance regions to enhance the accuracy of Kriging 

predictions. By strategically placing additional sampling 

points in these areas, the model's ability to capture spatial 

variability more effectively can be improved. This would 

reduce prediction uncertainty and ensure that interpolated 

values more accurately represent actual conditions. 

Addressing these under-sampled regions is crucial for refining 

spatial analysis and obtaining more reliable estimations of soil 

properties across the entire study area. 

Then, cropping was carried out or cutting off locations with 

a variance value of more than 80, namely locations predicted 

to have a very high variance value. The cropping results are 

shown in Figure 7. 

Figure 7 shows the crop mapping results at locations with 

considerably high variance values. Subsequently, cross-

validation was performed up to 100%, and the validation value 

was observed. The validation value was calculated using the 

MSE, which was obtained as 0.002084. This result indicates 

that the MSE value is very small or close to zero (0). 

Therefore, it can be concluded that the Kriging model with a 
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Spherical Variogram is highly suitable for application to soil 

particle size data. 

However, these cross-validation results still lack context. A 

comparison with other studies or models should be presented 

to provide a clearer picture of the accuracy and advantages of 

the method used. Including benchmarks would strengthen this 

section. Several studies have compared the Kriging model 

with other geostatistical interpolation methods. For example, 

the research [40] showed that combining log-ratio methods 

with machine learning models, such as Random Forest (RF), 

can improve soil particle mapping accuracy compared to the 

Regression Kriging (RK) method. Additionally, the study [41] 

found that compositional Kriging and cokriging methods 

perform differently depending on the data conditions, 

highlighting the importance of considering alternative 

methods in geostatistical analysis. 

Furthermore, the simulation results have been presented but 

still need to be critically analyzed and interpreted to provide 

deeper insights. The study [28] compared various log-ratio 

Kriging methods and found that the compositional Kriging 

method provided better prediction accuracy than other log-

ratio methods. Therefore, further analysis of the simulation 

results is needed to assess the superiority of the model used in 

this study compared to other approaches. 

By providing a comparison with previous studies and 

adding relevant benchmarks, this section can be strengthened 

and provide a more comprehensive justification for the 

effectiveness of the method used in this study. 
 

3.5 Simulation 
 

TAfter the Kriging prediction model had been done, and a 

Kriging simulation was carried out using the grid in the 

Kriging model. The simulation used was 9 times. The results 

can be seen in Table 3. 

The simulation results in Table 3 show 2334 location points 

along the Kalikonto Watershed Area in Batu City. As an 

example, the results of the 3rd mapping simulation are 

displayed; the mapping can be seen in Figure 8. 

The Kriging simulation plot (Figure 8) results from 

applying the Kriging method to existing geospatial data. This 

provides an illustration of how predicted values are generated 

for locations that are not directly measured based on 

observational data at existing measurement points. 

In the Kriging simulation process, the Kriging model that 

has been developed using previous Variogram plots is used to 

estimate values at each unmeasured location. This model 

considers the spatial correlation between observation points 

and the relative distance of these points to the predicted 

location. In other words, the Kriging model considers the 

distribution of spatial variability in the data to produce 

accurate predictions. The simulation was performed 9 times, 

with the plot presented in Figure 9. 

In Figure 9, the Kriging simulation plot depicts the 

distribution of predicted values throughout the research area, 

namely the Kalikonto Watershed Area. This distribution 

pattern reflects the predictions produced by the Kriging model. 

On the plot, directly measured locations will have predictions 

exceptionally similar to the observed values, while areas far 

from the measurement point may have different projections. In 

this plot, the suitable colors and patterns represent the 

distribution of predicted values. Each nuance reveals complex 

spatial correlations between observation points across the 

study area. In Figure 9, it can be seen that the plot is smoother 

than the Kriging model plot. 

Overall, the Kriging simulation plot results provide a deeper 

understanding of the spatial distribution of the parameter 

values being studied in the research area. This helps in the 

decision-making, planning, and management of various 

applications, such as natural resources, environment, or soil 

science. 

 

Table 3. Prediction results of Kriging simulation 

 
No. X Y Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6 Sim 7 Sim 8 Sim 9 

1 649440 9122669 15.0149 20.3418 15.0179 20.0274 18.9859 11.5919 20.1128 8.2419 27.5670 

2 649640 9122669 7.4011 23.2457 15.9041 13.3397 19.4578 16.9055 22.2275 15.0815 10.9652 

3 649840 9122669 12.7818 24.1749 21.9807 15.3284 21.8456 19.5432 23.5747 14.6933 10.8098 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
2332 663240 6128469 30.3110 39.4126 27.1494 26.0740 39.5641 42.7275 42.7275 20.0366 18.9322 

2333 663440 6128469 36.0112 40.9495 23.7520 33.5443 34.9389 27.7251 42.0471 38.0422 13.5377 

2334 663640 6128469 43.6669 43.2895 23.5587 31.3209 34.1274 24.7398 42.2200 27.3276 10.7022 

 
 

Figure 8. Simulation results 

 
 

Figure 9. Kriging simulation results 
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4. DISCUSSION 

 

The spatial distribution of soil particle size is captured with 

great effect by this exceptional study model, with Psill 

68.9528, Range 4890.991, and Nugget 17.551, is more precise 

than the other interpolations we tried. These results support the 

findings of the study [41], they found that compositional 

Kriging gave better forecasts than log-ratio Kriging. Hence, it 

is very important to select a suitable variogram model when 

aiming for spatial prediction accuracy. 

The reference [40] also found that compositional Kriging 

was better than other interpolation methods in predicting soil 

particle size distribution. This again sustains/illustrates the 

point that paying attention to the compositional characteristics 

of soil data can lead to more reliable predictions. So, to get 

practical soil texture maps, you must select the correct 

variogram model. 

Kriging for soil texture mapping for soil texture mapping, 

the method of Kriging, especially with the spherical model, is 

extremely useful. By using spatial autocorrelation, it can 

enable accurate estimation and a detailed portrayal of soil 

particle size distribution. This way ensures precise predictions, 

making it of great use for soil science. 

Factors affecting model accuracy but for model accuracy, it 

all depends on local conditions, including soil types and 

environmental influences. Factors like soil formation 

processes, patterns of erosion, and changes in land use can 

affect Kriging forecast. In addition, reliability of the model 

also depends on the density and spatial distribution of survey 

locations, which means that calibration must be done 

selectively in order to achieve optimal results. 

Enhancing soil texture mapping to create high-resolution 

soil texture maps on demand, spatial information from Kriging 

simulations can be combined with remote-sensing imagery 

and digital elevation models, where Kriging is concerned, 

simulations that use machine learning techniques have shown 

potential in improving soil property estimation. Multi-source 

geospatial data makes it possible for Kriging to adjust to 

complex terrains and get more realistic soil texture predictions. 

Application of this model in different regions and under a 

variety of soil conditions is a key topic for future research. By 

improving variogram fitting techniques and experimenting on 

hybrid Kriging, as well as adding extra environmental 

variables, model accuracy might be raised. The use of big data 

analytics and high-resolution spatial data sets offers a chance 

to advance soil mapping methodology and precision 

agriculture. 

Alternative interpolation methods while the performance of 

the spherical model is indeed excellent, other kinds of 

interpolation, such as Cokriging and Compositional Kriging, 

may offer advantages in specific circumstances. Comparisons 

between these methods in identical conditions will help to pin 

down the best approach for a particular study area. 

The model is highly accurate in modeling soil conditions 

with a MSE of 0.002084 found from cross-validation results. 

It easily outperforms other interpolation methods. Moreover, 

the spherical model is widely used for point Kriging because 

of its high accuracy and has always been a leader in soil 

property estimation. In this study, we further demonstrated 

that it can be used as a means of interpolating information 

obtained from sample points on the spatial variation size 

distribution of soil particles and proved empirically that such 

use will give good results. 

The importance of selecting a good one of the various 

possible variogram models must not be underestimated as it 

has a direct bearing on accuracy in spatial interpolation [30] 

confirmed that variogram parameters are significantly related 

to the performance of the interpolation model. The spherical 

model, which best represents smooth spatial continuity, 

performed better than Exponential and Gaussian models in 

different geospatial cases. 

Kriging simulation techniques work to generate multiple 

realizations of soil particle distribution consistent with the 

probability distribution. This deepens our understanding of 

spatial structures in soil management and land-use planning. 

Kriging-based estimates integrated with remote sensing data 

and machine learning approaches could further improve 

performance. 

Recent advances in mathematical modeling have 

accentuated the importance of geophysical fluid flow 

dynamics in environmental modeling. For instance, by 

introducing the deep-water stratification effects into land 

surface processes, it would render Kriging simulations more 

precise in their predictions of soil particle distribution. 

Future research should investigate the applicability of 

Kriging simulation models to various environmental 

conditions. The combination of hybrid modeling methods will 

no doubt greatly increase the accuracy of soil character 

predictions in different landscapes. 

The result of validation for different models according to 

spherical model, Exponential model, and Gaussian model 

shows that the spherical model reaches the best results for soil 

particle distribution spatial patterns. Choosing an appropriate 

variogram model with validation results is key to improving 

accuracy in interpolation and spatial mapping. 

Not only does adding other spatial modeling techniques 

improve the models based on Kriging, but they also offer 

further understanding of its underlying principles. For 

example, Geographically Weighted Ordinary Logistic 

Regression (GWOLR) can be combined with Kriging for 

finding an optimal soil particle size distribution [42] In this 

way, if we combine GWOLR with Kriging models, local 

variability capture is improved. 

In addition, integrating cluster fast double bootstrap 

methods into random effect spatial models is useful in 

obtaining robustness and prediction precision from an array of 

geostatistical applications. The result of applying these 

techniques shows that as soil-classifying information becomes 

more sophisticated after training, a more efficient product is 

produced by using a professional platform and more 

photosynthesis coordination. When validating, although the 

performance of the spherical model was satisfactory, possible 

bias may still be introduced by the limited data basis for 

assumptions. Uneven sample distribution breeds interpolative 

errors, and this is especially concerning in Kriging predictions. 

Deshmukh and Aher [43] showed that with increased 

sample density, the accuracy of extrapolation is heightened 

because more subtle patterns can be graphed. Therefore, it is a 

good idea to increase sample points and locate them carefully. 

Further research should consider adaptive sampling 

strategies that adjust sample density on the basis of 

preliminary variogram analysis. Integrating remote sensing 

data and geostatistical simulation results with Kriging 

methods can fill in gaps left by sparsely sampled regions, 

improving the quality of soil particle distribution models. 

Sample representation should be optimized while 

simultaneously exploring external data sources and advanced 

geostatistical techniques. 
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Another consideration is that Kriging is based upon the 

assumption of stationarity—i.e., that soil particle distribution 

remains the same over a given scale. However, real-world 

factors such as hydrological changes and human activities can 

change soil distribution, so this is an assumption [44]. One 

more critical factor here is variogram modeling accuracy—

poor predictor fitting strongly affects spatial predictions. And, 

in Kriging estimates on the whole, if spatial dependence 

deteriorates, it will seem less likely that interpolation should 

speak with more reliability. 

Ngabu et al. [45] showed that adopting a cluster fast double 

bootstrap method combined with random effect spatial 

modeling yields statistically optimized geostatistical 

predictions. Similarly, Wang et al. [40] emphasized that robust 

variogram-estimation methods enhance the accuracy of spatial 

prediction. Therefore, total refinement through automated 

fitting algorithms that make optimization possible and cross-

validation approaches is needed. 

 

 

5. CONCLUSIONS 

 

This paper reports an investigation on the distribution of soil 

particle size in Kalikonto Watershed (DAS) in Batu, Malang, 

using the Kriging method based on an experimental 

variogram. The research results include variogram parameters, 

the accuracy of the Kriging model prediction of soil properties, 

and its practical applications in agriculture and environmental 

management. 

The analysis results showed that the spherical model is the 

best choice to portray the spatial distribution of soil particle 

size in the study area. With variogram parameters of Psill 

(68.9528), Range (4890.991), and Nugget (17.551), this study 

provides a clearer insight into the soil property variations in 

the region. The observed nugget effect reflects minor 

variations on a micro-scale, which might be due to 

measurement errors or natural differences in soil composition. 

With a range of 4.89 km, it suggests that there exist spatial 

relationships between measurement points up to this distance, 

and the reliability of forecasts by the Kriging method is 

thereby an important factor. 

The Kriging model that was developed demonstrated a 

highly precise soil particle size forecast map. The results of 

cross-validation show that its error rate is very low (MSE = 

0.002084), therefore meaning its predictions can effectively 

represent real soil conditions. Compared with exponential and 

Gaussian models, the spherical model performed better 

according to validation results. 

The results of this study have wide practical benefits, 

especially in agricultural management and environmental 

conservation. The prediction map generated can help with 

determining where measures are needed, in particular for 

erosion control or even just in parts that need tougher 

treatment through soil management plans. Also, the data can 

be used for both the optimal combinations of fertilizers and 

strategies to conserve soil in those areas of high soil texture 

variability. 

Nevertheless, in order to gain a more comprehensive 

understanding, this study needs comparison with other studies 

to determine whether the findings are specific only to unique 

factors within this larger general trend. Additional research 

might also be directed towards alternative methods, such as 

Compositional Kriging or Cokriging, which may be more 

effective under certain data conditions. Increasing the number 

of measurement points in areas with high variability could also 

help reduce uncertainty and raise forecast accuracy. 

In sum, this study indicates the importance of careful 

selection of variogram model in the Kriging method in order 

to improve the accuracy of simulations of soil texture in space. 

These findings are an important reference for engineering, 

agricultural planning, as well as resource and environmental 

management. 
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