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The integration of spline models and Gaussian processes in hydrological studies 

represents an innovative approach, particularly for developing countries where flow 

data are scarce but water level records are more accessible. This study focuses on the 

'Bridge Tocache' station in Peru, where a procedure was developed and validated to 

generate historical flow series using these two models. The spline model uses recorded 

water levels as input, while the Gaussian process model incorporates both water levels 

and the month of the year, capturing seasonal patterns. To address missing water level 

data, a stochastic process based on kernel density estimation was applied, segmenting 

the year into 24 fortnights. The models performed well, achieving coefficients of 

determination (R²) above 0.98. Statistical comparisons confirmed no significant 

differences between the generated and observed flow series in terms of mean, standard 

deviation, skewness, and kurtosis. The adaptability of these models lies in their 

independence from geographic-specific assumptions, making them generalizable to 

other hydrometric stations and regions with limited data availability. This methodology 

offers a cost-effective alternative for improving hydrological monitoring, reducing 

reliance on expensive equipment. Its broader applicability extends to sustainable water 

resource management, enhancing planning and decision-making in regions with limited 

monitoring capabilities. 
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1. INTRODUCTION

In water resources evaluation and management, having 

complete historical flow series is essential for calibrating and 

validating hydrological models and supports a wide range of 

applications. These include drought analysis, flood modeling, 

hydrological risk management, hydraulic works planning, 

water supply assessment, aquatic ecosystem conservation, and 

climate change adaptation [1]. Such applications encompass 

assessing availability in unmonitored basins [1], modeling 

water supply for human, agricultural, and industrial uses [2, 

3], analyzing future scenarios under climate change conditions 

[4], flood modeling in urban and rural basins [5, 6], drought 

risk evaluation [7], analyzing extreme events for resilient 

infrastructure [8, 9], calibrating hydrological and sediment 

models [10], validating base flow forecast models [11], 

adjusting parameters in distributed and semi-distributed 

models [12, 13], planning reservoirs [14, 15], integrated water 

resource management in transboundary basins [16], assessing 

the impacts of water infrastructure projects [17], determining 

ecological flows [18, 19], analyzing the impact of water 

withdrawals on river biodiversity [20, 21], designing and 

sizing irrigation channels, levees, and river defenses [22], 

evaluating drainage capacity [23], planning flood protection 

measures [24], characterizing drought events and recurrence 

[25, 26], and assessing flow availability under climate change 

[27, 28]. The availability of complete historical flow data is 

therefore a fundamental requirement to ensure robust results 

and informed decision-making in water resource management. 

However, in many developing countries such as Peru, there 

is a significant information gap: while hydrometric stations 

often have extensive historical water level (stage) records, 

flow data series are relatively recent (for instance, from 2020-

2024), limiting the ability to perform long-term hydrological 

analyses. This shortfall underlines the need for robust 

frameworks capable of generating flow data from limited 

information sources, thereby addressing the lack of complete 

historical flow data. Indeed, the literature has explored 

methodologies for estimating flows from water levels using 

remote sensing observations and rating curves, as in the Yukon 

River in Alaska [29], through recession analysis in watersheds 

[30], employing rating curve models such as in the Gono River 

in Japan [31], or integrating satellite altimetry and hydraulic 

characteristics as in the Mekong River and other systems [32, 

33]. These approaches highlight the potential of leveraging 

historical water level records to extend available flow series 
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[34-36]. 

In this context, this article aims to develop and validate a 

procedure for generating historical flow data using available 

water level records. Specifically, the "Bridge Tocache" station 

will be analyzed using two approaches: a spline model based 

on water level data, and a Gaussian process model that 

incorporates temporal information to improve flow 

predictions. Additionally, a stochastic process based on kernel 

density was implemented to fill missing water level data 

periods, thereby contributing to obtaining more extensive and 

reliable historical flow series essential for water resource 

management and infrastructure development. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Location 

 

The 'Bridge Tocache' station is located in the lower part of 

the Upper Huallaga interbasin, one of the largest in Peru. Its 

coordinates are latitude -8.184750, longitude -76.507890, and 

altitude 479 meters above sea level. Flow data from the station 

exhibit significant seasonality influenced by the tropical 

climate, with peaks between January and March (e.g., 1,990.2 

m³/s in March) and lows between June and August (e.g., 

378.59 m³/s in August). This seasonal variability is crucial for 

understanding hydrological patterns and managing water 

resources effectively. 

The Tocache station is located in the lower part of the 

interbasin, where flows from upstream areas converge, making 

it an ideal monitoring point as shown in Figure 1. This location 

provides representative and reliable measurements of the main 

channel, which are essential for hydrological studies and 

resource planning. The growing water demand in the 

interbasin further underscores the importance of this station. 

For instance, agricultural water permits increased from one in 

1998 to 124 in 2018, while over 38% of households still lack 

access to potable water. 

 

 
 

Figure 1. Location of the study station 

 

2.2 Data preprocessing 

 

Data processing was performed using a workflow (Figure 

2), to ensure the quality of the data used in the models, initial 

preprocessing was performed on both water level and flow 

data. During this stage, outliers or anomalous values that could 

compromise the accuracy of subsequent modeling were 

removed. The technique used for this purpose was percentiles, 

where appropriate thresholds were set to identify and remove 

values outside a reliable range. Previous studies have 

demonstrated the importance of removing these outliers to 

improve the accuracy of hydrological models, using similar 

approaches to ensure data representativeness [37]. 
 

 
 

Figure 2. Workflow 

 

2.3 Model construction 

 

Flow modeling was conducted based on water level 

information and month of the year, using two approaches: 

Spline Model: A spline model was constructed to relate 

water levels with measured flows in the recent period (2020-

2023). This model used only water level data as input and was 

adjusted using a parameter called adjustment factor. Splines 

allowed for precise modeling of nonlinear relationships and 

were well-suited for this type of problem [38]. The spline 

interpolation can be mathematically expressed as: 

 

𝑆(𝑥) =∑𝑎𝑖𝐵𝑖(𝑥)

𝑛

𝑖=1

 (1) 

 

where, 𝑆(𝑥) is the spline function, 𝐵𝑖(𝑥) are the basis spline 

functions, and 𝑎𝑖  are the coefficients determined by the 

adjustment factor. The adjustment factor 𝛼  controls the 

smoothness of the spline, balancing the trade-off between 

overfitting and underfitting the data. 

Gaussian Process Model: A machine learning model based 

on Gaussian processes was implemented, which took water 

level data and the month of the year as inputs for the recent 

period (2020-2024). Including the month allowed the model to 

capture seasonal patterns and improve prediction accuracy. 

Gaussian processes were particularly useful for this type of 

problem due to their ability to estimate prediction uncertainty 

[39]. The Gaussian process can be defined by its mean 

function 𝑚(𝑥) and covariance function 𝑘(𝑥, 𝑥′), such that: 
 

𝑓(𝑥) ∼ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (2) 

 

where, 𝑓(𝑥) represents the flow prediction, 𝑚(𝑥) is typically 

assumed to be zero, and 𝑘(𝑥, 𝑥′) is the kernel function that 

defines the covariance between any two input points 𝑥 and 𝑥′. 
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2.4 Completion of missing water level data 

 

Given that there were periods without recorded water level 

data, a stochastic process was applied to fill these gaps. To 

account for the hydrological variability and seasonal patterns 

of the region, the year was divided into 24 fortnights. This 

segmentation aligns with the bimodal rainfall distribution 

observed in the study area, allowing for more accurate 

modeling of water level fluctuations. Frequency distributions 

were then generated using kernel density estimation for each 

of these fortnights. With these distributions, random data were 

generated to follow the observed statistical behavior, allowing 

for the completion of missing periods. This process was 

repeated for all fortnights of the year, resulting in a continuous 

and consistent water level series [40]. 

 

2.5 Generation of the historical flow series 

 

Once the water level data were completed and the flow 

prediction models adjusted, the historical flow series 

generation was carried out. The trained models were applied 

to estimate flows from 1997 to 2023. In this way, an extended 

and consistent database was obtained, which can be used for 

hydrological studies, model calibration, and infrastructure 

planning. 

 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Data preprocessing 

 

Data preprocessing is essential to ensure the quality of 

hydrological models. Four water level data points and three 

flow data points that were outside the acceptable ranges 

defined by the 0 and 99.95 percentiles for water level, and 0.2 

and 99.83 percentiles for flow, were removed. This procedure 

filtered extreme values that could distort the results. These 

threshold values are consistent with those used in previous 

studies [41, 42], effectively distinguishing between spurious 

anomalies and significant hydrological events. 

The use of percentiles to detect and remove outliers is a 

well-recognized methodology [34]. Previous studies have 

shown that higher percentiles improve accuracy in estimating 

extreme values in flow records, supporting this approach [34]. 

However, it is essential to ensure that the removed data do not 

represent rare but significant hydrological events. Alternative 

methods, such as modified Z-scores, provide additional 

options for outlier detection in water level data [43]. 

 

 
 

Figure 3. Data preprocessing 

 

The methodology primarily relied on visual analysis to 

define the percentile thresholds, as shown in Figure 3. 

Although this method facilitates outlier identification, 

incorporating additional statistical techniques could enhance 

the objectivity of the process. Balancing the removal of 

outliers with the preservation of data reflecting legitimate 

extreme conditions is crucial, thus maintaining the integrity 

and representativeness of the data in modeling. 

 

3.2 Modeling 

 

In this study, 590 pairs of water level or stage and flow data 

collected between January 2020 and June 2023 at the 'Bridge 

Tocache' station were analyzed. To model the relationship 

between water stage and flow, two main approaches were 

employed: a spline model and a model based on Gaussian 

processes. The spline model was developed using a smoothing 

factor of 0.85. Data points that deviated significantly from the 

general trend (i.e., those outside 3 standard deviations from the 

fitted line) were considered outliers and removed from the 

analysis, resulting in the exclusion of 8 data pairs (Figure 4). 

This approach is consistent with common practices in 

hydrological analysis, where removing outliers can improve 

model accuracy [43, 44]. The spline model achieved a 

coefficient of determination (R²) of 0.98, indicating an 

excellent fit to the observed data. 

The effectiveness of splines in modeling nonlinear 

relationships in hydrological data has been highlighted in 

previous studies [45]. Splines provide greater flexibility in 

curve fitting, which is crucial for adequately representing the 

relationships between water stage and flow in rivers with 

changing characteristics. However, it is important to consider 

that outlier removal should be done cautiously. It is noted that 

excluding extreme values may lead to underestimating 

significant hydrological events, such as extreme floods, which 

are crucial for infrastructure design and risk management [46]. 
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Figure 4. Spline data cleaning 

 

 
 

Figure 5. Performance of the spline and machine learning (Gaussian processes) models in flow prediction 

 

The Gaussian process-based model incorporated water 

stage and month of the year as input variables in numerical 

format, allowing it to capture seasonal patterns and improve 

the model's robustness against temporal variations. The kernel 

hyperparameters were adjusted to optimize model 

performance, obtaining values of 0.8728, 18.9816, and 

232.5542, while the sigma (noise) was 86.5131. The estimated 

beta coefficients (-227.3652, 661.1947, and -1.3325) reflect 

the influence of each variable on flow prediction. This model 

also achieved an R² of 0.98, demonstrating its high capacity to 

model flow variability. 
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3.3 Model sensitivity analysis to outliers and extreme 

events 

 

Our analysis demonstrates that while outlier removal 

significantly enhances model performance, as evidenced by 

the high R² values (0.98) for both models, failing to remove 

outliers severely degrades the models' ability to predict rare 

events (see Figure 5). The spline model without outlier 

removal not only showed a poor R² of -0.60 but also exhibited 

inconsistent predictions, whereas the Gaussian process model, 

although more robust, still performed inadequately with an R² 

of 0.23. These findings underscore the importance of proper 

outlier management to ensure accurate prediction of critical 

hydrological events [47]. 

The use of Gaussian processes in hydrology has gained 

attention due to their ability to handle uncertainties and model 

complex nonlinear relationships [48]. Gaussian process 

regression has been applied to monthly flow predictions, 

showing that this approach outperforms traditional models in 

accuracy and offers more reliable estimates [49]. Including 

seasonal variables, such as the month of the year, enhances the 

model’s ability to capture temporal patterns, which is essential 

in hydrological systems affected by climate cycles. 

Both models in this study proved effective for predicting 

flows from historical water stage data, validating the approach 

used to generate an extended historical flow series at the 

'Bridge Tocache' station. The high accuracy achieved with 

both methods suggests they can be applied in future 

hydrological model calibration studies and integrated water 

resource management in the Huallaga Basin. 

The combination of spline-based models and Gaussian 

processes provides a robust tool to address the inherent 

complexity of hydrological systems. While splines offer 

flexibility in curve fitting and efficiently handle nonlinear 

relationships, Gaussian processes provide a probabilistic 

structure that allows for quantifying prediction uncertainty 

[42]. This dual approach aligns with recommendations to 

integrate different methodologies to improve understanding 

and prediction of hydrological processes [50]. For example, 

spline-based approaches have been effectively used to 

represent nonlinear runoff-generation mechanisms and 

capture abrupt changes in flow regimes. A notable case is the 

application of a B-spline quantile regression model at the 

Shigu station on the Jinsha River in China. This model 

processed daily runoff data and successfully generated 

predictive intervals with over 95% coverage, achieving grade-

A accuracy with a deterministic coefficient (R²≥0.9). The 

model also constructed probability density functions that 

provided detailed insights into uncertainty and outperformed 

state-of-the-art methods in terms of robustness and 

computational efficiency [51]. Similarly, Gaussian process 

models have been employed to generate reliable predictive 

intervals for monthly streamflow forecasts. An application in 

five highly seasonal rivers in Ethiopia demonstrated their 

effectiveness in quantifying uncertainty under extreme 

climatic conditions, such as temperature increases up to 5℃ 

and precipitation variations of ±30%. These models provided 

consistent predictions and robust representations of 

uncertainty, even under data-scarce conditions, making them 

valuable tools for water resource management and climate 

change planning [52]. 

 

 
 

Figure 6. Kernel density for height distributions 

 

3.4 Stochastic completion of missing water level data 

 

During the process of completing water level data, a total of 

1,170 missing data points were identified for the period 1996-

2023. The water level data presented a normal distribution 

with certain asymmetries in some fortnights of the year. 

Specifically, in some fortnights, water levels were lower 

compared to others, which may be due to the river's 

seasonality. 

To address the missing data, kernel density estimation 

(KDE) distributions were used for each of the 24 fortnights of 

the year (see Figure 6). This approach allows estimating the 

probability density function of the data without assuming a 

specific parametric form, which is especially useful when the 
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data exhibit asymmetries or multimodalities [53]. Applying 

KDE to each fortnight captures the specific characteristics and 

seasonality of the data during those periods. 

Figure 7 shows the stochastic completion of water level or 

stage data for the 'Bridge Tocache' river station. This 

stochastic imputation method aligns with recommended 

practices in hydrology, where imputation based on 

probabilistic methods may be more suitable than deterministic 

methods in cases with high seasonal variability [54]. 

However, it is important to consider the limitations of this 

approach. Stochastic imputation may introduce additional 

uncertainty into the completed data, and it is essential to 

evaluate the impact of these data on the developed models 

[55]. It must be ensured that the random data generation 

process does not violate the fundamental statistical properties 

of the original time series. 

In similar studies, interpolation and imputation methods 

based on nearest neighbors have been used to fill missing data 

[56]. However, these methods may not adequately capture the 

seasonal variability, or asymmetries present in the data. The 

choice of KDE in this study reflects a careful consideration of 

the specific characteristics of the data and the need to preserve 

their statistical structure. 

Figure 7, where the red lines represent the stochastically 

completed water levels, serves as a useful visual tool to assess 

the effectiveness of the imputation method and verify that the 

completed data integrate coherently with the observed data. 

 

 
 

Figure 7. Height data completion 

 

Table 1. Comparison of distribution metrics 

 

Statistics 

p-valor 

Flow Spline 
Flow Machine 

Learning 

Average 1 1 

Standard Deviation 1 1 

Kurtosis 0.99 0.99 

Skewness 0.98 0.99 

 

3.5 Flow generation 

 

Table 1 compares the statistical characteristics of flows 

generated by two models-one based on splines and the other 

on machine learning-with actual flows, using a rank test to 

evaluate the similarity between distributions. The metrics 

analyzed include the mean, standard deviation, kurtosis, and 

skewness. 

The results obtained for each of these metrics are discussed 

below: 

Mean: The p-values obtained for both comparisons (spline 

model-generated flows vs. actual flows and machine learning 

model-generated flows vs. actual flows) are equal to 1, 

indicating that there is no significant difference between the 

mean values of the modeled flows and the actual flows. This 

demonstrates that both models are capable of accurately 

reproducing the mean flow values (Figure 8), which is a key 

indicator of model quality in terms of overall accuracy. This 

result is consistent with previous studies that highlight the 

importance of capturing the mean in hydrological models to 

ensure reliable predictions [57]. 

Standard deviation: As with the mean, the p-values for the 

standard deviation are also 1 in both comparisons, suggesting 

that the variability or dispersion of the modeled flows does not 

differ significantly from that observed in the actual flows. 

Correctly capturing variability is essential in hydrological 

modeling, as it enables models to adequately reflect the natural 

dynamics and fluctuations of the system [58]. 

Kurtosis: The kurtosis values for both models (0.99) show 

a high similarity with actual flows in terms of the 

concentration of values around the mean. This implies that the 

models do not generate distributions that are either too flat or 

too peaked compared to the actual flow distribution. The 

ability of the models to replicate this metric is relevant in 

hydrological studies, as kurtosis affects the probability of 

extreme events, which are crucial for the design and 

management of water infrastructure [59]. 

Skewness: The skewness values obtained (0.98 for the 

spline model and 0.99 for the machine learning model) 

indicate that the distributions of flows generated by both 

models are nearly perfectly symmetrical compared to the 

actual distribution. The absence of a significant shift to the 

right or left suggests that the models do not introduce an 

artificial bias in the flow estimation, which is fundamental for 

the credibility and accuracy of the predictions [60]. 

p-value thresholds: In statistical analyses, p-values are 

commonly interpreted with a threshold of 0.05, indicating a 

95% confidence level for rejecting the null hypothesis of no 

difference. In this context, p-values exceeding this threshold, 

such as those obtained in this study (all above 0.98), suggest a 

very high degree of similarity between the distributions of 

modeled and observed flows. In some cases, more stringent 

thresholds (e.g., 0.01) or less stringent ones (e.g., 0.10) are 

used depending on the requirements of the analysis. The 

choice of threshold should align with the study objectives, the 

implications of type I and type II errors, and the practical 

significance of the results. The p-values reported here 

reinforce the confidence in the models’ ability to replicate the 

statistical characteristics of observed flows accurately. 

Overall interpretation: The statistical test results indicate 

that both models can replicate with high fidelity the 

fundamental statistical characteristics of the actual flows. This 

is significant because a good hydrological model must not only 

predict accurate mean values but also adequately represent the 

variability, shape, and symmetry of the data distribution [61]. 

The use of range tests to compare distributions is a standard 

practice in hydrological model validation, as it allows for 

assessing whether there are statistically significant differences 

between the modeled and observed distributions [62]. The fact 

that no significant differences were found in any of the metrics 

analyzed reinforces confidence in the predictive capability of 

the models used. 
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Figure 8. Flow generation 

 

It is important to highlight that, although both models show 

similar performance in terms of the metrics analyzed, the 

choice between them may depend on other factors, such as 

computational complexity, interpretability, and data 

availability. Spline-based models are generally simpler and 

may be preferable in situations where simplicity and 

transparency are valued [63]. On the other hand, machine 

learning models, such as those based on Gaussian processes, 

may offer advantages in capturing more complex relationships 

and incorporating multiple predictor variables [42]. 

These results hold practical significance for hydrological 

applications. The similarity in statistical metrics (e.g., mean, 

standard deviation, skewness, and kurtosis) between the 

generated and observed flow series increases confidence in the 

reliability of the extended datasets. Such consistency suggests 

that the generated time series can be used with greater 

assurance in hydrological modeling, water resources planning, 

and risk assessment studies, where the availability of long-

term flow data is crucial. Improved confidence in these metrics 

can support more informed decisions in infrastructure design, 

flood forecasting, and drought management, ultimately 

contributing to more robust and sustainable water management 

strategies. 

 

 

4. CONCLUSIONS 

 

The results of this study confirm the high performance of 

the proposed methodology for generating historical flow series 

from water level data using spline and Gaussian process 

models. Both approaches demonstrated excellent accuracy in 

reproducing observed flows, validating their reliability in 

contexts where flow data are scarce or unavailable. This 

performance highlights the flexibility and robustness of the 

models to capture nonlinear relationships, making them 

especially useful for various hydrological applications. 

The potential of this methodology goes beyond its 

implementation in a single geographic location, as it can be 

adapted to different regions and river basins, provided water 

level records are available. Its capacity for generalization 

positions it as a versatile tool for water resource monitoring on 

a global scale. In particular, by integrating with low-cost 

hydrometric stations that only measure water levels, this 

methodology offers a viable and economical solution for 

countries with limited resources, enabling them to 

significantly improve the monitoring of their water bodies. A 

broader application of these models could facilitate a wider 

geographic coverage, strengthening the integrated 

management of water resources in contexts where access to 

advanced technology is limited. 

Beyond monitoring, this methodology has additional 

practical applications, such as integration into early warning 

systems. By using the generated series to predict extreme 

flows, such as those associated with floods or droughts, it 

could contribute to disaster prevention and risk reduction. 

Furthermore, its flexibility allows for the incorporation of 

additional variables, opening possibilities for optimizing 

irrigation systems, estimating the discharge capacity of 

wastewater, or modeling hydraulic dynamics in more complex 

scenarios. 

In the context of climate change, the methodology could be 

integrated into hydrological models that project future flow 

patterns. For example, extreme flows estimated from climate 

scenarios could be used inversely to determine associated 

water levels and evaluate the potential extent of flooding. This 

would be especially useful in planning resilient infrastructure 

and identifying areas vulnerable to overflows. Thus, the 

methodology not only addresses immediate monitoring needs 

but also provides tools to anticipate and mitigate the impacts 

of a changing climate, contributing to the sustainable 

development of water management policies. 
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