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This study aims to develop a predictive model based on Python to assess the mechanical 

behavior of "reactive" soils through static triaxial tests, considering key geomechanical 

factors. The tests were conducted on soil samples taken from depths of 1.5 to 2.0 meters 

(shallow) and from 16.5 to 18.0 meters (deep). The data obtained, which include pore 

pressure records, displacements, and deformation, were processed and analyzed using 

Python libraries such as NumPy and Pandas. The model is based on linear regressions 

and statistical techniques to analyze the relationships between variables such as soil 

density, cohesion, and the friction angle. The results showed that the model was able to 

simulate the soil behavior under different static loading conditions with high accuracy, 

considering confinement pressure and soil density. The analysis indicated that pore 

pressure has a significant impact on the shear strength of deep clays, with a 25% 

decrease in strength under saturated conditions. The integration of Python allowed for 

the automation of complex calculations and optimization of the analysis, providing an 

effective tool for conducting rapid and precise assessments in geotechnical projects. 

This study focuses exclusively on static conditions, leaving seismic conditions for 

future research. 
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1. INTRODUCTION

Soil behavior is a critical aspect in civil and geotechnical 

engineering [1], as it determines the stability and safety of 

structures built on or within it [2, 3]. The physical and 

mechanical properties of the soil directly influence the 

performance of buildings, bridges, roads, and other 

infrastructures [4]. Understanding how soils respond to 

different loading conditions is crucial for anticipating failures 

and mitigating risks associated with landslides, settlements, or 

other geotechnical phenomena [5]. The diversity of soils in 

different regions of the world represents a significant 

challenge for geotechnical engineers [6]. These vary from 

highly cohesive clays to loose sands, each with unique 

characteristics that affect their behavior under stress [7-9]. The 

stability of a structure depends on properties such as density, 

cohesion, friction angle, and bearing capacity [9, 10], which 

not only differ between locations but also change over time 

due to factors such as moisture, temperature, or earthquakes 

[10]. Therefore, analyzing the soil in detail for each project is 

vital to design structures capable of resisting local conditions, 

ensuring their integrity, and avoiding stability issues [11, 12]. 

Soil mechanics, as a key subdiscipline of geotechnical 

engineering, focuses on studying the physical properties and 

mechanical behavior of the soil, critical aspects for structural 

safety [13, 14]. Among laboratory tests, the triaxial test stands 

out for its ability to replicate real stress conditions. This 

method, especially in its static version, allows for the accurate 

assessment of shear strength, deformation, and failure 

mechanisms of the soil under controlled stress paths. Its 

robustness makes it an indispensable tool for obtaining data 

that guides geotechnical design, simulating realistic scenarios, 

and measuring essential parameters with high reliability, 

positioning it as a cornerstone in the research and practice of 

this discipline. 

Given the importance of triaxial data, geotechnics has 

moved toward predictive models that integrate this 

information to forecast soil behavior under various conditions. 

These models are essential as they simulate responses to loads 

and environmental factors, optimizing safe and efficient 

designs. By combining experimental data with advanced 

techniques, they enable the evaluation of multiple scenarios 

without additional tests, saving time and resources. Moreover, 

their ability to address soil variability and complex phenomena 

improves accuracy, being key to mitigating risks in extreme 

events such as earthquakes or floods, and ensuring the 

durability of structures [15]. 

In this context, the integration of Python into soil mechanics 

marks a significant advancement for geotechnical analysis and 

modeling. With libraries like NumPy, Pandas, and Matplotlib, 

Python efficiently processes large volumes of data, automates 

complex calculations, and presents results clearly. It also 
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drives predictive models that simulate soil behavior under 

different loads [16, 17], transforming geotechnical studies by 

providing greater precision and reliability in infrastructure 

design. Its flexibility and accessibility make it ideal for 

engineers seeking advanced tools for their projects. 

This research develops and validates a Python-based 

predictive model to assess soil behavior under physical 

conditions, using data from static triaxial tests. The goal is to 

increase the accuracy and reliability of mechanical property 

characterization, providing an advanced tool for safe and 

efficient designs. Furthermore, it aims to overcome limitations 

of traditional approaches by considering the inherent 

variability of the soil, with the potential to impact geotechnical 

practice in seismically active areas or complex soils. 

For this study, a comprehensive review of prior works on 

soil mechanics and geotechnics was conducted. Notably, a 

study [18] investigated the strength and dilatancy of sand 

stabilized with colloidal-silica gel, revealing enhanced shear 

strength and reduced dilation post-stabilization. The findings 

underscore the importance of nonlinear stress-dilatancy 

relationships in modeling soil behavior. Similarly, another 

study [19] examined tunneling-induced ground movements, 

highlighting the abrupt volume loss in collapsible soils under 

load, which is critical for excavation stability. These studies 

emphasize the challenges of reactive soils, such as expansive 

and collapsible types, whose mechanical responses to 

environmental factors like moisture, pressure, and load are 

complex [20]. Expansive soils exhibit swelling or contraction 

due to moisture fluctuations, leading to differential settlements 

or foundation failures, particularly in stabilized sands [20]. 

The heterogeneity and nonlinear properties of these soils, such 

as variable cohesion and friction angles, complicate traditional 

analyses. Collapsible soils, which experience sudden volume 

reduction under load, pose significant risks in tunneling 

projects. 

Static triaxial tests are crucial for characterizing reactive 

soils, providing data on shear strength, dilation, and plastic 

deformation under controlled conditions. These tests also 

enable precise measurement of soil stiffness, particularly in 

unsaturated silty clays, which is essential for safe geotechnical 

designs. For instance, studies on soil-structure interactions in 

sandy soils highlight the importance of triaxial data for 

modeling tunneling effects [21]. However, manual analysis of 

triaxial data is time-consuming and error-prone, especially for 

highly variable reactive soils like saturated or unsaturated 

clays. This challenge is amplified in seismic zones, where 

numerical analyses of soil reinforcement are critical [22]. 

To address these limitations, predictive models for soft 

soils, incorporating simple parameters like cohesion and 

friction angle, have been developed to enhance design 

accuracy [23]. Python-based automation, utilizing libraries 

such as NumPy, Pandas, and Matplotlib, further streamlines 

triaxial data analysis [24]. Automated stress path adjustments 

improve the measurement of soil stiffness, supporting robust 

geotechnical designs. Python scripts can also precisely 

determine geotechnical properties and visualize results 

interactively, as demonstrated in studies on Nasiriyah soil 

[25]. This approach enhances efficiency and accuracy, 

revolutionizing the design of structures on complex soils. 

Building on these advancements, the proposed model employs 

Python to analyze static triaxial data for reactive soils, 

incorporating nonlinear properties like dilation and failure 

modes in clays and unsaturated soils. It draws on 

methodologies from prior studies to automate calculations and 

enable dynamic adjustments for projects in geotechnically 

challenging or seismic areas [25]. 

This paper presents the development and validation of a 

predictive model for reactive soils, detailing Python-based 

data processing and algorithms for optimizing stress paths. 

The model is validated against experimental data and 

compared with established frameworks, demonstrating 

enhanced accuracy and efficiency. The study explores 

implications for geotechnical engineering and proposes future 

applications in nonlinear soil-structure interactions [25]. 

 

 

2. MATERIALS AND METHODS 

 

The methodology of this study was organized into a series 

of key stages, carefully designed to ensure maximum accuracy 

and reliability in the obtained results. The research process 

began with conducting static triaxial tests in a controlled 

laboratory environment, which allowed for the collection of 

critical data on soil behavior under various loading conditions. 

Subsequently, a thorough and rigorous analysis of this data 

was carried out using Python, a powerful tool that facilitated 

the development of a highly robust predictive model, as shown 

in Figure 1. 

 

 
 

Figure 1. Model process 
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The model presented in Figure 1 not only integrates the 

experimental results but also allows for the simulation of 

complex scenarios, providing a more comprehensive and 

accurate assessment of soil behavior in different geotechnical 

contexts. 

 

2.1 Soil sample preparation 

 

The first stage of this study involved the collection and 

preparation of soil samples, which were obtained from 

different depths of the ground to ensure adequate 

representativeness of the geotechnical layers of the subsurface. 

Samples were extracted from two types of strata: shallow 

samples, taken at depths ranging from 1.0 to 2.0 meters, and 

deep samples, obtained from depths between 16.50 and 18.0 

meters. To ensure the geotechnical representativeness of the 

soils, samples from distinct regions were included, with details 

described below: 

Surface Sample: Silty sand with high plasticity, dark 

orange-brown in color, extracted from a shallow depth of 1.0 

to 2.0 meters, also obtained through rotary drilling to ensure 

the collection of undisturbed samples. 

Deep Sample: Clay with the presence of light brown sand, 

extracted from a depth of 16.50 to 18.0 meters, using the rotary 

drilling method to preserve sample integrity. 

To ensure the quality of the experimental results, the 

samples were subjected to homogenization and conditioning 

processes to guarantee uniformity in terms of moisture content 

and density, as seen in Figure 2. 

These procedures were carried out in accordance with the 

guidelines established by ASTM D1587-00 for undisturbed 

sample extraction and ASTM D698-00 for compaction tests. 

This rigorous preparation process is crucial, as any 

variability in the initial properties of the samples could 

significantly influence the results of the tests, affecting the 

interpretation of the geotechnical data. During this preparation 

phase, three samples were evaluated for each depth section, 

with a total of 17,200 data points recorded for the full test, 

allowing for a precise and representative assessment of the soil 

behavior under the specific ground conditions. 

 

 
 

Figure 2. Standardized sample preparation 

 

2.2 Static triaxial tests 

 

Static triaxial tests, conducted under carefully controlled 

conditions, are essential for determining the mechanical 

properties of the soil, such as its shear strength, behavior under 

various confinement pressures, and deformation capacity. To 

conduct these tests, a triaxial cell equipped with high-precision 

sensors was used, capable of measuring axial and radial 

stresses, as well as pore pressures. The tests followed the 

procedures outlined in the ASTM D4767-11 standard, which 

specifies the methods for performing consolidated and drained 

triaxial tests on cohesive soils. Figure 3 shows the samples 

after they had been saturated, consolidated, and failed during 

the triaxial test. 

 

 
 

Figure 3. Post-failure specimens after triaxial testing 

 

The samples were subjected to variable confinement 

pressures, simulating the actual loading conditions found in 

the field, and controlled drainage conditions were 

implemented to ensure that the shear strength parameters were 

measured with the highest accuracy. The rigorous control of 

experimental conditions allowed for reliable results that reflect 

the soil's behavior under different loading scenarios, which is 

essential for the proper design of geotechnical structures such 

as foundations, slopes, and retaining walls. Furthermore, these 

tests provided valuable data to feed the predictive model 

developed in the later stages of the study. 

 

2.3 Python-based data analysis 

 

Once the data obtained from the triaxial tests were collected, 

they were analyzed using Python, a programming language 

widely used in engineering due to its flexibility, ability to 

handle large volumes of data, and its extensive library of 

specialized tools. 

First, the NumPy and Pandas libraries were used for data 

manipulation and processing, allowing for statistical 

calculations as well as the efficient transformation and 

organization of data sets. It is worth noting that, since triaxial 

tests include multiple stages (saturation, consolidation, and 

failure), several .log files are generated and organized for each 

of these stages. The number of .log files may vary depending 

on the sample's moisture content; for example, if the sample 

has high moisture, the saturation process may require 

fewer .log files compared to low-moisture samples, as seen in 

the different strata of the samples. 

The data cleaning and normalization process was crucial at 

this stage, as it allowed for the elimination of any potential 

anomalies or errors in the data that could distort the analysis 

results. Through the use of advanced exploratory data analysis 

techniques, outliers were identified and corrected, ensuring the 

conditions for obtaining representative data of the soil's 
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properties. This phase is essential to ensure that the results are 

as close as possible to the actual ground conditions, as 

illustrated in the flowchart of the saturation data cleaning 

process in triaxial tests (Figure 4).

 

 
 

Figure 4. Workflow for automated saturation data cleaning in triaxial testing 

 

 
 

Figure 5. Consolidation data processing workflow for triaxial testing 
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Figure 6. Failure data processing workflow for triaxial testing 

 

The saturation analysis was carried out with the automation 

of complex calculations, allowing for the determination of 

critical geotechnical parameters. These data were processed 

and filtered according to the quality and quantity of the .log 

files generated during the saturation stage. As shown in Figure 

4, this process ensures that only representative data are 

considered for the analysis of soil strength. 

Once these calculations were performed, the procedures for 

consolidation and failure were also automated, facilitating the 

analysis of shear strength and deformability under different 

loading conditions. In the consolidation phase, confinement 

and back pressure were adjusted according to the results 

obtained during saturation, and data on volume change and 

displacement were recorded, as shown Figure 5. 

During the failure phase, deformation and load data were 

recorded under a constant deformation rate, with particular 

attention to the values of chamber pressure and back pressure. 

As shown in Figure 6 the failure data were processed, and any 

anomalies in the results were corrected before the final 

interpretation. 

The automation of the analysis allowed for greater accuracy 

and speed in calculating geotechnical parameters such as shear 

strength, resulting in a more efficient and reliable 

interpretation of the data obtained during the different phases 

of the triaxial test. 

 

2.4 Design, simulation, and experimental validation of a 

predictive model 

 

The predictive model developed in this study is based on 

advanced machine learning and regression techniques, which 

allowed for the identification of patterns and complex 

relationships between key variables studied, such as soil 

density, cohesion, and friction angle. Multiple regression 

algorithms were used to analyze the nonlinear relationships 

between these variables, providing a deeper understanding of 

the soil's mechanical behavior. 

This study focuses on evaluating the influence of 

geomechanical factors, such as confinement pressure and soil 

density, on the mechanical behavior of the soil, excluding 

seismic conditions due to the static nature of the triaxial tests. 

Models based on exploratory data analysis and regression 

algorithms were used to obtain the predictions, without 

employing complex cross-validation techniques like K-fold, 

which are considered more suitable for other types of models, 

such as those used in more advanced supervised learning. 

To ensure the reliability of the predictive model, internal 

validation methods were used, such as comparing the results 

obtained with additional experimental data that were not used 

in the training phase. This process allowed for validating the 

model's ability to generalize to new conditions, confirming 

that the generated predictions are consistent with the 

experimental data and actual geotechnical conditions. 

While the K-fold cross-validation method was not 

implemented in this study, it is an approach that could be 

considered in future research related to more complex 

predictive models, particularly in scenarios where further 

optimization of the model's accuracy is sought by validating 

different data subsets. 

In the simulation phase, tests were carried out under 

different loading scenarios, using parameters obtained from 

the triaxial tests. These simulations included variations in 

confinement pressure and soil density, replicating real 

geotechnical conditions to evaluate the soil's behavior under 

different static loading conditions. The results of the 

simulations were validated by comparing the model's 

predictions with additional experimental data not used in the 

training phase. This comparison allowed for evaluating the 

model's ability to generalize and its applicability in real 

situations, showing a high correlation between the predictions 

and experimental data. 

Model validation was crucial to confirm its accuracy and 

robustness. The success of the model during validation ensures 

its applicability in geotechnical projects, providing engineers 

with a valuable tool for planning and designing infrastructure, 

especially in areas with complex soils and variable loading 
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conditions. This predictive model not only optimizes decision-

making in geotechnical engineering but also offers greater 

reliability in risk assessment and the design of infrastructure 

resilient to seismic events. 

This study laid the foundation for optimizing predictive 

models in the field of geotechnical engineering, and its 

implementation will be a key step in future research, where the 

use of techniques like K-fold cross-validation could be 

explored for a more rigorous evaluation of the model. Below, 

the scripts that support this study are presented. 

 

 
 

Figure 7. Python implementation in the model to analyze the mechanical behavior of reactive soils 

 

Saturation Analysis 

Appendix A: The Python script used to calculate 

Skempton's B during the saturation phase is available in the 

final appendix of the article. This script processes the .rar files, 

extracts the relevant data, and calculates the Skempton’s B 

parameter. Details on its functionality can be found in the 

appendix. 

Consolidation Analysis 

Appendix B: The Python script used to calculate 

consolidation is available in the final appendix of the article. 

This script processes the data from the .log files and calculates 

additional columns such as the square root of time, height 

change, and other parameters related to soil consolidation. 

Details on its functionality can be found in the appendix. 

Failure Analysis 

Appendix C: The Python script used to calculate stresses 

and other parameters during the failure stage is available in the 

final appendix of the article. This script processes the data 

from the .log files and calculates parameters such as deviatoric 

stress, unit strains, and principal stresses, which are crucial for 

analyzing the soil's behavior during the failure phase. Details 

on its functionality can be found in Appendix C. 

Elasticity Modulus Analysis 

Appendix D: The Python script used to calculate the 

elasticity modulus is available in the final appendix of the 

article. This script processes the data from the .log files, 

calculates the elasticity modulus in the elastic region of the σ₁ 

vs. Unit Strain curve, and visualizes the interactive graph. 

Details on its functionality can be found in Appendix D. 

Creep and Elasticity Analysis (MOHR MODEL) 

Appendix E: The Python script used to generate the Mohr-

Coulomb yield surface is available in the final appendix of the 

article. This script visualizes the yield surface based on the 

Mohr-Coulomb model, using the internal friction angle, 

cohesion, and stress range to show how the yield surface varies 

under different conditions. Details on its functionality can be 

found in Appendix E. 

The following figure presents a diagram developed in 

Python to evaluate the mechanical behavior of "reactive" soils. 

This diagram is fundamental as it illustrates the predictive 

model that integrates various geotechnical and physical 

parameters for simulating soil behavior under static 

conditions. 

Figure 7 provides a clear visual representation of how 

experimental data from the triaxial tests are organized and 

processed using Python, showing the interactions between key 

geotechnical variables such as cohesion, density, and other 

relevant parameters. Additionally, it should be emphasized 

1290



 

that this diagram not only validates the methodology used but 

also illustrates the potential of computational tools, such as 

Python, to model complex scenarios that are common in 

geotechnical engineering, enhancing the accuracy and 

reliability of the analysis. 

 

 

3. RESULTS 

 

3.1 Analysis of results 

 

The analysis of the results obtained from the static triaxial 

tests and the predictive model developed with Python provides 

a detailed insight into the mechanical behavior of the soil 

under various conditions. Two types of soil samples, shallow 

and deep, were evaluated to study their behavior under 

different loading conditions. The samples were collected from 

specific depths, and the key findings are presented below, 

organized according to the main conditions of shallow and 

deep soil. 

 

3.2 Saturation test results 

 

The saturation test evaluates the soil's ability to reach a fully 

saturated state under controlled conditions, which is crucial for 

understanding soil behavior in geotechnical applications, as 

shown in Figure 8. The variables analyzed include Skempton's 

B coefficient, chamber and pore pressures, and displacements, 

as shown in Table 1. 

According to the results presented in Table 1, two types of 

soil samples were analyzed: 

– Shallow Sample (1.50-2.00 m): Silty sand with low 

cohesion and high permeability. Saturation was reached 

with relatively low chamber pressure, showing greater 

ease of saturation. 

– Deep Sample (16.50-18.00 m): Clay with low plasticity, 

higher cohesion, and lower permeability, requiring higher 

chamber pressures to reach saturation. 

Analysis of Results: 

Skempton's B Coefficient: The values close to 1 in both 

samples suggest that saturation was effective. The slight 

decrease in the deep sample (0.95) may be associated with its 

higher cohesion. 

Displacements: In the shallow sample, the initial negative 

displacements indicate a slight contraction, while the 

displacements in the deep sample are higher, reflecting a 

plastic behavior typical of clayey soils. 

 

 
(a) 

 
(b) 

 

Figure 8. Full saturation achieved in both surface and deep 

soil samples 

 

Table 1. Experimental results of soil saturation tests 
 

  Cell Pressure (kPa) Pore Pressure (kPa) B Skempton Initial Displacement (mm) Final Displacement (mm) 

  P1 40.00 63.5 0.99 7.767 -0.531 

SURFACE 
Sample 1 

1.50-2.00m 
P2 39.90 61.8 0.97 3.345 2.276 

  P3 38.20 60.8 0.99 3.933 2.515 

  P1 241.80 230.80 0.95 6.425 8.2 

DEEP 
Sample 2 

16.50-18.00m 
P2 196.30 185.70 0.95 9.325 11.467 

  P3 197.10 189.40 0.95 8.465 9.387 

Table 2. Experimental results of the consolidation process 
 

 Height Change (mm) Pore Pressure (kPa) Cell Pressure (kPa) Back Pressure (kPa) σ₃ (kPa) 

SURFACE 
Sample 1 

1.50 - 2.00m 

P1 7.25 -22.1 80 50 30 

P2 2.19 -55.9 100 39.9 60.1 

P3 2.08 -111.4 180 60 120 

DEEP 
Sample 2 

16.50-18.00m 

P1 5.54 -47.6 300 200 100 

P2 8.24 -97.7 399.9 200 199.9 

P3 10.05 -113.5 430 30 400 

3.3 Consolidation test results 

 

Consolidation is a key process for assessing soil stability 

under sustained loads. The results obtained in Table 2 allow 

for the comparison of the mechanical behavior of shallow and 

deep soils in terms of height changes, pore pressure, and 

confinement under different loading conditions. 

Analysis of Results: 

Shallow Sample (1.50-2.00 m): At low confinement 

pressures, a high initial deformation is observed. As the 
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confinement pressure increases, the deformation decreases 

significantly, reflecting soil stabilization. 

Deep Sample (16.50-18.00 m): A more plastic behavior 

and slower consolidation are observed, which is typical of 

clayey soils. The consolidation process is more prolonged due 

to the low permeability of the clay. 

The curves in Figure 9 indicate a typical consolidation 

behavior, where most of the compression occurs in the early 

moments after the load is applied. The soil shows a rapid 

reduction in both volume and height initially, which is 

characteristic of low cohesion soils (such as silty sands, SM) 

when subjected to consolidation. As time progresses, the 

stabilization observed in the graphs indicates that primary 

consolidation is nearing completion, and any further change 

would be part of secondary consolidation, which is much 

slower. 

 

 
 

Figure 9. Graphical interpretation of the consolidation stage for surface sample No. 1 

 

 
 

Figure 10. Graphical interpretation of the consolidation stage for surface sample No. 2 
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In this shallow SM soil sample from Figure 10, 

consolidation is rapid in the first few minutes, with significant 

compression and expulsion of water initially. The subsequent 

stabilization, characteristic of soils with high permeability and 

low cohesion, indicates that primary consolidation 

predominates, while secondary consolidation has a minimal 

impact. 

This Figure 11 confirms the typical behavior of an SM soil 

under consolidation, where rapid deformation and water 

expulsion initially stabilize quickly. Primary consolidation 

dominates, with a secondary phase having minimal impact. 

In this Figure 12 with a CL sample, consolidation is more 

prolonged due to the low permeability and higher cohesion, 

which causes a slower consolidation process. The curves 

reflect an extended primary consolidation, followed by 

gradual stabilization, typical of clayey soils. 

 

 
 

Figure 11. Graphical interpretation of the consolidation stage for surface sample No. 3 

 

 
 

Figure 12. Graphical interpretation of the consolidation phase for deep sample No. 1 
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Figure 13. Graphical interpretation of the consolidation phase for deep sample No. 2 

 

 
 

Figure 14. Graphical interpretation of the consolidation phase for deep sample No. 3 

 

Figure 13 shows prolonged consolidation in CL soils, with 

a slow and continuous reduction in volume and height. 

Although primary consolidation continues to dominate, its 

duration is considerably longer than in less cohesive soils such 

as SM. 

Figure 14 confirms prolonged consolidation in CL soils, 

with a controlled reduction in volume and height due to the 

soil's cohesion and low permeability. The curves reflect an 

extended primary consolidation process, with slow 

stabilization, typical of clayey soils. 

 

 

4. FAILURE ENVELOPE 

 

The failure envelope evaluates the soil behavior under 

increasing stresses until failure, using criteria such as Mohr-
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Coulomb to describe its resistance. 

Analysis of Results from Table 3: 

Shallow Sample (1.50-2.00 m): The progressive increases 

in confinement pressure (σ₃) and major principal stress (σ₁) 

show a typical response of granular soil under increasing 

stresses. The differences between total and effective stresses 

are small, indicating that pore pressure has a minor impact on 

the soil's strength. 

Deep Sample (16.50-18.00 m): The differences between 

total and effective stresses are more noticeable, reflecting the 

significant influence of pore pressure. In clayey soils like this 

sample, excess pore pressure reduces strength, making the 

maximum effective shear stress significantly lower than the 

total. 

Analysis of Results from Table 4: 

Shallow Sample (1.50-2.00 m): The strength is dominated 

by internal friction, with low total cohesion. The friction angle 

reflects the frictional behavior of the soil. 

Deep Sample (16.50-18.00 m): The effective cohesion is 

higher in deep soils, suggesting that shear strength is more 

influenced by cohesion and pore pressure than in shallow soils. 

 

Table 3. Shear failure test results 

 

   𝝈𝑫 (kPa) 𝝈𝟏 (kPa) 𝝈𝟑 (kPa) 𝝈′𝟏 (kPa) 𝝈′𝟑 (kPa) 
𝝉𝐦𝐚𝐱 

(kPa) 

𝝉′𝐦𝐚𝐱 

(kPa) 
(𝝈𝟏+𝝈𝟑)/2 (kPa) (𝝈′𝟏+𝝈′𝟑)/2 (kPa) 

  P1 106.38 136.38 30.00 148.88 42.50 53.19 53.19 83.19 95.69 

SURFACE 
Sample 1 

1.50-2.00 m 
P2 274.92 335.02 60.10 360.82 85.90 137.46 137.46 197.56 223.36 

  P3 283.77 403.77 120.00 379.57 95.80 141.88 141.88 261.88 237.68 

  P1 39.61 139.61 100.00 93.71 54.10 19.81 19.80 119.80 73.90 

DEEP 

Sample 2 

16.50-18.00 

m 

P2 56.09 255.99 199.90 170.49 114.40 28.04 28.04 227.94 142.44 

  P3 78.03 478.03 400.00 379.13 301.10 39.01 39.04 439.02 340.12 

 

Table 4. Final parameters from the triaxial test 

 
Mohr-Coulomb Parameters 

Depth Sample Condition Friction Angle (°) Cohesion (kPa) 

SURFACE 
Sample 1 

1.50-2.00 m 

Total 30.96 10.2 

Effective 34.99 0 

DEEP 
Sample 2 

16.50-18.00 m 

Total 5.71 6.8 

Effective 5.71 13.9 

 

 
 

Figure 15. Mohr ś circle and dynamic failure envelope (total)-superficial 

 

 
 

Figure 16. Mohr ś circle and dynamic failure envelope (effective)-superficial 
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Figure 17. Mohr ś circle and dynamic failure envelope (total)-profound 

 

 
 

Figure 18. Mohr ś circle and dynamic failure envelope (effective)-profound 

 

 
 

Figure 19. Stress path-Cambridge model- superficial 

 

In granular soils, such as SM, total cohesion is low, which 

is related to their high permeability. Although total cohesion 

may appear due to factors such as compaction, its value 

remains relatively small. Figure 15 shows the soil's response 

under total stresses, without accounting for the effects of pore 

pressure. 

In this Figure 16, the effects of pore pressure are removed, 

showing the effective stresses. The effective cohesion is 

reduced to zero, and the effective friction angle is higher, 

reflecting the true bearing capacity of the soil, dominated by 

friction. 

For clayey soils such as CL, total cohesion is low due to 

pore pressure. Figure 17 shows the total stresses, which 

include pore pressure, reducing the overall strength of the soil. 

The analysis of effective stresses reveals that the effective 

cohesion is considerably higher than the total cohesion, which 

reflects in Figure 18 the stabilizing effect of the soil structure 

under conditions of high saturation. 

As observed in Figure 19, the behavior of the soil under 

conditions of total and effective stresses reflects a 

characteristic behavior of granular soils, where friction is the 

primary factor influencing shear strength. 

Figure 20 illustrates the behavior of both total and effective 

stresses using the MIT model. Both models exhibit linear and 

similar trajectories, which reinforces the importance of friction 

in shear strength. 

Based on the interpretation of the graphs, the results of the 

two stress trajectories in the two soil types for the surface 

stratum can be concluded, as presented in Table 5. 

 

 
 

Figure 20. Stress path + MIT model 
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Table 5. Stress-path analysis results (surface sample) 

 
MIT 

 α a (kPa) 

SURFACE 

SM 

Muestra 1 

1.50-2.00m 

Total 38.66 0 

Effective 34.99 0 

CAMBRIDGE 

 M Intercept (kPa) 

SURFACE 

SM 

Muestra 1 

1.50-2.00m 

Total 1.3 0 

Effective 1.2 0 

 

Cohesion: In both models (Cambridge and MIT), cohesion 

is zero (0kPa), which is characteristic of granular soils such as 

SM. 

Friction Angle: It reflects a purely frictional behavior, 

typical of granular soils. The values of 𝑀 and 𝛼 are suitable 

for sandy-silty soils, where strength depends entirely on 

interparticle friction. 

Cambridge Model vs. MIT Model: Both models exhibit 

linear behavior with a slope governed by friction, showing no 

significant cohesion effects. 

In Figure 21, the stress path under the MIT model is shown, 

which helps to visualize the shape of the stress trajectory under 

conditions of high confining pressure. 

Similarly, Figure 22 illustrates the stress trajectory under 

the Cambridge model, highlighting the importance of cohesion 

in soils with low friction. 

 

 
 

Figure 21. Stress path-MIT model 

 

 
 

Figure 22. Stress path-Cambridge model 
 

Table 6. Stress-path analysis results (deep sample) 
 

MIT 

 α a (kPa) 

DEEP 

CL 

Sample 2 

16.50-18.00 m 

Total 5.71 9.2 

Effective 5.71 15.5 

CAMBRIDGE 

 M Y-intercept (kPa) 

DEEP 

CL 

Sample 2 

16.50-18.00 m 

Total 0.1 29.6 

Effective 0.1 35.2 

 

Based on the interpretation of the graphs, the results of the 

two stress trajectories in the two soil types for the deep stratum 

can be concluded, as presented in Table 6. 

Significant Cohesion: In both the MIT and Cambridge 

models, the effective cohesion is considerable (15.5 kPa and 

35.2 kPa, respectively), which is common in saturated clayey 

soils. This cohesion is the primary factor controlling the soil’s 

shear strength. 

Low Friction Angle: The angle 𝛼 and the parameter 𝑀 are 

low, indicating minimal interparticle friction. In soils with 

high moisture content (115%), effective friction decreases 

significantly, leaving cohesion as the dominant factor. 

Linear Trajectories: Both graphs display smooth or nearly 

horizontal trajectories, suggesting that the soil exhibits 

cohesive behavior with little additional resistance derived 

from friction. 

Elastic Analysis 

Based on the results obtained at the failure stage of the 

triaxial test, a linear behavior in the elastic modulus is 

observed for both evaluated soil types: the surface silty sand 

and the low-plasticity clay at depth, under varying 

confinement levels. This linear behavior allows for a 

preliminary assessment of each soil’s stiffness response under 

applied loading conditions, which is relevant for future 

geotechnical applications. 

However, it is important to note that both soils exhibit 

specific limitations that must be considered for their use in 

geotechnical engineering: 

Surface Silty Sand (Collapsible): 

The silty sand exhibits high variability in its elastic 

modulus, with a significant increase in values as confining 

pressure rises. This indicates that the soil has an adequate 

hardening capacity under confined loading but also reveals its 

high sensitivity to factors such as density and moisture. This 

variability could lead to differential settlements if not properly 

controlled during construction. 

For shallow geotechnical applications, the silty sand may be 

suitable provided that efficient compaction methods and strict 

quality controls are implemented. This approach can minimize 

variability in its behavior and ensure consistent, predictable 

performance throughout the structure’s service life. 

Low-Plasticity Clay at Depth (Expansive): 

In contrast, the deep soil, characterized by low-plasticity 

clay, exhibits a significantly lower elastic modulus, implying 

limited stiffness even under high confinement levels. This 

property is typical of clays and suggests that the soil is prone 
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to long-term plastic deformations, particularly in deep 

foundation projects or structures subjected to permanent loads. 

Due to its compressible behavior, the use of this clay in 

structural applications requires mitigation measures, such as 

deep foundations (e.g., piles) or soil improvement techniques. 

These interventions are essential to reduce the risk of 

significant settlements that could compromise the stability of 

structures relying on this soil type. 

Limitations of the Predictive Model and Considerations 

for Its Applicability 

The predictive model developed in this study demonstrates 

a notable ability to simulate the mechanical behavior of soils 

under static conditions, but it presents limitations that must be 

considered for its proper interpretation and application: 

Variability in Soil Properties: While the model captures 

essential geotechnical characteristics of “reactive” soils such 

as cohesion, density, and friction angle it relies on a 

representative dataset that does not encompass the full range 

of possible heterogeneity within a stratum. Factors such as 

irregular grain size distribution, lateral stratification, or local 

variations in mineralogical composition are only partially 

addressed. This simplification may reduce its accuracy in soils 

with high spatial or textural variability, limiting its reliability 

in more complex geotechnical scenarios. To address this, 

future developments could incorporate stochastic modeling 

techniques or expand the dataset with samples reflecting 

greater diversity. 

Prediction Under Extreme Conditions: The model 

performs robustly under controlled static conditions, but its 

effectiveness diminishes when simulating highly dynamic, 

complex scenarios, such as full saturation, extreme 

fluctuations in confining pressure, or intense seismic loading. 

Phenomena such as seismic wave propagation, liquefaction, or 

advanced nonlinear soil behavior under these conditions are 

not explicitly addressed, as the static focus of the triaxial test 

limits their representation. Enhancing its applicability would 

require integrating data from dynamic tests (e.g., cyclic triaxial 

tests) and refining the algorithms to model transient responses, 

which could be explored in future research. 

Representativeness of the Dataset: The model was 

developed and validated using a finite set of samples from 

surface and deep soils, restricting its generalization to other 

soil types or geotechnical contexts not represented in the 

study. For instance, soils with high organic content, volcanic 

deposits, or extreme hydrogeological conditions may require 

specific adjustments that the current model does not account 

for. This reliance on the initial dataset suggests that its 

practical applicability may be limited outside the studied 

range. It is recommended to expand the experimental base 

with a broader variety of soils and conditions, as well as to 

conduct cross-validations at real sites to assess its robustness 

and adaptability. 

 

 

5. CONCLUSIONS 

 

• The integration of Python into the analysis of triaxial test 

data has enabled a more accurate and efficient evaluation 

of the mechanical properties of soils. The automation of 

complex calculations and the use of advanced analytical 

techniques, such as multiple regression, have significantly 

improved the reliability and speed of the process. This has 

resulted in more consistent and reproducible outcomes 

compared to traditional methods, facilitating decision-

making in geotechnical projects. 

• The predictive model developed in Python has 

demonstrated a high capacity to simulate soil behavior 

under various static loading conditions. Although seismic 

conditions were mentioned in the model’s introduction, 

the current focus does not include seismic analysis. This 

model has been validated by comparing predictions with 

experimental data obtained from triaxial tests. The 

simulations have shown good correlation with 

experimental results, ensuring its applicability in the 

planning and design of geotechnical infrastructure. 

• The results obtained from deep samples indicate that pore 

pressure has a significant impact on the shear strength of 

clayey soils. Under high saturation conditions, effective 

cohesion is significantly greater than total cohesion, 

underscoring the importance of controlling pore pressure 

in the design of structures on cohesive soils, particularly 

clayey soils with high moisture content. 

• The predictive model developed has proven effective in 

simulating soil behavior under static conditions, 

accounting for factors such as confining pressure and 

variability in soil properties. However, the modeling of 

seismic conditions and their integration with confining 

pressure parameters will be addressed in future research, 

as they are beyond the current scope of this study. 

• Through a detailed analysis of the results, particularly 

during the consolidation phase, it has been observed that 

surface soils (silty sands) undergo rapid consolidation 

under moderate loads. In contrast, deep soils (clayey) 

require a more cautious design approach due to their 

plastic behavior and longer consolidation time. This 

understanding will enable engineers to optimize 

foundation design, enhancing the efficiency and safety of 

structures by considering the specific characteristics of 

the soils. 

• The research has demonstrated that the proposed analysis 

approach is particularly valuable for evaluating soils 

under extreme conditions, such as high saturation. 

Furthermore, the use of advanced computational models 

allows for the simulation of multiple scenarios without the 

need for additional testing, saving time and resources. 

This makes the approach highly efficient for large-scale 

projects. 
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NOMENCLATURE 

 

B Skempton’s pore pressure parameter 

c Soil cohesion, kPa 

e Void ratio 

p Confining pressure, kPa 

q Deviatoric stress, kPa 

t Maximum shear stress on failure plane, kPa 

 

Greek symbols 

 

 Compressibility coefficient, m2. kN-1 

γ Unit weight, kN·m-3 

 Friction angle, degrees 

σ Normal stress, kPa 

τ Shear stress, kPa 

1299



 

Subscripts 

 

c Consolidated 

u Undrained 

d Drained 

 

 

APPENDIX 

 

Appendix A: Python Script to Compute Skempton’s Pore 

Pressure Coefficient (B) in Soil Saturation 

 

import tkinter as tk 

from tkinter import filedialog, messagebox 

import pandas as pd 

import matplotlib.pyplot as plt 

from matplotlib.backends.backend_tkagg import 

FigureCanvasTkAgg 

 

class SkemptonBAnalysis: 

    def __init__(self): 

        """GUI application for calculating Skempton's B 

parameter during soil saturation""" 

        self.root=tk.Tk() 

        self.setup_ui() 

         

    def setup_ui(self): 

        """Initialize user interface components""" 

        self.root.title("Skempton's B Parameter Analysis") 

        self.file_paths=[None]*3 

        self.create_file_buttons() 

        tk.Button(self.root, text="Calculate B Parameters",  

                command=self.analyze_data).pack(pady=10) 

     

    def calculate_b(self, delta_p_cell, delta_u): 

        """Compute Skempton's B parameter 

        Args: 

            delta_p_cell: Change in cell pressure (kPa) 

            delta_u: Change in pore pressure (kPa) 

        Returns: 

            B-value (unitless) 

        """ 

        return delta_u / delta_p_cell if delta_p_cell >10 else 

None # 10 kPa threshold 

 

    def analyze_test_data(self, file_path): 

        """Process triaxial test log file 

        Args: 

            file_path: Path to .log file 

        Returns: 

            dict: Contains max B-value and displacement data 

        """ 

        df=pd.read_csv(file_path, delim_whitespace=True, 

skiprows=1) 

        results=[] 

         

        for i in range(1, len(df)): 

            delta_p=df['cell_press'].iloc[i] - 

df['cell_press'].iloc[i-1] 

            delta_u =df['pore_press'].iloc[i]-

df['pore_press'].iloc[i-1] 

             

            if delta_p >10 and delta_u >0: # Validation criteria 

                b_value =self.calculate_b(delta_p, delta_u) 

                results.append({ 

                    'cell_press': df['cell_press'].iloc[i], 

                    'pore_press': df['pore_press'].iloc[i], 

                    'B': b_value 

                }) 

         

        return { 

            'initial_disp': df['displacement'].iloc[0], 

            'final_disp': df['displacement'].iloc[-1], 

            'max_B': max(r['B'] for r in results) if results else 

None, 

            'full_curve': results 

        } 

 

    def plot_results(self, test_data): 

        """Generate B-value vs cell pressure plot""" 

        fig, ax=plt.subplots(figsize=(8,5)) 

        for i, data in enumerate(test_data): 

            if data['full_curve']: 

                x=[d['cell_press'] for d in data['full_curve']] 

                y=[d['B'] for d in data['full_curve']] 

                ax.plot(x, y, label=f"Test {i+1}",  

                       linestyle=['-','--',':'][i], color='black') 

         

        ax.set_xlabel("Cell Pressure (kPa)") 

        ax.set_ylabel("Skempton's B Parameter") 

        ax.legend() 

        return fig 

 

if __name__=="__main__": 

    app = SkemptonBAnalysis() 

    app.root.mainloop() 

 

Appendix B: Automated Consolidation Analysis Tool 

(Python Implementation) 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import math 

from scipy.optimize import curve_fit 

 

class ConsolidationAnalyzer: 

    """ 

    Automated analysis of oedometer/consolidation test data 

    Implements standard methods (log-time and √t) per 

ASTM D2435 

    """ 

     

    def __init__(self, test_files): 

        """ 

        Initialize with test data files 

        Args: 

            test_files: List of paths to .log test files 

        """ 

        self.test_data=[self._load_test_data(f) for f in 

test_files] 

         

    def _load_test_data(self, filepath): 

        """Load and preprocess consolidation test data""" 

        df=pd.read_csv(filepath, delim_whitespace=True, 

skiprows=3, 

                        names=['time', 'load', 'disp', 'cell_p', 

'back_p', 

                              'pore_p', 'axial_strain', 'vol_change']) 
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        df['sqrt_time']=df['time'].apply(math.sqrt) 

        return df 

 

    def calculate_cv_sqrt_method(self, test_df): 

        """Determine coefficient of consolidation (cv) using 

Taylor's √t method""" 

        # Implementation of Taylor's method... 

        return cv, t90 # Returns cv (m²/yr) and t90 (min) 

 

    def calculate_cc_log_method(self, test_df): 

        """Calculate compression index (Cc) using 

Casagrande's log-time method""" 

        # Implementation of Casagrande's method... 

        return cc, pc # Returns Cc (unitless) and 

preconsolidation pressure (kPa) 

 

    def generate_plots(self, test_index): 

        """Create standardized consolidation plots""" 

        fig, (ax1, ax2)=plt.subplots(1, 2, figsize=(12,5)) 

         

        # Time-settlement plot 

        ax1.plot(self.test_data[test_index]['time'], 

                self.test_data[test_index]['disp'], 

                'k-', label='Settlement') 

        ax1.set_xlabel("Time (min)") 

        ax1.set_ylabel("Displacement (mm)") 

         

        # √t plot with cv calculation 

        ax2.plot(self.test_data[test_index]['sqrt_time'], 

                self.test_data[test_index]['disp'], 

                'k-', label='√t Method') 

        # Add cv calculation annotations... 

         

        return fig 

 

    def generate_report(self): 

        """Compile analysis results into summary table""" 

        results =[] 

        for i, df in enumerate(self.test_data): 

            cv, _=self.calculate_cv_sqrt_method(df) 

            cc, _=self.calculate_cc_log_method(df) 

            results.append({ 

                'Test': i+1, 

                'Cv (m²/yr)': f"{cv:.2e}", 

                'Cc': f"{cc:.3f}", 

                'Final Settlement (mm)': f"{df['disp'].iloc[-

1]:.2f}" 

            }) 

        return pd.DataFrame(results) 

 

# Example usage 

if __name__=="__main__": 

    analyzer=ConsolidationAnalyzer(["test1.log", 

"test2.log", "test3.log"]) 

    report=analyzer.generate_report() 

    fig=analyzer.generate_plots(0) 

    plt.show() 

 

Appendix C: Python Implementation of Shear Strength 

Failure Criteria 

 

import pandas as pd 

import numpy as np 

from scipy.optimize import curve_fit 

import matplotlib.pyplot as plt 

 

class ShearStrengthAnalyzer: 

    """ 

    Implements Mohr-Coulomb failure criteria analysis from 

triaxial test data 

    Calculates φ (friction angle) and c (cohesion) per ASTM 

D3080 

    """ 

     

    def __init__(self, test_data): 

        """ 

        Initialize with processed test data 

        Args: 

            test_data: List of DataFrames containing: 

                - σ₁: Major principal stress (kPa) 

                - σ₃: Minor principal stress (kPa) 

                - σ'₁: Effective major stress (kPa) 

                - σ'₃: Effective minor stress (kPa) 

        """ 

        self.test_data=test_data 

        self.results={ 

            'total': {'φ': None, 'c': None}, 

            'effective': {'φ': None, 'c': None} 

        } 

     

    def mohr_coulomb_fit(self, stresses): 

        """Fit Mohr-Coulomb failure envelope 

        Args: 

            stresses: Array of (σ, τ) pairs 

        Returns: 

            c (kPa), φ (radians) 

        """ 

        def envelope(σ, c, tanφ): 

            return c+σ * tanφ 

             

        σ=stresses[:,0] 

        τ=stresses[:,1] 

        popt, _=curve_fit(envelope, σ, τ) 

        return popt[0], np.arctan(popt[1])  # c, φ 

 

    def calculate_parameters(self): 

        """Compute total and effective strength parameters""" 

        # Prepare stress states at failure 

        total_stresses =[] 

        effective_stresses =[] 

         

        for test in self.test_data: 

            failure_idx=test['deviator_stress'].idxmax() 

            σ1=test.loc[failure_idx, 'σ₁'] 

            σ3=test.loc[failure_idx, 'σ₃'] 

            σ1_eff=test.loc[failure_idx, 'σ\'₁'] 

            σ3_eff=test.loc[failure_idx, 'σ\'₃'] 

             

            # Convert to (σ, τ) space 

            total_stresses.append([ 

                (σ1+σ3)/2, # σ 

                (σ1-σ3)/2  # τ 

            ]) 

            effective_stresses.append([ 

                (σ1_eff+σ3_eff)/2, 

                (σ1_eff-σ3_eff)/2 

            ]) 
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        # Fit failure envelopes 

        self.results['total']['c'], 

φ_total=self.mohr_coulomb_fit( 

            np.array(total_stresses)) 

        self.results['effective']['c'], 

φ_eff=self.mohr_coulomb_fit( 

            np.array(effective_stresses)) 

         

        self.results['total']['φ']=np.degrees(φ_total) 

        self.results['effective']['φ']=np.degrees(φ_eff) 

         

        return self.results 

 

    def plot_mohr_circles(self): 

        """Generate Mohr circle visualization""" 

        fig, ax=plt.subplots(figsize=(8,6)) 

         

        # Plotting logic for Mohr circles... 

        # Includes failure envelopes for total and effective 

stresses 

         

        ax.set_xlabel("Normal Stress (kPa)") 

        ax.set_ylabel("Shear Stress (kPa)") 

        return fig 

 

if __name__=="__main__": 

    # Example usage 

    test_data=[pd.read_csv(f"test_{i}.csv") for i in range(3)] 

    analyzer=ShearStrengthAnalyzer(test_data) 

    results=analyzer.calculate_parameters() 

     

    print(f"Total Stress-c: {results['total']['c']:.1f} kPa, φ: 

{results['total']['φ']:.1f}°") 

    print(f"Effective Stress-c': {results['effective']['c']:.1f} 

kPa, φ': {results['effective']['φ']:.1f}°") 

     

    analyzer.plot_mohr_circles() 

    plt.show() 

 

Appendix D: Python Script for Elastic Modulus 

Determination 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import linregress 

 

class ElasticModulusAnalyzer: 

    """ 

    Determines elastic modulus (E) from triaxial test data 

    Implements ASTM D3999 (Standard Test Methods for 

Modulus of Elasticity) 

    """ 

     

    def __init__(self, stress_strain_data): 

        """ 

        Initialize with stress-strain data 

        Args: 

            stress_strain_data: DataFrame containing: 

                - axial_strain: Axial strain (decimal) 

                - deviator_stress: Deviator stress (kPa) 

        """ 

        self.data=stress_strain_data 

        self.modulus=None # Will store calculated modulus 

(kPa) 

        self.r_squared=None # Will store regression quality 

metric 

         

    def calculate_initial_modulus(self, strain_range=(0, 

0.5)): 

        """ 

        Calculate initial tangent modulus in specified strain 

range (%) 

        Args: 

            strain_range: Tuple of (min, max) strain percentage 

for linear region 

        Returns: 

            Modulus in kPa, regression statistics 

        """ 

        # Convert percentage to decimal 

        min_strain=strain_range[0]/100 

        max_strain=strain_range[1]/100 

         

        # Filter data in elastic range 

        elastic_data=self.data[ 

            (self.data['axial_strain']>=min_strain) & 

            (self.data['axial_strain']<=max_strain) 

        ] 

         

        # Perform linear regression 

        slope, intercept, r_value, _, _=linregress( 

            elastic_data['axial_strain'], 

            elastic_data['deviator_stress'] 

        ) 

         

        self.modulus=slope#kPa 

        self.r_squared=r_value**2 

         

        return self.modulus, self.r_squared 

     

    def calculate_secant_modulus(self, strain_point=0.5): 

        """ 

        Calculate secant modulus at specified strain (%) 

        Args: 

            strain_point: Strain percentage for modulus 

calculation 

        Returns: 

            Secant modulus in kPa 

        """ 

        target_strain=strain_point/100 

        nearest_idx=(self.data['axial_strain'] - 

target_strain).abs().idxmin() 

         

        stress=self.data.loc[nearest_idx, 'deviator_stress'] 

        strain=self.data.loc[nearest_idx, 'axial_strain'] 

         

        return stress/strain # kPa 

     

    def plot_modulus_determination(self): 

        """Generate standardized plot showing modulus 

calculation""" 

        fig, ax=plt.subplots(figsize=(8,6)) 

         

        # Full stress-strain curve 

        ax.plot(self.data['axial_strain']*100, 

               self.data['deviator_stress'], 

               'k-', label='Test Data') 
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        # Highlight elastic region if calculated 

        if self.modulus: 

            elastic_data=self.data[ 

                

(self.data['axial_strain']>=self.modulus_range[0]) & 

                

(self.data['axial_strain']<=self.modulus_range[1]) 

            ] 

            ax.plot(elastic_data['axial_strain']*100, 

                   elastic_data['deviator_stress'], 

                   'ro', label='Elastic Region') 

             

            # Add regression line 

            x_vals=np.array([self.modulus_range[0], 

self.modulus_range[1]])*100 

            y_vals=self.modulus*x_vals/100 

            ax.plot(x_vals, y_vals, 'b--', 

                   label=f'E={self.modulus/1000:.1f}MPa 

(R²={self.r_squared:.3f})') 

         

        ax.set_xlabel("Axial Strain (%)") 

        ax.set_ylabel("Deviator Stress (kPa)") 

        ax.legend() 

        return fig 

 

# Example Usage 

if __name__=="__main__": 

    # Load test data (example) 

    test_data=pd.read_csv("triaxial_test.csv") 

    analyzer=ElasticModulusAnalyzer(test_data) 

     

    # Calculate initial modulus in 0-0.5% strain range 

    E_initial, r2= 

analyzer.calculate_initial_modulus(strain_range=(0, 0.5)) 

    print(f"Initial Modulus: {E_initial/1000:.1f}MPa 

(R²={r2:.3f})") 

     

    # Calculate secant modulus at 0.5% strain 

    E_secant = 

analyzer.calculate_secant_modulus(strain_point=0.5) 

    print(f"Secant Modulus at 0.5% strain: 

{E_secant/1000:.1f} MPa") 

     

    # Generate plot 

    fig=analyzer.plot_modulus_determination() 

    plt.show() 

 

Appendix E: Python Implementation of Yield Criteria and 

Elastic Response in Mohr's Constitutive Model 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

 

class MohrCoulombAnalyzer: 

    """ 

    Implements Mohr-Coulomb failure criterion analysis 

with elastic-plastic response 

    Calculates yield parameters (c, φ) and elastic modulus (E) 

per ASTM standards 

    """ 

     

    def __init__(self, test_data): 

        """ 

        Initialize with processed triaxial test data 

        Args: 

            test_data: List of dicts containing: 

                - sigma1: Major principal stress at failure (kPa) 

                - sigma3: Minor principal stress at failure (kPa) 

                - stress_strain: Stress-strain curve DataFrame 

        """ 

        self.test_data = test_data 

        self.results = { 

            'elastic': {'E': None, 'ν': None}, 

            'plastic': {'c': None, 'φ': None} 

        } 

     

    def calculate_elastic_parameters(self): 

        """Determine elastic modulus (E) and Poisson's ratio 

(ν)""" 

        # Average modulus from initial linear region (0.05-

0.5% strain) 

        moduli=[] 

        for test in self.test_data: 

            df=test['stress_strain'] 

            elastic_region=df[(df['strain']>=0.0005)& 

(df['strain']<=0.005)] 

            if len(elastic_region)>2: 

                slope, _, r_value, _, _=linregress( 

                    elastic_region['strain'], 

                    elastic_region['deviator_stress'] 

                ) 

                if r_value**2>0.98: # Quality threshold 

                    moduli.append(slope) 

         

        self.results['elastic']['E']=np.mean(moduli) if moduli 

else None 

        return self.results['elastic'] 

 

    def calculate_yield_parameters(self): 

        """Determine Mohr-Coulomb c and φ from failure 

points""" 

        sigma=[] 

        tau=[] 

         

        for test in self.test_data: 

            # Transform to (σ, τ) space 

            sigma.append((test['sigma1']+test['sigma3'])/2) 

            tau.append((test['sigma1']-test['sigma3'])/2) 

         

        # Fit failure envelope: τ=c+σ·tanφ 

        def envelope(s, c, tan_phi): 

            return c+s*tan_phi 

             

        popt, pcov=curve_fit(envelope, sigma, tau) 

         

        self.results['plastic']['c']=popt[0] 

        self.results['plastic']['φ']= 

np.degrees(np.arctan(popt[1])) 

        return self.results['plastic'] 

    def plot_results(self): 

        """Generate comprehensive yield and elastic response 

plot""" 

        fig, (ax1, ax2)=plt.subplots(1, 2, figsize=(12,5)) 

         

        # Mohr circles and failure envelope 

        self._plot_mohr_circles(ax1) 
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        # Stress-strain with elastic-plastic transition 

        self._plot_stress_strain(ax2) 

         

        return fig 

 

    def _plot_mohr_circles(self, ax): 

        """Plot Mohr circles with failure envelope""" 

        for test in self.test_data: 

            center=(test['sigma1']+test['sigma3'])/2 

            radius=(test['sigma1']-test['sigma3'])/2 

            circle=plt.Circle((center, 0), radius, fill=False) 

            ax.add_patch(circle) 

         

        # Plot failure envelope 

        sigma=np.linspace(0, max(t['sigma1'] for t in 

self.test_data), 100) 

        tau=self.results['plastic']['c']+sigma * 

np.tan(np.radians(self.results['plastic']['φ'])) 

        ax.plot(sigma, tau, 'r--', label='Failure Envelope') 

         

        ax.set_aspect('equal') 

        ax.set_xlabel("Normal Stress (kPa)") 

        ax.set_ylabel("Shear Stress (kPa)") 

 

if __name__=="__main__": 

    # Example usage 

    test_data=[ 

        { 

            'sigma1': 450, 'sigma3': 100, 

            'stress_strain': 

pd.read_csv("test1_stress_strain.csv") 

        }, 

        # Additional test data... 

    ] 

     

    analyzer=MohrCoulombAnalyzer(test_data) 

    elastic_params=analyzer.calculate_elastic_parameters() 

    yield_params=analyzer.calculate_yield_parameters() 

     

    print(f"Elastic Modulus: {elastic_params['E']/1000:.1f} 

MPa") 

    print(f"Friction Angle: {yield_params['φ']:.1f}°") 

    print(f"Cohesion: {yield_params['c']:.1f} kPa") 

     

    fig=analyzer.plot_results() 

    plt.show() 

 

Appendix F: Python Implementation of MIT-CAM Stress 

Path Simulation 

 

import tkinter as tk 

from tkinter import filedialog, messagebox, ttk 

import pandas as pd 

import math 

import matplotlib.pyplot as plt 

import numpy as np 

from matplotlib.backends.backend_tkagg import 

FigureCanvasTkAgg 

 

class CambridgeMITApp: 

    def __init__(self, root): 

        """GUI application for analyzing stress paths using 

Cambridge and MIT models""" 

        self.root=root 

        self.root.title("Stress Paths-Cambridge and MIT") 

         

        # Initialize variables and UI components 

        self.file_paths=[None, None, None] 

        self.initial_data=[{}, {}, {}] 

        self.current_case=tk.StringVar(value="1") 

         

        # Create file selection buttons 

        self.create_file_buttons() 

        self.create_case_selection() 

        tk.Button(self.root, text="Generate Plots",  

                 command=self.generate_graphs).pack(pady=10) 

 

    def create_file_buttons(self): 

        """Create buttons for loading test data files""" 

        self.buttons=[] 

        for i in range(3): 

            btn=tk.Button(self.root, text=f"Select File {i+1}", 

                          command=lambda idx=i: 

self.load_file(idx), 

                          width=30) 

            btn.pack(pady=5) 

            self.buttons.append(btn) 

 

    # [...] (Other methods continue with same level of 

documentation) 

 

    def process_data(self, file_path, index): 

        """Process triaxial test data from .log files 

        Args: 

            file_path: Path to test data file 

            index: Test case index (0-2) 

        Returns: 

            pd.DataFrame with calculated stresses and strains 

        """ 

        try: 

            df=pd.read_csv(file_path, sep=r'\s+', skiprows=3) 

            # Data processing calculations [...] 

            return df 

        except Exception as e: 

            messagebox.showerror("Processing Error", str(e)) 

            return pd.DataFrame() 

 

if __name__=="__main__": 

    root=tk.Tk() 

    app=CambridgeMITApp(root) 

    root.mainloop() 
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