
Integration of Python in a Model to Evaluate the Mechanical Behavior of Reactive Soils

Through Static Triaxial Tests Under Geomechanical Factors

Juan Sebastian Bonilla-Uribe* , Luis M. Moran Yañez , Yvan Huaricallo , Jorge L. Capuñay-Sosa ,

Nahum O. Cubas Parimango , Johnny H. Ccatamayo Barrios , Leyla F. Guerrero Mendoza

Faculty of Geological, Mining, Metallurgical and Geographic Engineering, Universidad Nacional Mayor de San Marcos,

Lima 07011, Peru

Corresponding Author Email: juan.bonilla2@unmsm.edu.pe

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120420 ABSTRACT

Received: 7 February 2025

Revised: 28 March 2025

Accepted: 2 April 2025

Available online: 30 April 2025

This study aims to develop a predictive model based on Python to assess the mechanical

behavior of "reactive" soils through static triaxial tests, considering key geomechanical

factors. The tests were conducted on soil samples taken from depths of 1.5 to 2.0 meters

(shallow) and from 16.5 to 18.0 meters (deep). The data obtained, which include pore

pressure records, displacements, and deformation, were processed and analyzed using

Python libraries such as NumPy and Pandas. The model is based on linear regressions

and statistical techniques to analyze the relationships between variables such as soil

density, cohesion, and the friction angle. The results showed that the model was able to

simulate the soil behavior under different static loading conditions with high accuracy,

considering confinement pressure and soil density. The analysis indicated that pore

pressure has a significant impact on the shear strength of deep clays, with a 25%

decrease in strength under saturated conditions. The integration of Python allowed for

the automation of complex calculations and optimization of the analysis, providing an

effective tool for conducting rapid and precise assessments in geotechnical projects.

This study focuses exclusively on static conditions, leaving seismic conditions for

future research.

Keywords:

soil mechanical analysis, static triaxial tests,

Python, predictive model, physical factors,

geotechnical applications, experimental

methodology

1. INTRODUCTION

Soil behavior is a critical aspect in civil and geotechnical

engineering [1], as it determines the stability and safety of

structures built on or within it [2, 3]. The physical and

mechanical properties of the soil directly influence the

performance of buildings, bridges, roads, and other

infrastructures [4]. Understanding how soils respond to

different loading conditions is crucial for anticipating failures

and mitigating risks associated with landslides, settlements, or

other geotechnical phenomena [5]. The diversity of soils in

different regions of the world represents a significant

challenge for geotechnical engineers [6]. These vary from

highly cohesive clays to loose sands, each with unique

characteristics that affect their behavior under stress [7-9]. The

stability of a structure depends on properties such as density,

cohesion, friction angle, and bearing capacity [9, 10], which

not only differ between locations but also change over time

due to factors such as moisture, temperature, or earthquakes

[10]. Therefore, analyzing the soil in detail for each project is

vital to design structures capable of resisting local conditions,

ensuring their integrity, and avoiding stability issues [11, 12].

Soil mechanics, as a key subdiscipline of geotechnical

engineering, focuses on studying the physical properties and

mechanical behavior of the soil, critical aspects for structural

safety [13, 14]. Among laboratory tests, the triaxial test stands

out for its ability to replicate real stress conditions. This

method, especially in its static version, allows for the accurate

assessment of shear strength, deformation, and failure

mechanisms of the soil under controlled stress paths. Its

robustness makes it an indispensable tool for obtaining data

that guides geotechnical design, simulating realistic scenarios,

and measuring essential parameters with high reliability,

positioning it as a cornerstone in the research and practice of

this discipline.

Given the importance of triaxial data, geotechnics has

moved toward predictive models that integrate this

information to forecast soil behavior under various conditions.

These models are essential as they simulate responses to loads

and environmental factors, optimizing safe and efficient

designs. By combining experimental data with advanced

techniques, they enable the evaluation of multiple scenarios

without additional tests, saving time and resources. Moreover,

their ability to address soil variability and complex phenomena

improves accuracy, being key to mitigating risks in extreme

events such as earthquakes or floods, and ensuring the

durability of structures [15].

In this context, the integration of Python into soil mechanics

marks a significant advancement for geotechnical analysis and

modeling. With libraries like NumPy, Pandas, and Matplotlib,

Python efficiently processes large volumes of data, automates

complex calculations, and presents results clearly. It also

Mathematical Modelling of Engineering Problems
Vol. 12, No. 4, April, 2025, pp. 1285-1304

Journal homepage: http://iieta.org/journals/mmep

1285

https://orcid.org/0009-0007-4488-517X
https://orcid.org/0000-0003-0695-8829
https://orcid.org/0000-0002-7641-0730
https://orcid.org/0000-0002-5944-7662
https://orcid.org/0009-0001-9996-2044
https://orcid.org/0000-0002-5798-4851
https://orcid.org/0009-0009-9135-2805
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120420&domain=pdf

drives predictive models that simulate soil behavior under

different loads [16, 17], transforming geotechnical studies by

providing greater precision and reliability in infrastructure

design. Its flexibility and accessibility make it ideal for

engineers seeking advanced tools for their projects.

This research develops and validates a Python-based

predictive model to assess soil behavior under physical

conditions, using data from static triaxial tests. The goal is to

increase the accuracy and reliability of mechanical property

characterization, providing an advanced tool for safe and

efficient designs. Furthermore, it aims to overcome limitations

of traditional approaches by considering the inherent

variability of the soil, with the potential to impact geotechnical

practice in seismically active areas or complex soils.

For this study, a comprehensive review of prior works on

soil mechanics and geotechnics was conducted. Notably, a

study [18] investigated the strength and dilatancy of sand

stabilized with colloidal-silica gel, revealing enhanced shear

strength and reduced dilation post-stabilization. The findings

underscore the importance of nonlinear stress-dilatancy

relationships in modeling soil behavior. Similarly, another

study [19] examined tunneling-induced ground movements,

highlighting the abrupt volume loss in collapsible soils under

load, which is critical for excavation stability. These studies

emphasize the challenges of reactive soils, such as expansive

and collapsible types, whose mechanical responses to

environmental factors like moisture, pressure, and load are

complex [20]. Expansive soils exhibit swelling or contraction

due to moisture fluctuations, leading to differential settlements

or foundation failures, particularly in stabilized sands [20].

The heterogeneity and nonlinear properties of these soils, such

as variable cohesion and friction angles, complicate traditional

analyses. Collapsible soils, which experience sudden volume

reduction under load, pose significant risks in tunneling

projects.

Static triaxial tests are crucial for characterizing reactive

soils, providing data on shear strength, dilation, and plastic

deformation under controlled conditions. These tests also

enable precise measurement of soil stiffness, particularly in

unsaturated silty clays, which is essential for safe geotechnical

designs. For instance, studies on soil-structure interactions in

sandy soils highlight the importance of triaxial data for

modeling tunneling effects [21]. However, manual analysis of

triaxial data is time-consuming and error-prone, especially for

highly variable reactive soils like saturated or unsaturated

clays. This challenge is amplified in seismic zones, where

numerical analyses of soil reinforcement are critical [22].

To address these limitations, predictive models for soft

soils, incorporating simple parameters like cohesion and

friction angle, have been developed to enhance design

accuracy [23]. Python-based automation, utilizing libraries

such as NumPy, Pandas, and Matplotlib, further streamlines

triaxial data analysis [24]. Automated stress path adjustments

improve the measurement of soil stiffness, supporting robust

geotechnical designs. Python scripts can also precisely

determine geotechnical properties and visualize results

interactively, as demonstrated in studies on Nasiriyah soil

[25]. This approach enhances efficiency and accuracy,

revolutionizing the design of structures on complex soils.

Building on these advancements, the proposed model employs

Python to analyze static triaxial data for reactive soils,

incorporating nonlinear properties like dilation and failure

modes in clays and unsaturated soils. It draws on

methodologies from prior studies to automate calculations and

enable dynamic adjustments for projects in geotechnically

challenging or seismic areas [25].

This paper presents the development and validation of a

predictive model for reactive soils, detailing Python-based

data processing and algorithms for optimizing stress paths.

The model is validated against experimental data and

compared with established frameworks, demonstrating

enhanced accuracy and efficiency. The study explores

implications for geotechnical engineering and proposes future

applications in nonlinear soil-structure interactions [25].

2. MATERIALS AND METHODS

The methodology of this study was organized into a series

of key stages, carefully designed to ensure maximum accuracy

and reliability in the obtained results. The research process

began with conducting static triaxial tests in a controlled

laboratory environment, which allowed for the collection of

critical data on soil behavior under various loading conditions.

Subsequently, a thorough and rigorous analysis of this data

was carried out using Python, a powerful tool that facilitated

the development of a highly robust predictive model, as shown

in Figure 1.

Figure 1. Model process

1286

The model presented in Figure 1 not only integrates the

experimental results but also allows for the simulation of

complex scenarios, providing a more comprehensive and

accurate assessment of soil behavior in different geotechnical

contexts.

2.1 Soil sample preparation

The first stage of this study involved the collection and

preparation of soil samples, which were obtained from

different depths of the ground to ensure adequate

representativeness of the geotechnical layers of the subsurface.

Samples were extracted from two types of strata: shallow

samples, taken at depths ranging from 1.0 to 2.0 meters, and

deep samples, obtained from depths between 16.50 and 18.0

meters. To ensure the geotechnical representativeness of the

soils, samples from distinct regions were included, with details

described below:

Surface Sample: Silty sand with high plasticity, dark

orange-brown in color, extracted from a shallow depth of 1.0

to 2.0 meters, also obtained through rotary drilling to ensure

the collection of undisturbed samples.

Deep Sample: Clay with the presence of light brown sand,

extracted from a depth of 16.50 to 18.0 meters, using the rotary

drilling method to preserve sample integrity.

To ensure the quality of the experimental results, the

samples were subjected to homogenization and conditioning

processes to guarantee uniformity in terms of moisture content

and density, as seen in Figure 2.

These procedures were carried out in accordance with the

guidelines established by ASTM D1587-00 for undisturbed

sample extraction and ASTM D698-00 for compaction tests.

This rigorous preparation process is crucial, as any

variability in the initial properties of the samples could

significantly influence the results of the tests, affecting the

interpretation of the geotechnical data. During this preparation

phase, three samples were evaluated for each depth section,

with a total of 17,200 data points recorded for the full test,

allowing for a precise and representative assessment of the soil

behavior under the specific ground conditions.

Figure 2. Standardized sample preparation

2.2 Static triaxial tests

Static triaxial tests, conducted under carefully controlled

conditions, are essential for determining the mechanical

properties of the soil, such as its shear strength, behavior under

various confinement pressures, and deformation capacity. To

conduct these tests, a triaxial cell equipped with high-precision

sensors was used, capable of measuring axial and radial

stresses, as well as pore pressures. The tests followed the

procedures outlined in the ASTM D4767-11 standard, which

specifies the methods for performing consolidated and drained

triaxial tests on cohesive soils. Figure 3 shows the samples

after they had been saturated, consolidated, and failed during

the triaxial test.

Figure 3. Post-failure specimens after triaxial testing

The samples were subjected to variable confinement

pressures, simulating the actual loading conditions found in

the field, and controlled drainage conditions were

implemented to ensure that the shear strength parameters were

measured with the highest accuracy. The rigorous control of

experimental conditions allowed for reliable results that reflect

the soil's behavior under different loading scenarios, which is

essential for the proper design of geotechnical structures such

as foundations, slopes, and retaining walls. Furthermore, these

tests provided valuable data to feed the predictive model

developed in the later stages of the study.

2.3 Python-based data analysis

Once the data obtained from the triaxial tests were collected,

they were analyzed using Python, a programming language

widely used in engineering due to its flexibility, ability to

handle large volumes of data, and its extensive library of

specialized tools.

First, the NumPy and Pandas libraries were used for data

manipulation and processing, allowing for statistical

calculations as well as the efficient transformation and

organization of data sets. It is worth noting that, since triaxial

tests include multiple stages (saturation, consolidation, and

failure), several .log files are generated and organized for each

of these stages. The number of .log files may vary depending

on the sample's moisture content; for example, if the sample

has high moisture, the saturation process may require

fewer .log files compared to low-moisture samples, as seen in

the different strata of the samples.

The data cleaning and normalization process was crucial at

this stage, as it allowed for the elimination of any potential

anomalies or errors in the data that could distort the analysis

results. Through the use of advanced exploratory data analysis

techniques, outliers were identified and corrected, ensuring the

conditions for obtaining representative data of the soil's

1287

properties. This phase is essential to ensure that the results are

as close as possible to the actual ground conditions, as

illustrated in the flowchart of the saturation data cleaning

process in triaxial tests (Figure 4).

Figure 4. Workflow for automated saturation data cleaning in triaxial testing

Figure 5. Consolidation data processing workflow for triaxial testing

1288

Figure 6. Failure data processing workflow for triaxial testing

The saturation analysis was carried out with the automation

of complex calculations, allowing for the determination of

critical geotechnical parameters. These data were processed

and filtered according to the quality and quantity of the .log

files generated during the saturation stage. As shown in Figure

4, this process ensures that only representative data are

considered for the analysis of soil strength.

Once these calculations were performed, the procedures for

consolidation and failure were also automated, facilitating the

analysis of shear strength and deformability under different

loading conditions. In the consolidation phase, confinement

and back pressure were adjusted according to the results

obtained during saturation, and data on volume change and

displacement were recorded, as shown Figure 5.

During the failure phase, deformation and load data were

recorded under a constant deformation rate, with particular

attention to the values of chamber pressure and back pressure.

As shown in Figure 6 the failure data were processed, and any

anomalies in the results were corrected before the final

interpretation.

The automation of the analysis allowed for greater accuracy

and speed in calculating geotechnical parameters such as shear

strength, resulting in a more efficient and reliable

interpretation of the data obtained during the different phases

of the triaxial test.

2.4 Design, simulation, and experimental validation of a

predictive model

The predictive model developed in this study is based on

advanced machine learning and regression techniques, which

allowed for the identification of patterns and complex

relationships between key variables studied, such as soil

density, cohesion, and friction angle. Multiple regression

algorithms were used to analyze the nonlinear relationships

between these variables, providing a deeper understanding of

the soil's mechanical behavior.

This study focuses on evaluating the influence of

geomechanical factors, such as confinement pressure and soil

density, on the mechanical behavior of the soil, excluding

seismic conditions due to the static nature of the triaxial tests.

Models based on exploratory data analysis and regression

algorithms were used to obtain the predictions, without

employing complex cross-validation techniques like K-fold,

which are considered more suitable for other types of models,

such as those used in more advanced supervised learning.

To ensure the reliability of the predictive model, internal

validation methods were used, such as comparing the results

obtained with additional experimental data that were not used

in the training phase. This process allowed for validating the

model's ability to generalize to new conditions, confirming

that the generated predictions are consistent with the

experimental data and actual geotechnical conditions.

While the K-fold cross-validation method was not

implemented in this study, it is an approach that could be

considered in future research related to more complex

predictive models, particularly in scenarios where further

optimization of the model's accuracy is sought by validating

different data subsets.

In the simulation phase, tests were carried out under

different loading scenarios, using parameters obtained from

the triaxial tests. These simulations included variations in

confinement pressure and soil density, replicating real

geotechnical conditions to evaluate the soil's behavior under

different static loading conditions. The results of the

simulations were validated by comparing the model's

predictions with additional experimental data not used in the

training phase. This comparison allowed for evaluating the

model's ability to generalize and its applicability in real

situations, showing a high correlation between the predictions

and experimental data.

Model validation was crucial to confirm its accuracy and

robustness. The success of the model during validation ensures

its applicability in geotechnical projects, providing engineers

with a valuable tool for planning and designing infrastructure,

especially in areas with complex soils and variable loading

1289

conditions. This predictive model not only optimizes decision-

making in geotechnical engineering but also offers greater

reliability in risk assessment and the design of infrastructure

resilient to seismic events.

This study laid the foundation for optimizing predictive

models in the field of geotechnical engineering, and its

implementation will be a key step in future research, where the

use of techniques like K-fold cross-validation could be

explored for a more rigorous evaluation of the model. Below,

the scripts that support this study are presented.

Figure 7. Python implementation in the model to analyze the mechanical behavior of reactive soils

Saturation Analysis

Appendix A: The Python script used to calculate

Skempton's B during the saturation phase is available in the

final appendix of the article. This script processes the .rar files,

extracts the relevant data, and calculates the Skempton’s B

parameter. Details on its functionality can be found in the

appendix.

Consolidation Analysis

Appendix B: The Python script used to calculate

consolidation is available in the final appendix of the article.

This script processes the data from the .log files and calculates

additional columns such as the square root of time, height

change, and other parameters related to soil consolidation.

Details on its functionality can be found in the appendix.

Failure Analysis

Appendix C: The Python script used to calculate stresses

and other parameters during the failure stage is available in the

final appendix of the article. This script processes the data

from the .log files and calculates parameters such as deviatoric

stress, unit strains, and principal stresses, which are crucial for

analyzing the soil's behavior during the failure phase. Details

on its functionality can be found in Appendix C.

Elasticity Modulus Analysis

Appendix D: The Python script used to calculate the

elasticity modulus is available in the final appendix of the

article. This script processes the data from the .log files,

calculates the elasticity modulus in the elastic region of the σ₁

vs. Unit Strain curve, and visualizes the interactive graph.

Details on its functionality can be found in Appendix D.

Creep and Elasticity Analysis (MOHR MODEL)

Appendix E: The Python script used to generate the Mohr-

Coulomb yield surface is available in the final appendix of the

article. This script visualizes the yield surface based on the

Mohr-Coulomb model, using the internal friction angle,

cohesion, and stress range to show how the yield surface varies

under different conditions. Details on its functionality can be

found in Appendix E.

The following figure presents a diagram developed in

Python to evaluate the mechanical behavior of "reactive" soils.

This diagram is fundamental as it illustrates the predictive

model that integrates various geotechnical and physical

parameters for simulating soil behavior under static

conditions.

Figure 7 provides a clear visual representation of how

experimental data from the triaxial tests are organized and

processed using Python, showing the interactions between key

geotechnical variables such as cohesion, density, and other

relevant parameters. Additionally, it should be emphasized

1290

that this diagram not only validates the methodology used but

also illustrates the potential of computational tools, such as

Python, to model complex scenarios that are common in

geotechnical engineering, enhancing the accuracy and

reliability of the analysis.

3. RESULTS

3.1 Analysis of results

The analysis of the results obtained from the static triaxial

tests and the predictive model developed with Python provides

a detailed insight into the mechanical behavior of the soil

under various conditions. Two types of soil samples, shallow

and deep, were evaluated to study their behavior under

different loading conditions. The samples were collected from

specific depths, and the key findings are presented below,

organized according to the main conditions of shallow and

deep soil.

3.2 Saturation test results

The saturation test evaluates the soil's ability to reach a fully

saturated state under controlled conditions, which is crucial for

understanding soil behavior in geotechnical applications, as

shown in Figure 8. The variables analyzed include Skempton's

B coefficient, chamber and pore pressures, and displacements,

as shown in Table 1.

According to the results presented in Table 1, two types of

soil samples were analyzed:

– Shallow Sample (1.50-2.00 m): Silty sand with low

cohesion and high permeability. Saturation was reached

with relatively low chamber pressure, showing greater

ease of saturation.

– Deep Sample (16.50-18.00 m): Clay with low plasticity,

higher cohesion, and lower permeability, requiring higher

chamber pressures to reach saturation.

Analysis of Results:

Skempton's B Coefficient: The values close to 1 in both

samples suggest that saturation was effective. The slight

decrease in the deep sample (0.95) may be associated with its

higher cohesion.

Displacements: In the shallow sample, the initial negative

displacements indicate a slight contraction, while the

displacements in the deep sample are higher, reflecting a

plastic behavior typical of clayey soils.

(a)

(b)

Figure 8. Full saturation achieved in both surface and deep

soil samples

Table 1. Experimental results of soil saturation tests

 Cell Pressure (kPa) Pore Pressure (kPa) B Skempton Initial Displacement (mm) Final Displacement (mm)

 P1 40.00 63.5 0.99 7.767 -0.531

SURFACE
Sample 1

1.50-2.00m
P2 39.90 61.8 0.97 3.345 2.276

 P3 38.20 60.8 0.99 3.933 2.515

 P1 241.80 230.80 0.95 6.425 8.2

DEEP
Sample 2

16.50-18.00m
P2 196.30 185.70 0.95 9.325 11.467

 P3 197.10 189.40 0.95 8.465 9.387

Table 2. Experimental results of the consolidation process

 Height Change (mm) Pore Pressure (kPa) Cell Pressure (kPa) Back Pressure (kPa) σ₃ (kPa)

SURFACE
Sample 1

1.50 - 2.00m

P1 7.25 -22.1 80 50 30

P2 2.19 -55.9 100 39.9 60.1

P3 2.08 -111.4 180 60 120

DEEP
Sample 2

16.50-18.00m

P1 5.54 -47.6 300 200 100

P2 8.24 -97.7 399.9 200 199.9

P3 10.05 -113.5 430 30 400

3.3 Consolidation test results

Consolidation is a key process for assessing soil stability

under sustained loads. The results obtained in Table 2 allow

for the comparison of the mechanical behavior of shallow and

deep soils in terms of height changes, pore pressure, and

confinement under different loading conditions.

Analysis of Results:

Shallow Sample (1.50-2.00 m): At low confinement

pressures, a high initial deformation is observed. As the

1291

confinement pressure increases, the deformation decreases

significantly, reflecting soil stabilization.

Deep Sample (16.50-18.00 m): A more plastic behavior

and slower consolidation are observed, which is typical of

clayey soils. The consolidation process is more prolonged due

to the low permeability of the clay.

The curves in Figure 9 indicate a typical consolidation

behavior, where most of the compression occurs in the early

moments after the load is applied. The soil shows a rapid

reduction in both volume and height initially, which is

characteristic of low cohesion soils (such as silty sands, SM)

when subjected to consolidation. As time progresses, the

stabilization observed in the graphs indicates that primary

consolidation is nearing completion, and any further change

would be part of secondary consolidation, which is much

slower.

Figure 9. Graphical interpretation of the consolidation stage for surface sample No. 1

Figure 10. Graphical interpretation of the consolidation stage for surface sample No. 2

1292

In this shallow SM soil sample from Figure 10,

consolidation is rapid in the first few minutes, with significant

compression and expulsion of water initially. The subsequent

stabilization, characteristic of soils with high permeability and

low cohesion, indicates that primary consolidation

predominates, while secondary consolidation has a minimal

impact.

This Figure 11 confirms the typical behavior of an SM soil

under consolidation, where rapid deformation and water

expulsion initially stabilize quickly. Primary consolidation

dominates, with a secondary phase having minimal impact.

In this Figure 12 with a CL sample, consolidation is more

prolonged due to the low permeability and higher cohesion,

which causes a slower consolidation process. The curves

reflect an extended primary consolidation, followed by

gradual stabilization, typical of clayey soils.

Figure 11. Graphical interpretation of the consolidation stage for surface sample No. 3

Figure 12. Graphical interpretation of the consolidation phase for deep sample No. 1

1293

Figure 13. Graphical interpretation of the consolidation phase for deep sample No. 2

Figure 14. Graphical interpretation of the consolidation phase for deep sample No. 3

Figure 13 shows prolonged consolidation in CL soils, with

a slow and continuous reduction in volume and height.

Although primary consolidation continues to dominate, its

duration is considerably longer than in less cohesive soils such

as SM.

Figure 14 confirms prolonged consolidation in CL soils,

with a controlled reduction in volume and height due to the

soil's cohesion and low permeability. The curves reflect an

extended primary consolidation process, with slow

stabilization, typical of clayey soils.

4. FAILURE ENVELOPE

The failure envelope evaluates the soil behavior under

increasing stresses until failure, using criteria such as Mohr-

1294

Coulomb to describe its resistance.

Analysis of Results from Table 3:

Shallow Sample (1.50-2.00 m): The progressive increases

in confinement pressure (σ₃) and major principal stress (σ₁)

show a typical response of granular soil under increasing

stresses. The differences between total and effective stresses

are small, indicating that pore pressure has a minor impact on

the soil's strength.

Deep Sample (16.50-18.00 m): The differences between

total and effective stresses are more noticeable, reflecting the

significant influence of pore pressure. In clayey soils like this

sample, excess pore pressure reduces strength, making the

maximum effective shear stress significantly lower than the

total.

Analysis of Results from Table 4:

Shallow Sample (1.50-2.00 m): The strength is dominated

by internal friction, with low total cohesion. The friction angle

reflects the frictional behavior of the soil.

Deep Sample (16.50-18.00 m): The effective cohesion is

higher in deep soils, suggesting that shear strength is more

influenced by cohesion and pore pressure than in shallow soils.

Table 3. Shear failure test results

 𝝈𝑫 (kPa) 𝝈𝟏 (kPa) 𝝈𝟑 (kPa) 𝝈′𝟏 (kPa) 𝝈′𝟑 (kPa)
𝝉𝐦𝐚𝐱

(kPa)

𝝉′𝐦𝐚𝐱

(kPa)
(𝝈𝟏+𝝈𝟑)/2 (kPa) (𝝈′𝟏+𝝈′𝟑)/2 (kPa)

 P1 106.38 136.38 30.00 148.88 42.50 53.19 53.19 83.19 95.69

SURFACE
Sample 1

1.50-2.00 m
P2 274.92 335.02 60.10 360.82 85.90 137.46 137.46 197.56 223.36

 P3 283.77 403.77 120.00 379.57 95.80 141.88 141.88 261.88 237.68

 P1 39.61 139.61 100.00 93.71 54.10 19.81 19.80 119.80 73.90

DEEP

Sample 2

16.50-18.00

m

P2 56.09 255.99 199.90 170.49 114.40 28.04 28.04 227.94 142.44

 P3 78.03 478.03 400.00 379.13 301.10 39.01 39.04 439.02 340.12

Table 4. Final parameters from the triaxial test

Mohr-Coulomb Parameters

Depth Sample Condition Friction Angle (°) Cohesion (kPa)

SURFACE
Sample 1

1.50-2.00 m

Total 30.96 10.2

Effective 34.99 0

DEEP
Sample 2

16.50-18.00 m

Total 5.71 6.8

Effective 5.71 13.9

Figure 15. Mohr ś circle and dynamic failure envelope (total)-superficial

Figure 16. Mohr ś circle and dynamic failure envelope (effective)-superficial

1295

Figure 17. Mohr ś circle and dynamic failure envelope (total)-profound

Figure 18. Mohr ś circle and dynamic failure envelope (effective)-profound

Figure 19. Stress path-Cambridge model- superficial

In granular soils, such as SM, total cohesion is low, which

is related to their high permeability. Although total cohesion

may appear due to factors such as compaction, its value

remains relatively small. Figure 15 shows the soil's response

under total stresses, without accounting for the effects of pore

pressure.

In this Figure 16, the effects of pore pressure are removed,

showing the effective stresses. The effective cohesion is

reduced to zero, and the effective friction angle is higher,

reflecting the true bearing capacity of the soil, dominated by

friction.

For clayey soils such as CL, total cohesion is low due to

pore pressure. Figure 17 shows the total stresses, which

include pore pressure, reducing the overall strength of the soil.

The analysis of effective stresses reveals that the effective

cohesion is considerably higher than the total cohesion, which

reflects in Figure 18 the stabilizing effect of the soil structure

under conditions of high saturation.

As observed in Figure 19, the behavior of the soil under

conditions of total and effective stresses reflects a

characteristic behavior of granular soils, where friction is the

primary factor influencing shear strength.

Figure 20 illustrates the behavior of both total and effective

stresses using the MIT model. Both models exhibit linear and

similar trajectories, which reinforces the importance of friction

in shear strength.

Based on the interpretation of the graphs, the results of the

two stress trajectories in the two soil types for the surface

stratum can be concluded, as presented in Table 5.

Figure 20. Stress path + MIT model

1296

Table 5. Stress-path analysis results (surface sample)

MIT

 α a (kPa)

SURFACE

SM

Muestra 1

1.50-2.00m

Total 38.66 0

Effective 34.99 0

CAMBRIDGE

 M Intercept (kPa)

SURFACE

SM

Muestra 1

1.50-2.00m

Total 1.3 0

Effective 1.2 0

Cohesion: In both models (Cambridge and MIT), cohesion

is zero (0kPa), which is characteristic of granular soils such as

SM.

Friction Angle: It reflects a purely frictional behavior,

typical of granular soils. The values of 𝑀 and 𝛼 are suitable

for sandy-silty soils, where strength depends entirely on

interparticle friction.

Cambridge Model vs. MIT Model: Both models exhibit

linear behavior with a slope governed by friction, showing no

significant cohesion effects.

In Figure 21, the stress path under the MIT model is shown,

which helps to visualize the shape of the stress trajectory under

conditions of high confining pressure.

Similarly, Figure 22 illustrates the stress trajectory under

the Cambridge model, highlighting the importance of cohesion

in soils with low friction.

Figure 21. Stress path-MIT model

Figure 22. Stress path-Cambridge model

Table 6. Stress-path analysis results (deep sample)

MIT

 α a (kPa)

DEEP

CL

Sample 2

16.50-18.00 m

Total 5.71 9.2

Effective 5.71 15.5

CAMBRIDGE

 M Y-intercept (kPa)

DEEP

CL

Sample 2

16.50-18.00 m

Total 0.1 29.6

Effective 0.1 35.2

Based on the interpretation of the graphs, the results of the

two stress trajectories in the two soil types for the deep stratum

can be concluded, as presented in Table 6.

Significant Cohesion: In both the MIT and Cambridge

models, the effective cohesion is considerable (15.5 kPa and

35.2 kPa, respectively), which is common in saturated clayey

soils. This cohesion is the primary factor controlling the soil’s

shear strength.

Low Friction Angle: The angle 𝛼 and the parameter 𝑀 are

low, indicating minimal interparticle friction. In soils with

high moisture content (115%), effective friction decreases

significantly, leaving cohesion as the dominant factor.

Linear Trajectories: Both graphs display smooth or nearly

horizontal trajectories, suggesting that the soil exhibits

cohesive behavior with little additional resistance derived

from friction.

Elastic Analysis

Based on the results obtained at the failure stage of the

triaxial test, a linear behavior in the elastic modulus is

observed for both evaluated soil types: the surface silty sand

and the low-plasticity clay at depth, under varying

confinement levels. This linear behavior allows for a

preliminary assessment of each soil’s stiffness response under

applied loading conditions, which is relevant for future

geotechnical applications.

However, it is important to note that both soils exhibit

specific limitations that must be considered for their use in

geotechnical engineering:

Surface Silty Sand (Collapsible):

The silty sand exhibits high variability in its elastic

modulus, with a significant increase in values as confining

pressure rises. This indicates that the soil has an adequate

hardening capacity under confined loading but also reveals its

high sensitivity to factors such as density and moisture. This

variability could lead to differential settlements if not properly

controlled during construction.

For shallow geotechnical applications, the silty sand may be

suitable provided that efficient compaction methods and strict

quality controls are implemented. This approach can minimize

variability in its behavior and ensure consistent, predictable

performance throughout the structure’s service life.

Low-Plasticity Clay at Depth (Expansive):

In contrast, the deep soil, characterized by low-plasticity

clay, exhibits a significantly lower elastic modulus, implying

limited stiffness even under high confinement levels. This

property is typical of clays and suggests that the soil is prone

1297

to long-term plastic deformations, particularly in deep

foundation projects or structures subjected to permanent loads.

Due to its compressible behavior, the use of this clay in

structural applications requires mitigation measures, such as

deep foundations (e.g., piles) or soil improvement techniques.

These interventions are essential to reduce the risk of

significant settlements that could compromise the stability of

structures relying on this soil type.

Limitations of the Predictive Model and Considerations

for Its Applicability

The predictive model developed in this study demonstrates

a notable ability to simulate the mechanical behavior of soils

under static conditions, but it presents limitations that must be

considered for its proper interpretation and application:

Variability in Soil Properties: While the model captures

essential geotechnical characteristics of “reactive” soils such

as cohesion, density, and friction angle it relies on a

representative dataset that does not encompass the full range

of possible heterogeneity within a stratum. Factors such as

irregular grain size distribution, lateral stratification, or local

variations in mineralogical composition are only partially

addressed. This simplification may reduce its accuracy in soils

with high spatial or textural variability, limiting its reliability

in more complex geotechnical scenarios. To address this,

future developments could incorporate stochastic modeling

techniques or expand the dataset with samples reflecting

greater diversity.

Prediction Under Extreme Conditions: The model

performs robustly under controlled static conditions, but its

effectiveness diminishes when simulating highly dynamic,

complex scenarios, such as full saturation, extreme

fluctuations in confining pressure, or intense seismic loading.

Phenomena such as seismic wave propagation, liquefaction, or

advanced nonlinear soil behavior under these conditions are

not explicitly addressed, as the static focus of the triaxial test

limits their representation. Enhancing its applicability would

require integrating data from dynamic tests (e.g., cyclic triaxial

tests) and refining the algorithms to model transient responses,

which could be explored in future research.

Representativeness of the Dataset: The model was

developed and validated using a finite set of samples from

surface and deep soils, restricting its generalization to other

soil types or geotechnical contexts not represented in the

study. For instance, soils with high organic content, volcanic

deposits, or extreme hydrogeological conditions may require

specific adjustments that the current model does not account

for. This reliance on the initial dataset suggests that its

practical applicability may be limited outside the studied

range. It is recommended to expand the experimental base

with a broader variety of soils and conditions, as well as to

conduct cross-validations at real sites to assess its robustness

and adaptability.

5. CONCLUSIONS

• The integration of Python into the analysis of triaxial test

data has enabled a more accurate and efficient evaluation

of the mechanical properties of soils. The automation of

complex calculations and the use of advanced analytical

techniques, such as multiple regression, have significantly

improved the reliability and speed of the process. This has

resulted in more consistent and reproducible outcomes

compared to traditional methods, facilitating decision-

making in geotechnical projects.

• The predictive model developed in Python has

demonstrated a high capacity to simulate soil behavior

under various static loading conditions. Although seismic

conditions were mentioned in the model’s introduction,

the current focus does not include seismic analysis. This

model has been validated by comparing predictions with

experimental data obtained from triaxial tests. The

simulations have shown good correlation with

experimental results, ensuring its applicability in the

planning and design of geotechnical infrastructure.

• The results obtained from deep samples indicate that pore

pressure has a significant impact on the shear strength of

clayey soils. Under high saturation conditions, effective

cohesion is significantly greater than total cohesion,

underscoring the importance of controlling pore pressure

in the design of structures on cohesive soils, particularly

clayey soils with high moisture content.

• The predictive model developed has proven effective in

simulating soil behavior under static conditions,

accounting for factors such as confining pressure and

variability in soil properties. However, the modeling of

seismic conditions and their integration with confining

pressure parameters will be addressed in future research,

as they are beyond the current scope of this study.

• Through a detailed analysis of the results, particularly

during the consolidation phase, it has been observed that

surface soils (silty sands) undergo rapid consolidation

under moderate loads. In contrast, deep soils (clayey)

require a more cautious design approach due to their

plastic behavior and longer consolidation time. This

understanding will enable engineers to optimize

foundation design, enhancing the efficiency and safety of

structures by considering the specific characteristics of

the soils.

• The research has demonstrated that the proposed analysis

approach is particularly valuable for evaluating soils

under extreme conditions, such as high saturation.

Furthermore, the use of advanced computational models

allows for the simulation of multiple scenarios without the

need for additional testing, saving time and resources.

This makes the approach highly efficient for large-scale

projects.

REFERENCES

[1] Dammala, P.K., Murali Krishna, A. (2019). Dynamic

characterization of soils using various methods for

seismic site response studies. In Frontiers in geotechnical

engineering. Singapore: Springer Singapore, pp. 273-

301. https://doi.org/10.1007/978-981-13-5871-5_13

[2] Alnmr, A., Hosamo, H.H., Lyu, C., Ray, R.P., Alzawi,

M.O. (2024). Novel insights in soil mechanics:

integrating experimental investigation with machine

learning for unconfined compression parameter

prediction of expansive soil. Applied Sciences, 14(11):

4819. https://doi.org/10.3390/app14114819

[3] Ravindran, G., Bahrami, A., Mahesh, V., Katman,

H.Y.B., Srihitha, K., Sushmashree, A., Nikhil Kumar, A.

(2023). Global research trends in engineered soil

development through stabilisation: Scientific production

and thematic breakthrough analysis. Buildings, 13(10):

2456. https://doi.org/10.3390/buildings13102456

1298

[4] Cotrina, M., Marquina, J., Mamani, J., Arango, S.,

Gonzalez, J., Ccatamayo, J., Noriega, E. (2024).

Predictive model using machine learning to determine

fuel consumption in CAT-777F mining equipment.

International Journal of Mining and Mineral

Engineering, 15(2): 147-160.

https://doi.org/10.1504/IJMME.2024.140073

[5] Barman, D., Dash, S.K. (2022). Stabilization of

expansive soils using chemical additives: A review.

Journal of Rock Mechanics and Geotechnical

Engineering, 14(4): 1319-1342.

https://doi.org/10.1016/j.jrmge.2022.02.011

[6] Zhu, L., Liao, Q., Wang, Z., Chen, J., Chen, Z., Bian, Q.,

Zhang, Q. (2022). Prediction of soil shear Strength

parameters using combined data and different machine

learning models. Applied Sciences, 12(10): 5100.

https://doi.org/10.3390/app12105100

[7] Arulrajah, A., Yaghoubi, M., Disfani, M.M.,

Horpibulsuk, S., Bo, M.W., Leong, M. (2018).

Evaluation of fly ash-and slag-based geopolymers for the

improvement of a soft marine clay by deep soil mixing.

Soils and Foundations, 58(6): 1358-1370.

https://doi.org/10.1016/j.sandf.2018.07.005

[8] Sukmak, G., Sukmak, P., Horpibulsuk, S., Hoy, M.,

Arulrajah, A. (2021). Load bearing capacity of cohesive-

frictional soils reinforced with full-wraparound

geotextiles: Experimental and numerical investigation.

Applied Sciences, 11(7): 2973.

https://doi.org/10.3390/app11072973

[9] Dahal, B.K., Regmi, S., Paudyal, K., Dahal, D., KC, D.

(2024). Enhancing deep excavation optimization:

Selection of an appropriate constitutive model. CivilEng,

5(3): 785-800. https://doi.org/10.3390/civileng5030041

[10] Dong, X., Li, J., Li, Y., Wang, Z., Han, R. (2023). Macro-

Meso mechanical behavior of loose sand under multi-

directional cyclic simple shear tests. Applied Sciences,

13(16): 9169. https://doi.org/10.3390/app13169169

[11] Salih, A.G., Rashid, A.S., Salih, N.B. (2022). Finite

element analysis of the load-Settlement behavior of

large-scale shallow foundations on fine-Grained soil

utilizing plaxis 3D. In International Conference on

Geotechnical Engineering-Iraq. Singapore: Springer

Nature Singapore, pp. 249-260.

https://doi.org/10.1007/978-981-19-7358-1_22

[12] Alcantara-Ayala, Z., Arbanas, D., Huntley, K., Konagai,

S.M., Arbanas, M., Mikos, M.V., Ramesh, K., Sassa, S.,

Sassa, H., Tang, Tiwari, B., eds. (2023). Progress in

Landslide Research and Technology, Springer Nature,

2(2). https://doi.org/10.1007/978-3-031-44296-4.

[13] Piechowicz, K., Szymanek, S., Kowalski, J., Lendo-

Siwicka, M. (2024). Stabilization of loose soils as part of

sustainable development of road infrastructure.

Sustainability, 16(9): 3592.

https://doi.org/10.3390/su16093592

[14] Easa, S.M., Yan, W.Y. (2019). Performance-Based

analysis in civil engineering: Overview of applications.

Infrastructures, 4(2): 28.

https://doi.org/10.3390/infrastructures4020028

[15] Andreghetto, D.H., Festugato, L., Miguel, G.D., da Silva,

A. (2022). Automated true triaxial apparatus

development for soil mechanics investigation. Soils and

Rocks, 45: e2022077321.

https://doi.org/10.28927/SR.2022.077321

[16] Imran, H., Al-Jeznawi, D., Al-Janabi, M.A.Q., Bernardo,

L.F.A. (2023). Assessment of soil-Structure Interaction

approaches in mechanically stabilized Earth retaining

walls: A review. CivilEng, 4(3): 982-999.

https://doi.org/10.3390/civileng4030053

[17] Zhang, J.C., Du, J., Li, D., Qiu, C.J., Li, B., Wang, R.B.

(2024). Experimental and constitutive modeling

investigations of the mechanical behaviors of a gravelly

soil material under large-Size triaxial cyclic tests.

International Journal of Civil Engineering, 22(2): 277-

298. https://doi.org/10.1007/s40999-024-01030-8

[18] Triantafyllos, P.K., Georgiannou, V.N., Pavlopoulou,

E.M., Dafalias, Y.F. (2022). Strength and dilatancy of

sand before and after stabilisation with colloidal-silica

gel. Géotechnique, 72(6): 471-485.

https://doi.org/10.1680/jgeot.19.P.123

[19] Avgerinos, V., Potts, D.M., Standing, J.R. (2017).

Numerical investigation of the effects of tunnelling on

existing tunnels. Géotechnique, 67(9): 808-822.

https://doi.org/10.1680/jgeot.SiP17.P.103

[20] Cunningham, M.R., Ridley, A.M., Dineen, K., Burland,

J.B. (2003). The mechanical behaviour of a reconstituted

unsaturated silty clay. Géotechnique, 53(2): 183-194.

https://doi.org/10.1680/geot.2003.53.2.183

[21] Giardina, G., DeJong, M.J., Mair, R.J. (2015). Interaction

between surface structures and tunnelling in sand:

Centrifuge and computational modelling. Tunnelling and

Underground Space Technology, 50: 465-478.

https://doi.org/10.1016/j.tust.2015.07.016

[22] Zhang, J.M. (2023). Numerical analysis of the rigid

inclusion soil reinforcement technique. Doctor

Dissertation, Université Grenoble Alpes.

https://theses.hal.science/tel-04861114.

[23] Hoque, M.J., Bayezid, M., Sharan, A.R., Kabir, M.U.,

Tareque, T. (2023). Prediction of strength properties of

soft soil considering simple soil parameters. Open

Journal of Civil Engineering, 13(3): 479-496.

https://doi.org/10.4236/ojce.2023.133035

[24] Jardine, R.J., Symes, M.J., Burland, J.B. (1984). The

measurement of soil stiffness in the triaxial apparatus.

Géotechnique, 34(3): 323-340.

https://doi.org/10.1680/geot.1984.34.3.323

[25] Ali, H.M., Shakir, R.R. (2022). Applying a Python script

to predict the geotechnical properties of the Nasiriyah

soil. IOP Conference Series: Earth and Environmental

Science, 961(1): 012004. https://doi.org/10.1088/1755-

1315/961/1/012004

NOMENCLATURE

B Skempton’s pore pressure parameter

c Soil cohesion, kPa

e Void ratio

p Confining pressure, kPa

q Deviatoric stress, kPa

t Maximum shear stress on failure plane, kPa

Greek symbols

 Compressibility coefficient, m2. kN-1

γ Unit weight, kN·m-3

 Friction angle, degrees

σ Normal stress, kPa

τ Shear stress, kPa

1299

Subscripts

c Consolidated

u Undrained

d Drained

APPENDIX

Appendix A: Python Script to Compute Skempton’s Pore

Pressure Coefficient (B) in Soil Saturation

import tkinter as tk

from tkinter import filedialog, messagebox

import pandas as pd

import matplotlib.pyplot as plt

from matplotlib.backends.backend_tkagg import

FigureCanvasTkAgg

class SkemptonBAnalysis:

 def __init__(self):

 """GUI application for calculating Skempton's B

parameter during soil saturation"""

 self.root=tk.Tk()

 self.setup_ui()

 def setup_ui(self):

 """Initialize user interface components"""

 self.root.title("Skempton's B Parameter Analysis")

 self.file_paths=[None]*3

 self.create_file_buttons()

 tk.Button(self.root, text="Calculate B Parameters",

 command=self.analyze_data).pack(pady=10)

 def calculate_b(self, delta_p_cell, delta_u):

 """Compute Skempton's B parameter

 Args:

 delta_p_cell: Change in cell pressure (kPa)

 delta_u: Change in pore pressure (kPa)

 Returns:

 B-value (unitless)

 """

 return delta_u / delta_p_cell if delta_p_cell >10 else

None # 10 kPa threshold

 def analyze_test_data(self, file_path):

 """Process triaxial test log file

 Args:

 file_path: Path to .log file

 Returns:

 dict: Contains max B-value and displacement data

 """

 df=pd.read_csv(file_path, delim_whitespace=True,

skiprows=1)

 results=[]

 for i in range(1, len(df)):

 delta_p=df['cell_press'].iloc[i] -

df['cell_press'].iloc[i-1]

 delta_u =df['pore_press'].iloc[i]-

df['pore_press'].iloc[i-1]

 if delta_p >10 and delta_u >0: # Validation criteria

 b_value =self.calculate_b(delta_p, delta_u)

 results.append({

 'cell_press': df['cell_press'].iloc[i],

 'pore_press': df['pore_press'].iloc[i],

 'B': b_value

 })

 return {

 'initial_disp': df['displacement'].iloc[0],

 'final_disp': df['displacement'].iloc[-1],

 'max_B': max(r['B'] for r in results) if results else

None,

 'full_curve': results

 }

 def plot_results(self, test_data):

 """Generate B-value vs cell pressure plot"""

 fig, ax=plt.subplots(figsize=(8,5))

 for i, data in enumerate(test_data):

 if data['full_curve']:

 x=[d['cell_press'] for d in data['full_curve']]

 y=[d['B'] for d in data['full_curve']]

 ax.plot(x, y, label=f"Test {i+1}",

 linestyle=['-','--',':'][i], color='black')

 ax.set_xlabel("Cell Pressure (kPa)")

 ax.set_ylabel("Skempton's B Parameter")

 ax.legend()

 return fig

if __name__=="__main__":

 app = SkemptonBAnalysis()

 app.root.mainloop()

Appendix B: Automated Consolidation Analysis Tool

(Python Implementation)

import pandas as pd

import matplotlib.pyplot as plt

import math

from scipy.optimize import curve_fit

class ConsolidationAnalyzer:

 """

 Automated analysis of oedometer/consolidation test data

 Implements standard methods (log-time and √t) per

ASTM D2435

 """

 def __init__(self, test_files):

 """

 Initialize with test data files

 Args:

 test_files: List of paths to .log test files

 """

 self.test_data=[self._load_test_data(f) for f in

test_files]

 def _load_test_data(self, filepath):

 """Load and preprocess consolidation test data"""

 df=pd.read_csv(filepath, delim_whitespace=True,

skiprows=3,

 names=['time', 'load', 'disp', 'cell_p',

'back_p',

 'pore_p', 'axial_strain', 'vol_change'])

1300

 df['sqrt_time']=df['time'].apply(math.sqrt)

 return df

 def calculate_cv_sqrt_method(self, test_df):

 """Determine coefficient of consolidation (cv) using

Taylor's √t method"""

 # Implementation of Taylor's method...

 return cv, t90 # Returns cv (m²/yr) and t90 (min)

 def calculate_cc_log_method(self, test_df):

 """Calculate compression index (Cc) using

Casagrande's log-time method"""

 # Implementation of Casagrande's method...

 return cc, pc # Returns Cc (unitless) and

preconsolidation pressure (kPa)

 def generate_plots(self, test_index):

 """Create standardized consolidation plots"""

 fig, (ax1, ax2)=plt.subplots(1, 2, figsize=(12,5))

 # Time-settlement plot

 ax1.plot(self.test_data[test_index]['time'],

 self.test_data[test_index]['disp'],

 'k-', label='Settlement')

 ax1.set_xlabel("Time (min)")

 ax1.set_ylabel("Displacement (mm)")

 # √t plot with cv calculation

 ax2.plot(self.test_data[test_index]['sqrt_time'],

 self.test_data[test_index]['disp'],

 'k-', label='√t Method')

 # Add cv calculation annotations...

 return fig

 def generate_report(self):

 """Compile analysis results into summary table"""

 results =[]

 for i, df in enumerate(self.test_data):

 cv, _=self.calculate_cv_sqrt_method(df)

 cc, _=self.calculate_cc_log_method(df)

 results.append({

 'Test': i+1,

 'Cv (m²/yr)': f"{cv:.2e}",

 'Cc': f"{cc:.3f}",

 'Final Settlement (mm)': f"{df['disp'].iloc[-

1]:.2f}"

 })

 return pd.DataFrame(results)

Example usage

if __name__=="__main__":

 analyzer=ConsolidationAnalyzer(["test1.log",

"test2.log", "test3.log"])

 report=analyzer.generate_report()

 fig=analyzer.generate_plots(0)

 plt.show()

Appendix C: Python Implementation of Shear Strength

Failure Criteria

import pandas as pd

import numpy as np

from scipy.optimize import curve_fit

import matplotlib.pyplot as plt

class ShearStrengthAnalyzer:

 """

 Implements Mohr-Coulomb failure criteria analysis from

triaxial test data

 Calculates φ (friction angle) and c (cohesion) per ASTM

D3080

 """

 def __init__(self, test_data):

 """

 Initialize with processed test data

 Args:

 test_data: List of DataFrames containing:

 - σ₁: Major principal stress (kPa)

 - σ₃: Minor principal stress (kPa)

 - σ'₁: Effective major stress (kPa)

 - σ'₃: Effective minor stress (kPa)

 """

 self.test_data=test_data

 self.results={

 'total': {'φ': None, 'c': None},

 'effective': {'φ': None, 'c': None}

 }

 def mohr_coulomb_fit(self, stresses):

 """Fit Mohr-Coulomb failure envelope

 Args:

 stresses: Array of (σ, τ) pairs

 Returns:

 c (kPa), φ (radians)

 """

 def envelope(σ, c, tanφ):

 return c+σ * tanφ

 σ=stresses[:,0]

 τ=stresses[:,1]

 popt, _=curve_fit(envelope, σ, τ)

 return popt[0], np.arctan(popt[1]) # c, φ

 def calculate_parameters(self):

 """Compute total and effective strength parameters"""

 # Prepare stress states at failure

 total_stresses =[]

 effective_stresses =[]

 for test in self.test_data:

 failure_idx=test['deviator_stress'].idxmax()

 σ1=test.loc[failure_idx, 'σ₁']

 σ3=test.loc[failure_idx, 'σ₃']

 σ1_eff=test.loc[failure_idx, 'σ\'₁']

 σ3_eff=test.loc[failure_idx, 'σ\'₃']

 # Convert to (σ, τ) space

 total_stresses.append([

 (σ1+σ3)/2, # σ

 (σ1-σ3)/2 # τ

])

 effective_stresses.append([

 (σ1_eff+σ3_eff)/2,

 (σ1_eff-σ3_eff)/2

])

1301

 # Fit failure envelopes

 self.results['total']['c'],

φ_total=self.mohr_coulomb_fit(

 np.array(total_stresses))

 self.results['effective']['c'],

φ_eff=self.mohr_coulomb_fit(

 np.array(effective_stresses))

 self.results['total']['φ']=np.degrees(φ_total)

 self.results['effective']['φ']=np.degrees(φ_eff)

 return self.results

 def plot_mohr_circles(self):

 """Generate Mohr circle visualization"""

 fig, ax=plt.subplots(figsize=(8,6))

 # Plotting logic for Mohr circles...

 # Includes failure envelopes for total and effective

stresses

 ax.set_xlabel("Normal Stress (kPa)")

 ax.set_ylabel("Shear Stress (kPa)")

 return fig

if __name__=="__main__":

 # Example usage

 test_data=[pd.read_csv(f"test_{i}.csv") for i in range(3)]

 analyzer=ShearStrengthAnalyzer(test_data)

 results=analyzer.calculate_parameters()

 print(f"Total Stress-c: {results['total']['c']:.1f} kPa, φ:

{results['total']['φ']:.1f}°")

 print(f"Effective Stress-c': {results['effective']['c']:.1f}

kPa, φ': {results['effective']['φ']:.1f}°")

 analyzer.plot_mohr_circles()

 plt.show()

Appendix D: Python Script for Elastic Modulus

Determination

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import linregress

class ElasticModulusAnalyzer:

 """

 Determines elastic modulus (E) from triaxial test data

 Implements ASTM D3999 (Standard Test Methods for

Modulus of Elasticity)

 """

 def __init__(self, stress_strain_data):

 """

 Initialize with stress-strain data

 Args:

 stress_strain_data: DataFrame containing:

 - axial_strain: Axial strain (decimal)

 - deviator_stress: Deviator stress (kPa)

 """

 self.data=stress_strain_data

 self.modulus=None # Will store calculated modulus

(kPa)

 self.r_squared=None # Will store regression quality

metric

 def calculate_initial_modulus(self, strain_range=(0,

0.5)):

 """

 Calculate initial tangent modulus in specified strain

range (%)

 Args:

 strain_range: Tuple of (min, max) strain percentage

for linear region

 Returns:

 Modulus in kPa, regression statistics

 """

 # Convert percentage to decimal

 min_strain=strain_range[0]/100

 max_strain=strain_range[1]/100

 # Filter data in elastic range

 elastic_data=self.data[

 (self.data['axial_strain']>=min_strain) &

 (self.data['axial_strain']<=max_strain)

]

 # Perform linear regression

 slope, intercept, r_value, _, _=linregress(

 elastic_data['axial_strain'],

 elastic_data['deviator_stress']

)

 self.modulus=slope#kPa

 self.r_squared=r_value**2

 return self.modulus, self.r_squared

 def calculate_secant_modulus(self, strain_point=0.5):

 """

 Calculate secant modulus at specified strain (%)

 Args:

 strain_point: Strain percentage for modulus

calculation

 Returns:

 Secant modulus in kPa

 """

 target_strain=strain_point/100

 nearest_idx=(self.data['axial_strain'] -

target_strain).abs().idxmin()

 stress=self.data.loc[nearest_idx, 'deviator_stress']

 strain=self.data.loc[nearest_idx, 'axial_strain']

 return stress/strain # kPa

 def plot_modulus_determination(self):

 """Generate standardized plot showing modulus

calculation"""

 fig, ax=plt.subplots(figsize=(8,6))

 # Full stress-strain curve

 ax.plot(self.data['axial_strain']*100,

 self.data['deviator_stress'],

 'k-', label='Test Data')

1302

 # Highlight elastic region if calculated

 if self.modulus:

 elastic_data=self.data[

(self.data['axial_strain']>=self.modulus_range[0]) &

(self.data['axial_strain']<=self.modulus_range[1])

]

 ax.plot(elastic_data['axial_strain']*100,

 elastic_data['deviator_stress'],

 'ro', label='Elastic Region')

 # Add regression line

 x_vals=np.array([self.modulus_range[0],

self.modulus_range[1]])*100

 y_vals=self.modulus*x_vals/100

 ax.plot(x_vals, y_vals, 'b--',

 label=f'E={self.modulus/1000:.1f}MPa

(R²={self.r_squared:.3f})')

 ax.set_xlabel("Axial Strain (%)")

 ax.set_ylabel("Deviator Stress (kPa)")

 ax.legend()

 return fig

Example Usage

if __name__=="__main__":

 # Load test data (example)

 test_data=pd.read_csv("triaxial_test.csv")

 analyzer=ElasticModulusAnalyzer(test_data)

 # Calculate initial modulus in 0-0.5% strain range

 E_initial, r2=

analyzer.calculate_initial_modulus(strain_range=(0, 0.5))

 print(f"Initial Modulus: {E_initial/1000:.1f}MPa

(R²={r2:.3f})")

 # Calculate secant modulus at 0.5% strain

 E_secant =

analyzer.calculate_secant_modulus(strain_point=0.5)

 print(f"Secant Modulus at 0.5% strain:

{E_secant/1000:.1f} MPa")

 # Generate plot

 fig=analyzer.plot_modulus_determination()

 plt.show()

Appendix E: Python Implementation of Yield Criteria and

Elastic Response in Mohr's Constitutive Model

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

class MohrCoulombAnalyzer:

 """

 Implements Mohr-Coulomb failure criterion analysis

with elastic-plastic response

 Calculates yield parameters (c, φ) and elastic modulus (E)

per ASTM standards

 """

 def __init__(self, test_data):

 """

 Initialize with processed triaxial test data

 Args:

 test_data: List of dicts containing:

 - sigma1: Major principal stress at failure (kPa)

 - sigma3: Minor principal stress at failure (kPa)

 - stress_strain: Stress-strain curve DataFrame

 """

 self.test_data = test_data

 self.results = {

 'elastic': {'E': None, 'ν': None},

 'plastic': {'c': None, 'φ': None}

 }

 def calculate_elastic_parameters(self):

 """Determine elastic modulus (E) and Poisson's ratio

(ν)"""

 # Average modulus from initial linear region (0.05-

0.5% strain)

 moduli=[]

 for test in self.test_data:

 df=test['stress_strain']

 elastic_region=df[(df['strain']>=0.0005)&

(df['strain']<=0.005)]

 if len(elastic_region)>2:

 slope, _, r_value, _, _=linregress(

 elastic_region['strain'],

 elastic_region['deviator_stress']

)

 if r_value**2>0.98: # Quality threshold

 moduli.append(slope)

 self.results['elastic']['E']=np.mean(moduli) if moduli

else None

 return self.results['elastic']

 def calculate_yield_parameters(self):

 """Determine Mohr-Coulomb c and φ from failure

points"""

 sigma=[]

 tau=[]

 for test in self.test_data:

 # Transform to (σ, τ) space

 sigma.append((test['sigma1']+test['sigma3'])/2)

 tau.append((test['sigma1']-test['sigma3'])/2)

 # Fit failure envelope: τ=c+σ·tanφ

 def envelope(s, c, tan_phi):

 return c+s*tan_phi

 popt, pcov=curve_fit(envelope, sigma, tau)

 self.results['plastic']['c']=popt[0]

 self.results['plastic']['φ']=

np.degrees(np.arctan(popt[1]))

 return self.results['plastic']

 def plot_results(self):

 """Generate comprehensive yield and elastic response

plot"""

 fig, (ax1, ax2)=plt.subplots(1, 2, figsize=(12,5))

 # Mohr circles and failure envelope

 self._plot_mohr_circles(ax1)

1303

 # Stress-strain with elastic-plastic transition

 self._plot_stress_strain(ax2)

 return fig

 def _plot_mohr_circles(self, ax):

 """Plot Mohr circles with failure envelope"""

 for test in self.test_data:

 center=(test['sigma1']+test['sigma3'])/2

 radius=(test['sigma1']-test['sigma3'])/2

 circle=plt.Circle((center, 0), radius, fill=False)

 ax.add_patch(circle)

 # Plot failure envelope

 sigma=np.linspace(0, max(t['sigma1'] for t in

self.test_data), 100)

 tau=self.results['plastic']['c']+sigma *

np.tan(np.radians(self.results['plastic']['φ']))

 ax.plot(sigma, tau, 'r--', label='Failure Envelope')

 ax.set_aspect('equal')

 ax.set_xlabel("Normal Stress (kPa)")

 ax.set_ylabel("Shear Stress (kPa)")

if __name__=="__main__":

 # Example usage

 test_data=[

 {

 'sigma1': 450, 'sigma3': 100,

 'stress_strain':

pd.read_csv("test1_stress_strain.csv")

 },

 # Additional test data...

]

 analyzer=MohrCoulombAnalyzer(test_data)

 elastic_params=analyzer.calculate_elastic_parameters()

 yield_params=analyzer.calculate_yield_parameters()

 print(f"Elastic Modulus: {elastic_params['E']/1000:.1f}

MPa")

 print(f"Friction Angle: {yield_params['φ']:.1f}°")

 print(f"Cohesion: {yield_params['c']:.1f} kPa")

 fig=analyzer.plot_results()

 plt.show()

Appendix F: Python Implementation of MIT-CAM Stress

Path Simulation

import tkinter as tk

from tkinter import filedialog, messagebox, ttk

import pandas as pd

import math

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.backends.backend_tkagg import

FigureCanvasTkAgg

class CambridgeMITApp:

 def __init__(self, root):

 """GUI application for analyzing stress paths using

Cambridge and MIT models"""

 self.root=root

 self.root.title("Stress Paths-Cambridge and MIT")

 # Initialize variables and UI components

 self.file_paths=[None, None, None]

 self.initial_data=[{}, {}, {}]

 self.current_case=tk.StringVar(value="1")

 # Create file selection buttons

 self.create_file_buttons()

 self.create_case_selection()

 tk.Button(self.root, text="Generate Plots",

 command=self.generate_graphs).pack(pady=10)

 def create_file_buttons(self):

 """Create buttons for loading test data files"""

 self.buttons=[]

 for i in range(3):

 btn=tk.Button(self.root, text=f"Select File {i+1}",

 command=lambda idx=i:

self.load_file(idx),

 width=30)

 btn.pack(pady=5)

 self.buttons.append(btn)

 # [...] (Other methods continue with same level of

documentation)

 def process_data(self, file_path, index):

 """Process triaxial test data from .log files

 Args:

 file_path: Path to test data file

 index: Test case index (0-2)

 Returns:

 pd.DataFrame with calculated stresses and strains

 """

 try:

 df=pd.read_csv(file_path, sep=r'\s+', skiprows=3)

 # Data processing calculations [...]

 return df

 except Exception as e:

 messagebox.showerror("Processing Error", str(e))

 return pd.DataFrame()

if __name__=="__main__":

 root=tk.Tk()

 app=CambridgeMITApp(root)

 root.mainloop()

1304

