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A mathematical model of reaction-diffusion processes in immobilized chymotrypsin 

enzyme in an acetonitrile medium under kinetic control is discussed. The model is 

developed using a system of reaction-diffusion equations with a nonlinear component 

associated with the enzymatic reaction's kinetics. The Rajendran-Joy approach gives 

the general analytical expressions of acyl donor and nucleophile concentrations in 

spherical biocatalyst particles. The initial rate of consumption of each substrate is also 

reported. The effect of reaction and diffusion parameters on substrate concentration and 

consumption rate is also discussed. A numerical solution of nonlinear equations was 

compared with theoretical results. There is a good degree of agreement between the two 

results. 
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1. INTRODUCTION

Recently, there has been a lot of interest in enzymes and

biological catalysts, especially for monophasic chemical 

solvents [1-5]. When enzymes are compressed into cellular 

organelles or enzyme chains, catalytic activity can occur [6]. 

The catalytic systems generated here are heterogeneous, and 

most enzymes are insoluble. When evaluating enzyme activity, 

it is critical to consider the roles of external and internal 

diffusion of non-aqueous enzyme systems [7]. These problems 

could be resolved using immobilized enzymes. By 

immobilization, the structure of the enzymes is often 

maintained, permitting their usage even under extreme 

environments [8, 9].  

Theories concerning biocatalyst behaviour are based on 

fundamental physical or chemical analyses. It is advantageous 

to apply thermodynamic approaches that consider the 

components' distribution throughout the different phases and 

their solvent in the bulk phase [10, 11]. Enzymes are beneficial 

in various applications, including food-related conversions, 

analysis, and chemical processing [12]. One area where 

enzymes have proven particularly useful is in producing 

optically active intermediates. These are chemical compounds 

that rotate the plane of polarized light. Studying simultaneous 

diffusion and reaction is essential for optimizing the catalytic 

system, as demonstrated by the many articles that describe and 

numerically simulate these processes [13-18]. A model was 

developed to describe the kinetic regulation of immobilized a-

chymotrypsin's production in an acetonitrile medium [19]. 

The simple analytical expression of the acyl donor and 

nucleophile molar concentrations has not been published using 

simple mathematical concepts. In this work, we developed a 

new analytical expression concentration using Rajendran-Joy 

method. Furthermore, each substrate's analytical expression of 

rate consumption has been provided. With analytical data 

support, comprehending the physical influence of each 

parameter will be simple. The theoretical results will help to 

understand the physical impact of parameters, which will be 

useful in analysing the rate of consumption of substrates and 

optimising the processes. Additionally, we compare our 

analytical results for the molar concentrations with the 

numerical simulations using the MATLAB program. 

2. MATHEMATICAL FORMULATION

We can consider the function of immobilized chymotrypsin 

in an acetonitrile medium under kinetic control. Also, the 

enzymes have been distributed evenly in the spherical 

biocatalyst particles. External mass transfer limitations were 

considered negligible. Under these conditions, the chemical 

reaction in enzyme-catalyzed reactions may be described as 

follows [19]: 

𝐴𝑐𝐷 + 𝑁𝑢𝑐 → 𝑃𝑒𝑝 + 𝐿𝐺 (1) 

Hydroylsis of acyl donor: 

𝐴𝑐𝐷 + 𝐻2𝑂 → 𝐻𝑦𝑝 + 𝐿𝐺 (2) 

The mass balance equations for peptide and hydrolysis 

products can be expressed for the above intrinsic kinetics as 

follows: 

𝑑2[𝐴𝑐𝐷]

𝑑𝑟2
+
2

𝑟

𝑑 [𝐴𝑐𝐷]

𝑑𝑟

=  
(𝑘𝑆𝑦𝑛𝑡ℎ[𝑁𝑢𝑐] + 𝑘𝐻𝑦𝑑𝑟)[𝐴𝑐𝐷][𝐸0]

𝐷𝐴𝑒𝑓𝑓(𝑘𝑁 + [𝑁𝑢𝑐])

(3) 
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𝑑2[𝑁𝑢𝑐] 

𝑑𝑟2
+
2

𝑟

𝑑 [𝑁𝑢𝑐]

𝑑𝑟
=  
𝑘𝑆𝑦𝑛𝑡ℎ[𝑁𝑢𝑐] [𝐴𝑐𝐷][𝐸0]

𝐷𝑁𝑒𝑓𝑓(𝑘𝑁 + [𝑁𝑢𝑐])
 (4) 

 

The boundary conditions are: 
 

𝐴𝑡 𝑟 = 0,
𝑑[𝐴𝑐𝐷]

𝑑 𝑟
= 0,

𝑑[𝑁𝑢𝑐]

𝑑 𝑟
= 0 (5) 

 

𝐴𝑡 𝑟 = 𝑅, [𝐴𝑐𝐷] = [𝐴𝑐𝐷]𝐵 ,  [𝑁𝑢𝑐] = [𝑁𝑢𝑐]𝐵 (6) 

 

where, [AcD] and [Nuc] are the molar concentration of acyl 

donor and nucleophile. The other parameters are defined in the 

nomenclature. For every substrate, the initial rate of 

consumption is: 
 

𝑅𝑎𝑡𝑒𝐴 = 
4 𝜋 𝑅2𝐷𝐴𝑒𝑓𝑓

𝑀𝑝

(
𝑑[𝐴𝑐𝐷] 

𝑑 𝑟
)
𝑟=𝑅

 (7) 

 

𝑅𝑎𝑡𝑒𝑁 = 
4 𝜋 𝑅2𝐷𝑁𝑒𝑓𝑓

𝑀𝑝

(
𝑑[𝑁𝑢𝑐] 

𝑑 𝑟
)
𝑟=𝑅

 (8) 

 

By introducing the dimensionless variables: 
 

𝑢 =  
[𝐴𝑐𝐷]

[𝐴𝑐𝐷]𝐵
, 𝑣 =

[𝑁𝑢𝑐]

[𝑁𝑢𝑐]𝐵
 

𝑥 =  
𝑟

𝑅
, 𝛾1 =

𝑅2𝑘𝐻𝑦𝑑𝑟[𝐴𝑐𝐷]𝐵𝐸0

𝐷𝐴𝑒𝑓𝑓𝑘𝑁
 

𝛾2 =
𝑅2𝑘𝑆𝑦𝑛𝑡ℎ[𝐴𝑐𝐷]𝐵[𝑁𝑢𝑐]𝐵𝐸0

𝐷𝑁𝑒𝑓𝑓𝑘𝑁
 

 

𝛼1 = 
𝑘𝑆𝑦𝑛𝑡ℎ [𝑁𝑢𝑐]𝐵

𝑘𝐻𝑦𝑑𝑟
, 𝛼2 = 

[𝑁𝑢𝑐]𝐵
𝑘𝑁

 (9) 

 

The Eqs. (3) and (4) reduce to the following dimensionless 

form: 
 

𝑑2𝑢(𝑥) 

𝑑𝑥2
+
2

𝑥

𝑑𝑢(𝑥)

𝑑𝑥
=  
𝛾1 𝑢(𝑥)(1 + 𝛼1 𝑣(𝑥))

1 + 𝛼2 𝑣(𝑥)
 (10) 

 

𝑑2𝑣(𝑥) 

𝑑𝑥2
+
2

𝑥

𝑑𝑣(𝑥)

𝑑𝑥
=  
𝛾2 𝑢(𝑥)𝑣(𝑥)

1 + 𝛼2 𝑣(𝑥)
 (11) 

 

The boundary condition becomes: 
 

𝐴𝑡 𝑥 = 0,
𝑑 𝑢

𝑑 𝑥
= 0,

𝑑 𝑣

𝑑 𝑥
= 0 (12) 

 

𝐴𝑡 𝑥 = 1, 𝑢 = 1, 𝑣 = 1 (13) 

 

The dimensionless form of initial rate of consumption each 

substrate is: 
 

𝑅𝑎𝑡𝑒𝐴
𝜇

=  (
𝑑 𝑢 

𝑑 𝑥
)
𝑥=1

 (14) 

 

𝑅𝑎𝑡𝑒𝑁
𝜂

=  (
𝑑 𝑣 

𝑑 𝑥
)
𝑥=1

 (15) 

 

where, 
 

𝜇 =  
4 𝜋 𝑅2𝐷𝐴𝑒𝑓𝑓[𝐴𝑐𝐷]𝐵

𝑀𝑝

, 𝜂 =  
4 𝜋 𝑅2𝐷𝑁𝑒𝑓𝑓[𝑁𝑢𝑐]𝐵

𝑀𝑝

 (16) 

3. RESULT AND DISCUSSION  
 

3.1 Analytical expression of concentration and initial rate 

of consumption 

 

There are several asymptotic techniques for solving 

nonlinear reaction-diffusion equations. Recently, the 

homotopy perturbation [20-24]. Tayor series [25-28], 

variational iteration [29-31], Pade approximations [32]. 

Akbari-Ganji [33-37], Rajendran-Joy [38-40], Adomian 

decomposition [41, 42], and homotopy analysis methods [43] 

have been used to solve nonlinear equations. 

Although the homotopy perturbation method solves some 

issues with the traditional perturbation method, it is not always 

possible to expect a compact answer. The presumed solution 

in the Akbari-Ganji method is expressed in the algebraic form 

(i. e., 𝑢(𝑥 ) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 +⋯). This approach is 

inapplicable for the semi-infinite boundary value problems 

i.e., 𝑥𝜖[0,∞]. The solutions derived from the Taylor series and 

the variational iteration approach are inconsistently 

convergent. Although Adomian decomposition method is 

often efficient, the convergence of the series only sometimes 

results in a compact solution. This method also has the 

disadvantage of requiring the computation of Adomian 

polynomials, which may be challenging. Homotopy analysis 

approaches have limitations, such as the incorporation of 

auxiliary operators, parameters, and functions. 

In the Rajendran-Joy approach, an initial solution is 

considered an exponential function with unknown coefficients. 

The number of unknown coefficients in the initial solution is 

greater than the order of the differential equation. These 

unknown constant coefficients, which are the key to solving 

the linear/nonlinear differential equation, can be obtained from 

the initial conditions and the differential equation. The basic 

concept of the Rajendran-Joy method (RJM) is given in 

Appendix A. Consider the following exponential function to 

solve Eqs. (10) and (11): 

 

𝑢(𝑥 ) = 𝐴0𝑒
𝑚𝑥 + 𝐵0𝑒

−𝑚𝑥 (17) 

 

𝑣(𝑥 ) = 𝐴1𝑒
𝑛𝑥 + 𝐵1𝑒

−𝑛𝑥 (18) 

 

where, 𝐴0, 𝐵0, 𝐴1, 𝐵1, 𝑚 and 𝑛 are constant. Determining the 

constant values using boundary conditions (12) and (13) is 

simple: 

 

𝐴0 = 
1

cosh(𝑚)
, 𝐴1 = 

1

cosh(𝑛)
,  

𝐵0 =  0, and 𝐵1 =  0 

(19) 

 

As a result, Eqs. (17) and (18) become: 

 

𝑢(𝑥) =  
cosh  (𝑚 𝑥)

cosh(𝑚)
 (20) 

 

𝑣(𝑥) =  
cosh  (𝑛 𝑥)

cosh(𝑛)
 (21) 

 

We consider the generalized version of Eqs. (10) and (11) 

to find the constant 𝑚 and n in Eqs. (20) and (21) as follows: 

 

𝐹(𝑥) =
𝑑2𝑢(𝑥) 

𝑑𝑥2
+
2

𝑥

𝑑𝑢(𝑥)

𝑑𝑥
− 
𝛾1 𝑢(𝑥)(1 + 𝛼1 𝑣(𝑥))

1 + 𝛼2 𝑣(𝑥)
= 0 (22) 
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𝐺(𝑥) =  
𝑑2𝑣(𝑥) 

𝑑𝑥2
+
2

𝑥

𝑑𝑣(𝑥)

𝑑𝑥
−
𝛾2 𝑢(𝑥)𝑣(𝑥)

1 + 𝛼2 𝑣(𝑥)
= 0 (23) 

 

Applying L-Hospitals’ rule in the Eqs. (22) and (23), and at 

𝑥 = 0, we get: 

 

𝐹(𝑥)|𝑥=0 =  3𝑚
2 − 

𝛾2 (1 + 𝛼1 𝑠𝑒𝑐ℎ𝑛)

 1 + 𝛼2 𝑠𝑒𝑐ℎ𝑛
= 0 (24) 

 

𝐺(𝑥)|𝑥=0 =  3𝑛
2 − 

𝛾2𝑠𝑒𝑐ℎ𝑚

1 + 𝛼2 𝑠𝑒𝑐ℎ𝑛
= 0 (25) 

 

From the above result we get: 

 

𝑚 = √
𝛾1(1 + 𝛼1 sech 𝑛)

3 (1 + 𝛼2sech𝑛)
 

𝑛 =
√
𝛾2 sech (√

𝛾1(1 + 𝛼1 sech 𝑛)
3 (1 + 𝛼2sech𝑛)

)

3 (1 + 𝛼2sech𝑛)
 

(26) 

 

When 𝑚 and 𝑛 are very small, 𝑠𝑒𝑐ℎ𝑛 =  1. Now 𝑚 and 𝑛 

become: 

 

𝑚 = √
𝛾1(1+𝛼1)

3 (1+𝛼2)
 and 𝑛 = √

𝛾2

3 (1+𝛼2)
 (27) 

 

The initial rate of consumption of each substrate is: 

 
𝑅𝑎𝑡𝑒𝐴
𝜇

=  (
𝑑 𝑢 

𝑑 𝑥
)
𝑥=1

 

= (√
𝛾1(1 + 𝛼1)

3 (1 + 𝛼2)
)  𝑡𝑎𝑛ℎ (√

𝛾1(1 + 𝛼1)

3 (1 + 𝛼2)
) 

(28) 

 
𝑅𝑎𝑡𝑒𝑁
𝜂

=  (
𝑑 𝑣 

𝑑 𝑥
)
𝑥=1

 

= (√
𝛾2

3 (1 + 𝛼2)
) tanh(√

𝛾2
3 (1 + 𝛼2)

) 

(29) 

 

3.2 Previous analytical results 

 

Veeramuni et al. [9] solved Eqs. (10) and (11) using 

boundary conditions (12) and (13), employing the Adomian 

decomposition method. Adomian [44] created the Adomian 

decomposition technique (ADM) between the 1970s and the 

1990s. This technique is not only efficient but also versatile, 

capable of resolving various linear, nonlinear, ordinary, and 

partial differential equations, as well as integral transforms. 

They obtained the analytical equation for the concentration as 

follows: 

 

𝑢(𝑥) =  1 − 
(𝐴 − 6𝑙1)(𝑥

2 − 1)

36
+
𝐴 (𝑥4 − 1)

120
 (30) 

 

𝑣(𝑥) =  1 − 
(𝐵 − 6𝑚1)(𝑥

2 − 1)

36
+
𝐵 (𝑥4 − 1)

120
 (31) 

 

where, 

𝑙1 = 
𝛾1(1 + 𝛼1)

(1 + 𝛼2)
,𝑚1 = 

𝛾2
(1 + 𝛼2)

 

𝐴 =  𝑙1
2 +

𝑚1 
2

𝛾2
(𝛾1𝛼1 − 𝛼2𝑙1) and 𝐵 = 𝑚1 (

𝑚1 
2

𝛾2
+ 𝑙1) 

(32) 

 

The initial rate of consumption of each substrate is: 

 
𝑅𝑎𝑡𝑒𝐴
𝜇

=  (
𝑑 𝑢 

𝑑 𝑥
)
𝑥=1

= − 
(𝐴 − 6𝑙1)

18
+
𝐴 

30
 (33) 

 
𝑅𝑎𝑡𝑒𝑁
𝜂

=  (
𝑑 𝑣 

𝑑 𝑥
)
𝑥=1

= − 
(𝐵 − 6𝑚1)

18
+
𝐵 

30
 (34) 

 

The ADM has limitations, however. The first is that the 

approach produces a series of solutions that need to be 

shortened for practical use. Also, it is challenging to find 

Adomian polynomials. However, using the RJM approach, we 

can quickly determine the coefficients. Also, ADM method 

fail to provide some significant information beyond a finite 

interval [45]. 

 

3.3 Validation of the analytical methods 

 

The nonlinear Eqs. (10) and (11) are also numerically 

solved using MATLAB program. In Tables 1 and 2, the 

numerical outcomes are compared with our new analytical and 

prior findings. The average error difference percentage 

between the numerical results and our new findings across all 

parameter values is 0.8598. The greatest average error 

variation between the numerical and prior results (ADM 

method) is 1.3752. Tables 1 and 2 indicate that the nucleophile 

concentration near the particle centre consistently exceeds that 

of the acyl donor. This is because limits on mass transfer have 

more impact on the acyl donor than on the nucleophilic 

substrate. 

 

3.4 Effects of the parameters on concentration and initial 

rate of consumption 

 

The substrate concentrations depend upon the diffusion 

parameters γ
1
 and γ2and reaction parameters α1 and α2. 

The diffusion parameters are directly propositional to 

enzyme load and inversely proportional to diffusion 

coefficients. The kinetics rate constant and the reaction 

parameters have an inverse relationship. In Figures 1(a)-(b), 

the substrate's concentration profile for various diffusion 

parameter γ
1
 and α1  is plotted using Eq. (21). These figures 

show that the concentration value is close to 1 (𝑢(𝑥) ≈1) or 

uniform for all small values of the parameters. The 

concentration consequently declines as the diffusion 

parameters γ
1
 and α1 decreased (Figures 1(c)-(d)). 

The concentration v(x) for various diffusion parameter 

values γ
1
 and γ

2
 is displayed using Eq. (21) in Figure 2. This 

figure illustrates that the concentration value is uniform for all 

small values of the parameters α1 and α2.The concentration is 

uniform for the lowest diffusion parameter values. 

Concentration decreases as the diffusion parameter values 

increase. In all of these cases, the concentration gradients are 

steeper for the acyl donor than for the nucleophile. As the 

enzyme loading increases ( γ
1
 or  γ

2
 increases), the 

concentration slopes get steeper for both the acyl donor and 

the nucleophile. This means that mass transfer is more limited, 

as expected. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Note: The dotted line shows the Eq. (16), while the solid line is the 

numerical outcomes. 

 

Figure 1. Comparison of analytical result for concentration 

of acyl donor 𝑢(𝑥) with simulation result for various value 

for γ
1
, γ

2
, α1 and α2 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Note: The dotted line indicates the Eq. (16), while the solid line represents 
the numerical findings. 

 

Figure 2. Comparison of analytical expression of 

concentration of nucleophile 𝑣(𝑥) with simulation result for 

various value for γ
1
, γ

2
, α1 and α2 
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Table 1. Comparison of dimensionless substrate concentration 𝑢(𝑥) for different parameter values of 𝛾2 when γ
1
= 0.01, α1 =

0.01, and α2 = 0.01 with simulation results and previous analytical results 

 

𝝌 

𝜸𝟏 = 𝟏,𝒎 = 𝟎. 𝟓𝟕𝟕𝟑𝟓𝟎𝟑 𝜸𝟏 = 𝟐,𝒎 = 𝟎. 𝟖𝟏𝟔𝟒𝟗𝟔𝟔 

Numerical 

RJM  

Eq. (16)  

This 

Work 

ADM [41] 

Eq. (21) 

Error % RJM 

Eq. (16) 

This Work 

Error % 

ADM [41]  

Eq. (21) 

Numerical 

RJM  

Eq. (16) 

This Work 

ADM [41]  

Eq. (21) 

Error % 

RJM 

Eq. (16) 

This Work 

Error % 

ADM [41] 

Eq. (21) 

0 0.8509 0.8537 0.8539 0.3291 0.3527 0.7308 0.7395 0.7444 1.1905 1.8610 

0.2 0.8567 0.8595 0.8597 0.3268 0.3501 0.7408 0.7496 0.7536 1.1879 1.7279 

0.4 0.8743 0.8771 0.8770 0.3203 0.3088 0.7713 0.7801 0.7816 1.1409 1.3354 

0.6 0.9040 0.9065 0.9067 0.2765 0.2986 0.8237 0.8319 0.8306 0.9955 0.8377 

0.8 0.9466 0.9483 0.9489 0.1795 0.2430 0.9006 0.9064 0.9038 0.6440 0.3553 

1 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

 Average error (%) 0.2387 0.2587 Average error (%) 0.8598 1.0195 

 

Table 2. Comparison of dimensionless substrate concentration 𝑣(𝑥) for different parameter values of 𝛾1 when γ
2
= 0.01, α1 =

0.1, and α2 = 0.1 with simulation results and previous analytical result 

 

𝝌 

𝜸𝟐 = 𝟏, 𝒏 = 𝟎. 𝟓𝟕𝟒𝟒𝟏𝟗 𝜸𝟐 = 𝟐, 𝒏 = 𝟎. 𝟖𝟏𝟐𝟖𝟏 

Numerical 

RJM 

Eq. (17) 

This Work 

ADM [41] 

Eq. (22) 

Error % RJM 

Eq. (17) 

This Work 

Error % 

ADM [41] 

Eq. (22) 

Numerical 

RJM 

Eq. (17) 

This Work 

ADM [41] 

Eq. (22) 

Error % RJM 

Eq. (17) 

This Work 

Error % 

ADM [41] 

Eq. (22) 

0 0.8523 0.8550 0.8554 0.3168 0.3637 0.7328 0.7413 0.7458 1.1599 1.7740 

0.2 0.8580 0.8608 0.8609 0.3263 0.3263 0.7427 0.7513 0.7549 1.1579 1.6426 

0.4 0.8754 0.8782 0.8791 0.3198 0.4223 0.7730 0.7817 0.7829 1.1255 1.2807 

0.6 0.9049 0.9074 0.9075 0.2763 0.2873 0.8250 0.8331 0.8316 0.9818 3.2242 

0.8 0.9471 0.9488 0.9490 0.1795 0.2006 0.9014 0.9071 0.9044 0.6323 0.3328 

1 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

 Average error (%) 0.2364 0.2667 Average error (%) 0.8429 1.3752 

 
(a) 

 
(b) 

 

Figure 3. Effect of initial rate of substrate consumption 
RateA

μ
 

for different values of γ
1
, α1 and α2 using Eq. (19) 

 
(a) 

 
(b) 

 

Figure 4. Effect of initial rate of substrate consumption 
RateN

𝜂
 

for different values of γ
2
 and α2 using Eq. (20) 
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Figures 3 and 4 demonstrate the dimensionless consumption 

rate vs dimensionless variables γ
1
, α1 and α2 for the substrates 

u and v, respectively. From these figures, it is observed that the 

consumption rate rises as the values of α1 and α2 increase for 

certain fixed values of other parameters. The data show that 

the rate consumption remains constant for all values of the 

parameter γ
1
 as the dimensionless parameter γ

2
 grows. The 

consumption rate increases as enzyme loading 𝐸0 increases. 

 

 

4. EXTENSIONS TO THE THEORETICAL MODEL  

 

The following section describes further improvements to 

the theoretical model offered in this work. In this section, the 

general geometry of the electrode was addressed. The 

reaction-diffusion equations for immobilized enzyme systems 

have the following form: 
 

𝑑2[𝐴𝑐𝐷]

𝑑𝑟2
+
N

𝑟

𝑑 [𝐴𝑐𝐷]

𝑑𝑟
 

= 
(𝑘𝑆𝑦𝑛𝑡ℎ[𝑁𝑢𝑐] + 𝑘𝐻𝑦𝑑𝑟)[𝐴𝑐𝐷][𝐸0]

𝐷𝐴𝑒𝑓𝑓(𝑘𝑁 + [𝑁𝑢𝑐])
 

(35) 

 

𝑑2[𝑁𝑢𝑐] 

𝑑𝑟2
+
N

𝑟

𝑑 [𝑁𝑢𝑐]

𝑑𝑟
=  
𝑘𝑆𝑦𝑛𝑡ℎ[𝑁𝑢𝑐] [𝐴𝑐𝐷][𝐸0]

𝐷𝑁𝑒𝑓𝑓(𝑘𝑁 + [𝑁𝑢𝑐])
 (36) 

 

where, the shape factor 𝑁 = 0  (planar electrode),  𝑁 = 1 

(cylindrical electrode) and 𝑁 = 2 (spherical electrode). The 

boundary conditions are: 

 

𝐴𝑡 𝑟 = 0,
𝑑[𝐴𝑐𝐷]

𝑑 𝑟
= 0,

𝑑[𝑁𝑢𝑐]

𝑑 𝑟
= 0 (37) 

 

𝐴𝑡 𝑟 = 𝑅, [𝐴𝑐𝐷] = [𝐴𝑐𝐷]𝐵 , [𝑁𝑢𝑐] = [𝑁𝑢𝑐]𝐵   (38) 

 

The Eqs. (37) and (38) reduce to the following 

dimensionless form. 

 

𝑑2𝑢(𝑥) 

𝑑𝑥2
+
N

𝑥

𝑑𝑢(𝑥)

𝑑𝑥
=  
𝛾1 𝑢(𝑥)(1 + 𝛼1 𝑣(𝑥))

1 + 𝛼2 𝑣(𝑥)
 (39) 

 

𝑑2𝑣(𝑥) 

𝑑𝑥2
+
N

𝑥

𝑑𝑣(𝑥)

𝑑𝑥
=  
𝛾2 𝑢(𝑥)𝑣(𝑥)

1 + 𝛼2 𝑣(𝑥)
 (40) 

 

The boundary condition becomes: 

 

𝐴𝑡 𝑥 = 0,
𝑑 𝑢

𝑑 𝑥
= 0,

𝑑 𝑣

𝑑 𝑥
= 0 (41) 

 

𝐴𝑡 𝑥 = 1, 𝑢 = 1, 𝑣 = 1 (42) 

 

The approximate analytical expressions of acyl donor and 

nucleophile concentration are:  

 

𝑢(𝑥) =
𝑐𝑜𝑠ℎ(𝑚 𝑥)

𝑐𝑜𝑠ℎ(𝑚)
 (43) 

 

𝑣(𝑥) =
𝑐𝑜𝑠ℎ(𝑛 𝑥)

𝑐𝑜𝑠ℎ(𝑛)
 (44) 

 

where, 𝑚 and 𝑛: 

 

𝑚 = √
𝛾1(1 + 𝛼1 sech 𝑛)

(N + 1)(1 + 𝛼2sech𝑛)
  

𝑛 =
√
𝛾2 sech (√

𝛾1(1 + 𝛼1 sech 𝑛)
(N + 1) (1 + 𝛼2sech𝑛)

)

(N + 1)(1 + 𝛼2sech𝑛)
 

(45) 

 

When 𝑚 and 𝑛 are very small, 𝑠𝑒𝑐ℎ𝑛 = 1. Now 𝑚 and 𝑛 

become:  

 

𝑚 = √
𝛾1(1+𝛼1)

(N+1) (1+𝛼2)
 and 𝑛 = √

𝛾2

(N+1) (1+𝛼2)
 

 

The initial rate of consumption of each substrate is: 

 
𝑅𝑎𝑡𝑒𝐴
𝜇

=  (
𝑑 𝑢 

𝑑 𝑥
)
𝑥=1

 

= (√
𝛾1(1+𝛼1)

(N+1) (1+𝛼2)
)  𝑡𝑎𝑛ℎ (√

𝛾1(1+𝛼1)

(N+1) (1+𝛼2)
)   

(46) 

 
𝑅𝑎𝑡𝑒𝑁
𝜂

=  (
𝑑 𝑣 

𝑑 𝑥
)
𝑥=1

 

= (√
𝛾2

(N+1) (1+𝛼2)
 ) tanh (√

𝛾2

(N+1) (1+𝛼2)
 )   

(47) 

 

 
(a) 

 
(b) 

Note: Dotted line: analytical and solid line: numerical 

 

Figure 5. The effect of parameter N on concentrations 
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(a) 

 
(b) 

 

Figure 6. Effect of initial rate of substrate consumption 
RateA

μ
 and 

RateN

𝜂
 for various values of γ

1
, α1, γ2

 and α2 

 

The analytical expression of concentration of acyl donor 

and nucleophile 𝑢(𝑥) and  𝑣(𝑥)  with simulation result for 

various N in Figure 5. From the Figures, it is observed that the 

concentration is high in spherical electrode compared to flat 

and cylindrical electrode. 

Figure 6 depicts the analytical expression of acyl donor and 

nucleophile consumption rates and the simulation results for 

varying N. It is discovered that consumption is higher in 

spherical electrodes than in flat and cylindrical electrodes. 

 

 

5. CONCLUSIONS  

 

The mathematical modelling of immobilized enzyme 

systems is examined. The closed analytical expressions of 

concentration are obtained using the RJM approach. This 

method offers a straightforward solution for concentration in 

planar, cylindrical, and spherical electrodes. The impact of the 

parameters on concentration is also discussed. There is good 

agreement between the theoretical and numerical results. This 

theoretical model helps in the analysis and comprehension of 

the system's dynamics, as well as parameter optimization. This 

technique may be applied to solve nonlinear equations in 

microbial fuel cell and biosensor for real-time environmental 

monitoring. 
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NOMENCLATURE 
 

𝐸0 Amount of enzyme, mg ml−1 
[𝐴𝑐𝐷]𝐵 Bulk molar concentration of acyl donor, mM 
[𝑁𝑢𝑐]𝐵 Bulk molar concentration of nucleophile, mM 
[𝐴𝑐𝐷] Concentration of acyl donor, mM 
[𝑁𝑢𝑐] Concentration of nucleophile, mM 
[𝑃𝑒𝑝] Concentration of peptide product, mM 
[𝐻𝑦𝑝] Concentration of hydrolysis product, mM 
𝐷𝐴𝑒𝑓𝑓 Effective diffusion coefficient of acyl donor, cm2/s 

𝐷𝑁𝑒𝑓𝑓 Effective diffusion coefficient of nucleophile, 

cm2/s 
𝑘𝐻𝑦𝑑𝑟 Kinetic constant, μ mol min−1 mg C T−1 

𝑘𝑁 Kinetic constant, mM 
𝑘𝑆𝑦𝑛𝑡ℎ Kinetic constant, μ mol min−1 mg C T−1 

𝑟 Distance from the centre of the particle, cm 
𝑅 Particle radius, cm 
𝐿𝐺 Leaving group (ethanol or methanol) 
𝑢(𝑥) Dimensionless concentration of substrate 
𝑣(𝑥) Dimensionless concentration of substrate 
𝑥 Dimensionless distance 
γ

1
, γ

2
, α1, α2 Dimensionless parameters 

 

 

APPENDIX 
 

A basic concept of Rajendran-Joy method (RJM) 

 

Suppose that the nonlinear second-order differential 

equation with one independent variable x is given by: 
 

𝑝𝑠: 𝑓(𝑢𝑠, 𝑢𝑠
′ , 𝑢𝑠

′′) = 0; 𝑠 = 1,2, … , 𝑟 (A1) 
 

where, 𝑝𝑠  is a polynomial of 𝑢𝑠 = 𝑢𝑠(𝑥, 𝑎, 𝑏)  and its 

derivatives. In this case, a and b represent the parameters, and 

x is within the interval [L, U], which may be either finite or 

semi-infinite, subject to the following boundary constraints. 
 

{
𝐴𝑡 𝑥 = 𝐿, 𝑢𝑠(𝑥) = 𝑢𝑠𝐿0  𝑜𝑟 𝑢𝑠

′(𝑥) =  𝑢𝑠𝐿1
𝐴𝑡 𝑥 = 𝑈, 𝑢𝑠(𝑥) = 𝑢𝑠𝑈0  𝑜𝑟 𝑢𝑠

′ (𝑥) =  𝑢𝑠𝑈1  
   (A2) 

 

Consider that the solution to the nonlinear equations is an 

exponential function of the given form. 
 

𝑢𝑠(𝑥) = 𝑙𝑠 exp(𝑛𝑠𝑥
𝑛) + 𝑚𝑠exp (−𝑛𝑠𝑥

𝑛) (A3) 
 

The exponential function is chosen because of its 

applicability to both finite and semi-infinite boundary 

conditions. The value of n is either 1 or 2, depending upon the 

defined boundary constraints. The unknown coefficients 

𝑙𝑠, 𝑚𝑠 and 𝑛𝑠 are obtained by solving the nonlinear equations 

as follows: 

 

{

𝑢𝑠(𝐿) = 𝑙𝑠 exp(𝑛𝑠𝐿
𝑛) + 𝑚𝑠 exp(−𝑛𝑠𝐿

𝑛) = 𝑢𝑠𝐿0
𝑜𝑟

𝑢𝑠
′ (𝐿) = 𝑛 𝑙𝑠 exp(𝑛𝑠𝐿

𝑛) − 𝑛 𝑚𝑠 exp(−𝑛𝑠𝐿
𝑛) = 𝑢𝑠𝐿1

 (A4) 

 

and 

 

{

𝑢𝑠(𝑈) = 𝑙𝑠 exp(𝑛𝑠𝑈
𝑛) + 𝑚𝑠 exp(−𝑛𝑠𝑈

𝑛) = 𝑢𝑠𝑈0
𝑜𝑟

𝑢𝑠
′(𝑈) = 𝑛 𝑙𝑠 exp(𝑛𝑠𝑈

𝑛) − 𝑛 𝑚𝑠 exp(−𝑛𝑠𝑈
𝑛) = 𝑢𝑠𝑈1

 (A5) 

 

The following algebraic nonlinear equations are obtained by 

substituting Eq.(A3) into Eq. (A1). 

 

{
 
 
 
 

 
 
 
 
𝑝1 = 𝑓(𝑢1(𝑥, 𝑙𝑠 , 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

𝑢1
′ (𝑥, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

𝑢1
′′(𝑥, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏)) = 0

.

.

.
𝑝𝑟 = 𝑓(𝑢𝑟(𝑥, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

 𝑢𝑟
′ (𝑥, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

 𝑢𝑟
′′(𝑥, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏)) = 0

 (A6) 

 

The above equation is valid when 𝑥 ∈ [𝐿, 𝑈]. Now we take 

any value of 𝑥 in this interval.  

At 𝑥 = 𝛽, where 𝐿 ≤ 𝛽 ≤ 𝑈, from the above Eq. (A6), we 

can obtain the following linear or nonlinear algebraic 

equations. 

 

{
 
 
 
 

 
 
 
 
𝑝1 = 𝑓(𝑢1(𝛽, 𝑙𝑠 , 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

𝑢1
′ (𝛽, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

 𝑢1
′′(𝛽, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏))   = 0

.

.

.
𝑝𝑟 = 𝑓(𝑢𝑟(𝛽, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

𝑢𝑟
′ (𝛽, 𝑙𝑠 , 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏),

 𝑢𝑟
′′(𝛽, 𝑙𝑠, 𝑚𝑠, 𝑛𝑠, 𝑛, 𝑎, 𝑏))   = 0

 (A7) 

 

Now the differential equation is transformed into algebraic 

nonlinear equation. By solving the algebraic nonlinear Eqs. 

(A4), (A5) and (A7) using wolframealpha.com46or Ying 

Buzu or regular false algorithms 47, we can obtain the 

unknown parameter  𝑙𝑠 , 𝑚𝑠 and 𝑛𝑠  for the given values of 

parameters a and b. While the Taylor series, Adomian 

decomposition, Akbari-Ganji, and homotopy analysis 

techniques are limited to finite domains, the Rajendran-Joy 

methodology may be used in both finite and semi-infinite 

domains. For some strong nonlinear problems with complex 

and mixed boundary conditions, this RJM cannot be applied. 
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