
Combining LiDAR with Cellular Automata Modeling for Thermal Analysis of Building 

Envelope 

Yasser Khaddor1* , Abdes Samed Bernoussi1 , Mohamed Byari2

1 Laboratoire CBM-VR, Faculty of Sciences and Technologies, Abdelmalek Essaadi University, Tangier 90040, Morocco  
2 Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of 

Technology, Garmisch-Partenkirchen 82467, Germany  

Corresponding Author Email: yasser.khaddor@etu.uae.ac.ma

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120401 ABSTRACT 

Received: 20 January 2025 

Revised: 5 March 2025 

Accepted: 10 March 2025 

Available online: 30 April 2025 

Traditional methods for modeling heat transfer in the building envelope often struggle 

to capture complex geometries and include material heterogeneity. In this work, we 

introduce a novel approach combining mathematical modeling through cellular 

automata (CA) with geometrical capturing through light detection and ranging (LiDAR) 

to analyse the thermal performance of building facades. Physical data for the model are 

collected using LiDAR scanning, which provides precise digital representations of 

facade geometry and captures structural complexity, and CA modeling is used to 

simulate heat transfer, accounting for variations in material properties and detailed 

geometric features. We applied the model to a real building in Northern Morocco, the 

results showed the effecet of shading on reducing energy loads of the building. The 

model was evaluated using infrared thermal imaging. By integrating LiDAR as a data 

acquisition tool with mathematical and computational methods, this approach offers a 

robust framework for evaluating the thermal performance of building facades. 
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1. INTRODUCTION

Buildings are considered one of the most consuming sectors 

in the global energy consumption [1], in order to improve their 

energy efficiency and reduce their carbon emissions, it’s 

essential to understand heat transfer dynamics in the building 

envelope [2]. Building envelopes are not considered just 

physical barriers, they are seen as dynamic systems that can 

interact with external environmental stressors like wind, solar 

exposure and outside temperature fluctuations, while ensuring 

inside comfort by controlling internal conditions [3]. 

Mathematical modeling of heat transfer in these systems plays 

a crucial role in advancing sustainable construction practices 

and reducing building energy consumption [4]. 

Methods for analyzing heat transfer in building envelopes 

can struggle with complexity factors, such as heterogeneous 

material properties, complex geometries, and advanced 

designs that use shading devices and high-performance 

materials [5-7]. Thus, we need more advanced computational 

techniques capable of handling such complexities. 

With advancements in data acquisition technologies, such 

as terrestrial light detection and ranging (LiDAR), precise 

measurements can be obtained even with complex geometries 

[8-10]. LiDAR scans provide high-resolution point clouds that 

represent a detailed digital representation of buildings facades, 

this provides valuable inputs for computational simulations. 

LiDAR is used for thermal analysis, we find studies such as 

Wang et al. [11] demonstrated the integration of thermal data 

with LiDAR scans to create virtual representations of energy 

performance in existing buildings, providing a tool that can 

help in energy retrofit decisions. Similarly, projects like 

ThermalMapper [12] illustrate the potential of combining 

LiDAR with thermal imaging to enhance understanding of 

heat loss and energy performance in building envelopes. By 

generating accurate geometric data, LiDAR serves as a 

powerful tool to support thermal simulations [9]. 

Even with the availability of high-resolution geometrical 

data, these approaches have been limited to static assessments. 

Dynamic simulations of heat transfer across building facades 

remain a challenge due to the interplay of physical processes, 

varied material properties, and geometric irregularities [13]. 

Addressing these challenges requires advanced mathematical 

and computational models. 

In this study, we introduce a novel simulation framework 

that combines mathematical modeling using cellular automata 

(CA) for computational simulations of heat transfer, using 

high-resolution LiDAR scans for data acquisition. CA has 

been used as modeling tool for ecological and socio-

environmental applications [14-16]. They are particularly well 

suited for modeling complex systems [17] because they focus 

on localized interactions between discrete elements (cells) 

while preserving a global system perspective. For thermal 

analysis, CA have been applied due to their ability to capture 

complex heat transfer via local interaction rules [18, 19], 

offering computational efficiency over traditional methods. 

However, most studies using CA for thermal analysis use 

predefined networks, resulting in a lack of spatial accuracy. 

This can represent a limitation in thermal modeling using CA. 
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Such a limitation can influence heat transfer dynamics, leading 

to inaccuracies, particularly when applied to heterogeneous 

surfaces with variations in material properties and geometries. 

In contrast to conventional CA approaches that operate on 

generalized spatial grids, the use of LiDAR-derived facade 

geometries and material-specific attributes enables a more 

accurate representation of heat flows on urban surfaces. 

Moreover, by combining the dynamic heat propagation 

capabilities of CA with the spatial accuracy of LiDAR, this 

approach overcomes the limitations of both methodologies. 

Compared to previous studies in which CA is used with 

simplified spatial inputs [20, 21] or using LiDAR for static 

thermal analysis, this work offers a more comprehensive 

modeling framework that improves predictive accuracy in 

building thermal performance assessments. 

 In this study, each cell in our CA model is assigned specific 

thermal properties such as conductivity, heat capacity, and 

density to simulate localized heat transfer processes with high 

accuracy. 

A key innovation of our approach is in its integration of a 

2.5-dimensional representation of building facades, generated 

from LiDAR scans along with CA modeling. This 

combination captures variations in facade geometry while 

maintaining computational efficiency. The framework 

effectively addresses the challenges of heterogeneity and 

complex geometries in real-world building materials, enabling 

detailed simulations of heat flow patterns. By identifying areas 

of significant thermal gain or loss, this approach provides 

insights that simpler models may overlook, contributing to 

more informed strategies for energy efficiency. 

 

 

2. METHODOLOGY 

 

The proposed methodology as illustrated in Figure 1 begins 

with acquiring LiDAR point cloud data, which serves as our 

geometric information. Then we manually identify the facade 

within the point cloud, and define the boundary lines to clearly 

show the facade's limits. As a result, a 2D point cloud 

representation of the facade is generated by removing 

extraneous data points. We then use this cleaned data to refine 

the facade geometry. 

 

 
 

Figure 1. Process of using lidar data points as input of the 

cellular automata multi-scale model 

We adjust the resolution of the data to suit the required 

simulation. Then we assign material attributes to each point. 

This step enables the integration of material heterogeneity into 

our model. Finally, our lattice structure is constructed to 

represent the facade as input to our CA model, making it easier 

to simulate heat transfer dynamics. 

 

2.1 Cellular automata generalities 

 

CA is a discrete computational model where space, time, 

and state are all represented in discrete units [22]. The choice 

of CA over traditional numerical methods is mainly because 

of the balance CA strikes between computational efficiency, 

scalability, and accuracy in heat transfer modeling [23]. While 

finite element methods (FEMs) and finite volume methods 

offer high accuracy, their complex mesh and large systems of 

equations make them computationally prohibitive for large-

scale facade simulations. CA operates on local interaction 

rules. Even with their simplicity, local rules allow complex 

spatial dependencies to be captured without the need for global 

information exchange [24] reducing complexity while 

maintaining spatial resolution. 

A CA is defined by a quadruplet 𝐴(ℒ, 𝒩, 𝑆, 𝑓) with initial 

and boundary conditions, where ℒ is a set of cells, 𝒩 is the 

neighborhood system of cells, 𝑆 is the set of cell states, 𝑓 is the 

transition function of the cell state. 

 

2.1.1 Lattice ℒ 

The lattice ℒ is a network consisting of cells 𝑐 arranged in a 

specific pattern. In our 2D model, cells can be arranged in 

rectangular or hexagonal shapes. 

 

𝐿 = {𝑐𝑖𝑗 | 𝑖, 𝑗 ∈ ℤ2} (1) 

 

2.1.2 Neighborhood 𝒩 

The neighborhood 𝒩(𝑐)  for a cell 𝑐  is the set of cells 

affecting its evolution. Different types of neighborhoods can 

be considered, such as von Neumann, Moore neighborhoods 

or uniform neighborhoods, see Figure 2. 

 

 
 

Figure 2. Neighborhood types 

 

In our model we use uniform neighborhood (Hexagonal 

Lattice): For a hexagonal lattice, each cell is affected by its six 

neighbors. 

 

2.1.3 States set 𝑆 

The set 𝑆 is finite and represents all possible states of each 

cell. States can be values, conditions, or other descriptors 

necessary to describe the evolution of the phenomenon. 

 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘},  𝑘 = 𝑐𝑎𝑟𝑑(𝑆) (2) 

 

2.1.4 Attributes 

To overcome the problem of modeling a complex 
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phenomenon in the case of a heterogeneous medium where the 

cell state depends on several factors and properties that 

characterize the space. In this way, we consider that the cell 

can be associated with a set of space attributes. This approach 

introduced in reference [25] allows us to separate the state of 

the phenomenon and the space characteristics that impact it. 

The attributes are applications linking each cell to a static or 

dynamic space characteristic, defined by Eq. (3). 

 
𝜎: ℒ × 𝐼 → 𝐹𝜎

(𝑐𝑖𝑗 , 𝑡𝜏) ↦ 𝜎𝑡𝜏(𝑐𝑖𝑗)
 (3) 

 

where, ℒ  is the lattice, 𝐼  is the time interval and 𝐹𝜎  is a 

bounded set that represent all the possible value that could be 

taken by a cell attribute. 

 

2.1.5 Transition rules 𝑓 

The CA evolves in discrete time steps, where the state of a 

cell at time 𝑡 + 1 depends on its neighborhood at time 𝑡. 

 

𝑆𝑡+1 = 𝑓 (𝑆𝑡(𝑁(𝑐))) (4) 

 

Transition function 𝑓 allows determining the state of a cell 

𝑐 at an instant 𝑡𝜏+1 depending on its neighborhood state at an 

instant 𝑡𝜏. 

 

2.2 LiDAR points processing 

 

A manual pre-processing analysis was conducted to correct 

the data and convert the data into a 2D.xy format compatible 

with our model input format. Laser scanners, when capturing 

complex scenes, generate millions of points with high density 

and millimeter-level accuracy. To focus solely on the façade 

of interest, we filtered out extraneous environmental points. 

The data was transformed from 3D to 2D, representing the 

façade. The coordinates of the resulting point cloud were 

stored in a (.xyz) format file, which includes both spatial 

coordinates and the "RGB" color data of each point. We then 

exported the data set that enabled the construction of a cellular 

lattice with the same pixel size and adjustable resolution. 

 

2.2.1 Lattice resolution 

The choice of lattice resolution has a significant impact on 

the study of spatiotemporally evolving phenomena and 

computational resources. The choice of a low resolution 

significantly reduces the accuracy of the simulation and 

decreases the exchange of local information associated with 

each cell [26], making communication between these cells 

more complex, requires to build more complex transition 

rules.  

Figure 3 is an illustration of lattice constructions from the 

same data collected from scanning a building. 𝑐𝑎𝑟𝑑(ℒ) refers 

to the number of cells in the lattice. Three different resolution 

ratios are chosen. On ratio 1, is the direct number taken 

filtering unnecessary points from the lidar scan, it contains 

901307 cells. As we increase the resolution ratio the number 

of cells decreases. 

If the resolution ratio is low, the model will require more 

computational resources and extended processing time. 

Therefore, it is essential to strike a balance between resolution 

ratio and computational efficiency to select a lattice for the 

simulation. And that is done by selecting the right on ratio 

value (cell size). 

 
 

Figure 3. Illustration of different cell lattice resolutions from 

the same data collected of LiDAR scan 

 

 

3. APPLICATION: THERMAL DYNAMICS OF 

BUILDING FACADE 

 

The model describes the heat transfer phenomena in the 

building facades to simulate thermal dynamics and shading 

effects on a building facade. 

 

3.1 Lattice 

 

The lattice ℒ  represents a 2.5-dimensional space, where 

each cell corresponds to a section of the building facades. This 

space is discretized based on the LiDAR scan, which provides 

a highly detailed point cloud. Each cell in the lattice has 

associated material properties (e.g., thermal conductivity, heat 

capacity), which are essential for the simulation of heat 

transfer. The shape and arrangement of the cells are 

determined by the dimensions of the building and the 

geometric complexity captured by the scan. We define a 

cellular lattice by Eq. (5). 

 

ℒ = {𝑐𝑖,𝑗}; 𝑖, 𝑗 ∈ ℤ (5) 

 

where, 𝑖  and 𝑗  represent spatial indices in two dimensions, 

with height variation considered as a parameter influencing 

heat exchange processes. The LiDAR point cloud data is 

interpolated to form the facade geometry, ensuring accurate 

representation of shading devices and surface undulations. 

Figure 4 is a house located in Northern Morocco, 

constructed in 2017. This residence is situated near Dikki 

Beach in Tangier, an area known for a warm climate. The 

architectural design of this building reflects the local aesthetic, 

blending modern elements with traditional Moroccan styles. 

The lattice constructed from LiDAR scan, shown in Figure 5, 

is represented by a 2D array, made from a point cloud of 281 

043 points. 

 

 
 

Figure 4. Facade building image (Northen Morocco) 
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Figure 5. Extracted LiDAR scan 

 

3.2 Neighborhood 
 

The neighborhood 𝑁(𝑐)  of a cell 𝑐  defines the set of 

adjacent cells with which it interacts thermally. In this study, 

we use a uniform neighborhood, meaning that each cell 

interacts with its six surrounding neighbors in the horizontal 

plane, as well as neighboring cells in the vertical direction to 

account for facade depth variations. 

This neighborhood structure allows for heat exchange in 

different directions, ensuring that the thermal interactions 

between various facade elements are captured accurately. 

 

3.3 States 
 

We define a range of hot, cold, and comfortable surface 

conditions based on the meteorological data of the studied 

region and the material properties of the surface. For instance, 

a surface considered cold in a hot climate may be perceived as 

comfortable in a colder climate. Taking into account these 

ranges, we consider these states: 

 

{

𝑠𝑡𝑎𝑡𝑒 0: 𝑐𝑜𝑙𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒: 𝐼𝑓 𝑇0 ≤ 𝑇𝑡 ≤ 𝑇1

𝑠𝑡𝑎𝑡𝑒 1: 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝐼𝑓 𝑇1 < 𝑇𝑡 ≤ 𝑇2

𝑠𝑡𝑎𝑡𝑒 3: ℎ𝑜𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒: 𝐼𝑓 𝑇2 < 𝑇𝑡 ≤ 𝑇3

 (6) 

 

The cell states encode information about the energy stored 

𝑄 and temperature distribution 𝑇. The choice of the number n 

and values of 𝑇𝑖(0 ≤ 𝑖 ≤ 3) depend on the considered study 

case. State transition happened according to transition rules. 

 

3.4 Attributes 

 

Table 1 represents cells attributes considered in the model. 

 

Table 1. Attribute set considered in model 

 
Attribute Symbol Value Range 

Temperature T ℒ → ℝ 

Shading status S ℒ → [0, 1] 
Thermal conductivity λ ℒ → ℝ+ 

Density ρ ℒ → ℝ 

Heat capacity Cp ℒ → ℝ 

Emissivity Ε ℒ → [0, 1] 
Reflexivity α ℒ → [0, 1] 

Convective coefficient hconv ℒ → ℝ+ 

 

3.5 Transition rules 

 

The local transition function 𝑓 governs how the state of a 

cell evolves over time based on its own properties and the 

states of its neighboring cells. The heat transfer mechanisms 

considered in this study include: 

Heat diffusion with neighboring cells: Heat diffusion is the 

process by which thermal energy spreads from regions of 

higher temperature to regions of lower temperature within a 

material. It’s governed by the heat exchanged between cells 

via conduction. 

 

𝑄diffusion(𝑐𝑖,𝑗) = ∑ 𝛥𝑄𝑡(𝑛)

6

𝑛=1

 (7) 

 

where, 𝑛 indicates the number of the neighboring cells. 
 

𝛥𝑄𝑡(𝑛) = 𝐾𝑡(𝑐𝑖,𝑗 , 𝑛) (𝑇𝑡(𝑐𝑖𝑗) − 𝑇𝑡(𝑛)) (8) 

 

𝐾𝑡(𝑐𝑖,𝑗, 𝑛) is the equivalent thermal conduction coefficient 

at instant 𝑡. Note that the thermal conductivity 𝜆(𝑛) of each 

cell around the central cell may differ. 𝐾𝑡(𝑐𝑖,𝑗 , 𝑛) is calculated 

using Eq. (9). 

 

𝐾𝑡(𝑐𝑖,𝑗, 𝑛) =
1

𝑅𝑡ℎ𝑡(𝑐𝑖,𝑗, 𝑛)
=

1

𝑑/2
𝜆𝑡(𝑛)

+
𝑑/2

𝜆𝑡(𝑐𝑖𝑗)

 
(9) 

 

where, 𝜆𝑡(𝑐𝑖𝑗) is thermal conductivity of cell 𝑐𝑖𝑗  at instant t, 

𝜆𝑡(𝑛) is thermal conductivity of neighbor cell 𝑛 at instant t, d 

is the distance between the center of cell 𝑐𝑖𝑗  and its neighbor 

cell 𝑛. Distance is calculated from the center of the cells. 

Heat loss or gain with external environment: 

 

𝑄convection(𝑐𝑖,𝑗) = ℎconv ⋅ (𝑇ambient − 𝑇𝑡(𝑐𝑖,𝑗)) (10) 

 

where, ℎconv  is the convective heat transfer coefficient and 

𝑇ambient is the ambient air temperature. 

Solar radiation input: 

 

𝑄solar(𝑐𝑖,𝑗) = 𝑆𝑡(𝑐𝑖,𝑗) ⋅ (1 − 𝛼) ⋅ 𝐼solar (11) 

 

where, 𝐼solar is the solar irradiance (W/m2) at time 𝑡 and 𝛼 is 

the reflectivity of the façade material 𝑆 is the shading factor. 

Temperature update equation: 

 

𝑇𝑖,𝑗
𝑡+1 = 𝑇𝑖,𝑗

𝑡 +
𝛥𝑡

𝜌 ⋅ 𝑐
(𝑄diffusion + 𝑄solar + 𝑄convection) (12) 

 

where, 𝛥𝑡 is the time step interval. 

 

3.6 Boundary conditions 

 

Boundary conditions allow us to integrate indoor values into 

our model. These values are collected from spatial and thermal 

data, such as indoor temperature. Three types of boundary 

conditions can be incorporated into our model: 

- Dirichlet boundary condition, in this type the temperature 

at the boundary is set to a constant value. This condition is 

more useful for controlled indoor environments but since 

temperature fluctuations exists in real life it may not be 

realistic. Plus, it requires more geometric data such as wall 

depth and material configuration to assess heat gains. 

- Neumann boundary condition, in this condition flux is 

fixed instead of temperature. This condition requires accurate 
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flux data but it's useful if we have no temperature information. 

- Adiabatic boundary condition, which is useful for studying 

heat transfer across the façade surface and assessing thermal 

loads while minimizing computational complexity. It does not 

explicitly model internal fluctuations, it is practical for 

studying the thermal dynamics and energy performance of 

facades, particularly when the emphasis is on assessing 

shading effects rather than full internal thermal modeling. 

 

 

4. SIMULATION 

 

In this section we demonstrate the simulation of our model, 

utilizing real data from a LiDAR scan of a building facade 

located in Northern Morocco situated near the Mediterranean 

coast, the house was built in 2017 (Figure 4). It’s a common 

knowledge in that region to build with concrete, brick and a 

layer of plaster. Houses can have different colors but the most 

common color is white and grey. 

 

4.1 Model implementation 

 

The modeling code was developed under python object-

oriented programming. Figure 6 illustrates the data processing 

and simulation workflow. 

 

 
 

Figure 6. Principle of cellular automata model 

Data management: In data management section, each cell is 

linked to a vector corresponding to its attributes. To ensure 

compatibility with our simulation, a meticulous processing 

analysis is conducted to convert the data into the (.xy) 

structure. Subsequently, the data map is loaded, serving as the 

foundation for constructing a cellular lattice. This lattice is 

constructed with uniform pixel sizes and variable resolutions. 

Initial and boundary conditions: Before initiating the 

simulation, we establish the initial conditions for each cell and 

set boundary conditions for the virtual counterparts.  

Simulation monitoring: As the simulation unfolds, we 

monitor the evolution of each attribute over time and gather 

real-time information about the cells. To facilitate 

comprehensive visualization and analysis, the obtained results 

can be exported in various formats such as VTK, TXT, and 

JPG files. This enables a detailed examination of the 

simulation outcomes, supporting a deeper understanding of the 

dynamic processes. 

 

4.2 Model evaluation 

 

To evaluate the accuracy of our model, we conducted a 

comparative study by comparing the simulated temperature 

distribution with real infrared (IR) thermal imaging of a 

building facade. First, we used a LiDAR scanner to capture the 

facade geometry and constructed a cellular lattice with a cell 

size of 0.7 cm² in Figure 7. The simulation was executed with 

a 30-second time step, using real solar irradiance values from 

7 AM to 12 PM as shown in Figure 8. We use brick, concrete 

on column and glass on windows area. Thermal proprieties of 

used materials are in Table 2. Initial temperature was 

estimated from metrological data at 11℃. 

 

 
 

Figure 7. Simulation of lidar captured facade at 12 PM (t600) 

 

 
 

Figure 8. Solar irradiance values from 7 AM to 12 PM 
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Table 2. Thermal properties of materials 

 

Materials 

Thermal 

Conductivity 

[W/(m℃)] 

Density 

[Kg/m3] 

Specific 

Heat 

[J/kg.℃] 

Brick 0.7 1500 800 

Glass 1.1 2200 792 

Concrete 1.33 2400 840 

Steel 45.0 7000 420 

 

 
 

Figure 9. IR thermal image of the facade at 12 pm 

 

Table 3. Statistical values of experimental and simulation 

results 

 

Results 

Max 

Temperature 

(℃) 

Min 

Temperature 

(℃) 

Mean 

Temperature 

(℃) 

Experiment 22.66 17.66 20.092 

Simulation 23.73 18.22 19.892 

 

To compare simulated and real temperatures, using a Fluke 

Ti25 thermal imager, we captured an IR thermal image of the 

facade at 12 PM in Figure 9. Since windows contain metallic 

elements that tend to appear artificially hot (with up to 7℃ 

differences from glass in windows) in IR thermal imaging, we 

excluded them from the comparison. The presence of metals 

does not significantly impact the thermal behavior of the 

building envelope in a way relevant to this study, ignoring 

windows from comparison in this case ensures a more accurate 

validation process. We selected five distinct non-window 

zones, which are highlighted with white squares in Figure 9.  

From these five zones, we extracted mean, maximum, and 

minimum temperatures for validation. The extracted values for 

experiment and simulation are in Table 3. 

The maximum temperature from the IR camera (22.66℃) is 

slightly lower than the simulation result (23.7291℃), with a 

difference of around 1.07℃. The minimum temperature from 

the IR camera (17.66℃) is also slightly lower than the 

simulation value (18.2258℃), with a difference of about 

0.57℃. The mean temperature from IR camera measurements 

(20.092℃) is close to the mean of the simulation (19.892℃), 

with a difference of 0.2℃. 

 

4.3 Simulation description 

 

In this application, we captured the building’s geometry 

using a LiDAR FARO scanner. The data provided a precise 

3D digital representation of the facade. We generate the CA 

lattice in Figure 10 using the process described in Figure 1. 

Our primary goal for this simulation was to analyze how 

external shading configurations can impact the thermal 

performance of the building facade. 

For each cell, we calculate the solar power based on the 

corresponding irradiance and the area of the cell. To calculate 

solar radiation on a surface area per cell, we use the solar 

radiation intensity (W/m2). In the studied region (Northern 

Morocco) the typical solar irradiation on a clear and sunny day 

is around 1000 W/m2 at noon. 

Shaded cells experience significantly lower solar gains 

compared to unshaded ones. We incorporate the thermal 

impact of shading into the model by reducing the amount of 

direct solar irradiance in these areas, which, in turn influences 

the temperature and heat transfer rates of the shaded cells.  

 

 
 

Figure 10. Facade Lattice taken from LiDAR, after pre-

processing and the implemented shading configuration 

 

In this application, we choose shading above windows, 

representing a traditional Moroccan shading device. We 

represent this shading by using 3 solar irradiance levels, 

categorized into three categories A, B and C highlighted in red 

in Figure 10: A: 300 W/m2, B: 500 W/m2, C: 700 W/m2.  

Simulation conditions are: 

Layer area: Width × Height = 8 m2 × 12 m2 = 96 m2 

Number of cells: 15172 cells 

Cell size: 0.7 cm2 

Duration: sunrise to midday: 6 Hours  

Time step used: 15 seconds- Initial temperature: 20℃; Solar 

irradiation (unshaded cells): 1000 W/m2 

Boundary condition: The boundary is considered adiabatic 

(no heat exchange at the boundaries cells) 

The thermal proprieties of materials used are in Table 2. 

 

4.4 Sensitivity analysis 

 

To ensure the correct choice of cell size and time step, we 

have performed a sensitivity analysis to examine the impact of 

different spatial and temporal resolutions on simulation 

accuracy and computational efficiency. We set a high-

resolution reference, with a cell size equal to 0.5 cm² and a 

fixed time step of 5 seconds, this reference was used for 

comparison. The results in Table 4 indicate that a cell size of 

0.7 cm² provide high accuracy (Emax < 0.1) and (Emean < 1.0), 

increasing the cell size impact the accuracy significantly. 

For the temporal analysis, we fixed the cell size to 0,7 cm², 

and we compared four-time steps sizes (5 s, 15 s, 30 s and 60 

s). As shown in Table 5, a time step at 5 seconds results in a 

higher runtime, requiring more computational effort. As we 

increase the time step, the simulation runtime decreases. 

However, increasing the time step above 30 seconds 

introduces oscillations and numerical instabilities. 
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Table 4. Descriptive statistics of the sensitivity analysis 

 

Table 5. Time step and simulation runtime 

 
Time Step (s) Simulation Runtime (s) 

5 420 

15 120 

30 63 

60 38 

 

4.5 Results and discussion 

 

Figure 11 highlights the effect of using shading device 

above windows, by showing a side-to-side comparison 

between shaded scenario and unshaded scenario after 1440 

iteration (at 12 pm). From the figure, we can see the 

differences in temperature distribution across the facade 

section around windows, between the case without shading 

and the case with shading. Areas with cells shaded display 

lower temperatures, this does not affect cells with lower 

irradiance levels only but areas around those cells also 

experience a decrease in temperature. This clearly displays the 

effect of solar control (shading in this case) on building facade 

temperature, especially in climates with high solar intensity. 

 

 
(a) Without shading 

 
(b) With shading 

 

Figure 11. Temperature distribution across the facade section 

around windows during midday t1440 

Using a histogram, we can see the distribution of the number 

of cells across temperature ranges at midday (t1440) in Figure 

12. This result emphasizes further the effect of shading on the 

building facade. At lower temperature ranges, the number of 

cells is higher in the scenario with shading than in the 

unshaded case. Also, in the shading case, as we increase the 

range of temperature, we observe an increase in the number of 

cells, opposite to what is displayed for the unshaded case. This 

suggests a stabilization of temperature across the facade when 

shading is applied. The overall temperature not only decreased 

but also stabilized, which preventing temperature fluctuations 

caused by extreme solar exposure. 

Descriptive statistics in Table 6, includes statistical metrics 

such as mean temperature Tmean and maximum temperature 

Tmax for each scenario, such metrics provide a quantitative 

measure of temperature distribution across the façade. The 

results indicate a mean temperature reduction of 9.90% in 

shaded scenario compared to unshaded scenario, 

demonstrating the impact of shading on heat mitigation. 

 

 
 

Figure 12. Number of cells for 10 temperature ranges 

 

Table 6. Descriptive statistics of simulations results 

 

Shading 

Status 

Max 

Temperature 

(℃) 

Mean 

Temperature 

(℃) 

M2 

No shading 64.4639 54.7574 1.96E+06 

With 

shading 
64.472 49.3348 1.08E+06 

 

After calculating standard deviation using Eq. (13), we find 

the shaded scenario has a lower standard deviation of 

σ=8.43℃, indicating more uniform and stable temperatures, 

while the unshaded scenario has a higher standard deviation of 

σ=11.36℃, reflecting greater thermal variability. This 

suggests that shading significantly reduces temperature 

fluctuations. 

Cell Size 

(cm²) 

Max Temperature 

(℃) 

Mean Temperature 

(℃) 

Max Temperature Absolute 

Error 

Mean Temperature Absolute 

Error 

0.5 63.103 40.756 0 0 

0.7 63.148 41.6184 0.045 0.8624 

1.5 63.4694 44.6748 0.3664 3.9188 

3.0 63.4554 45.9265 0.3524 5.1705 
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𝜎 = √
𝑀2

𝑁 − 1
 (13) 

 

We quantify conduction heat gain, comparing the two 

scenarios, by calculating for each material conduction heat 

flux. Geometrical data for each material are in Table 7 and 

thermal proprieties of each material are in Table 2. We use 

mean temperature from the simulation results Table 6, and we 

set indoor temperature setpoint to 25℃. 

For steady-state conduction, the heat transfer Q (W) is given 

in Eq. (14). 

 

𝑄 =
𝑘𝐴∆𝑇

𝑑
 (14) 

 

Table 7. Geometrical data of materials in simulation 

 

Materials 
Thickness, d 

(m) 

Exposed Area, 

A (m²) 

Difference, ΔQ 

(W) 

Brick 0.15 72 1827 

Glass 0.02 12 3564 

Concrete  0.15 12 574 

 

 
 

Figure 13. Heat load through materials: unshaded vs. shaded 

 

The calculated heat load throught each material for shadded 

scenario and unshaded scenarion is in Figure 13. 

Summing the difference of heat loads between shaded and 

unshaded scenarios from all materials, we find: 

 

∆𝑄𝑡𝑜𝑡𝑎𝑙 = ∆𝑄𝑏𝑟𝑖𝑐𝑘 + ∆𝑄𝑔𝑙𝑎𝑠𝑠 + ∆𝑄𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 5965 W 

 

For the HVAC energy savings. The electrical energy 

required to remove a given cooling load is calculated using Eq. 

(15). 

 

𝐸 =
𝑄

𝐶𝑂𝑃
 (15) 

 

In this study, we assume that the coefficient of performance 

(COP) is equal to 3.5. We get the required energy for cooling 

one hour at noon ΔEHour. 
 

∆𝐸𝐻𝑜𝑢𝑟 =
∆𝑄𝑡𝑜𝑡𝑎𝑙

3.5
=

5965

3.5
= 1704 Wh 

 

By analyzing the results of this application, we can draw 

valuable insights on the impact of shading strategies on the 

thermal performance of building envelopes. In passive design 

strategies, shading can be an important element for energy 

efficiency, reducing temperature fluctuations and cooling 

down the building envelope. Also, in regions like Northern 

Morocco, where solar irradiation is extreme, studying the 

integration of shading configuration with a precise facade data 

captured by LiDAR can give important energy-saving insights 

and improve building envelopes. This tool can be used for 

different architectural and environmental contexts. 

 

4.6 Broader applicability of the model 

 

As CA models are rule-based and can incorporate localized 

material properties and meteorological data, the same 

framework could be applied to hot-arid, temperate or cold 

climates by adjusting attributes such as solar radiation, 

convection effects and thermal material properties. Integrating 

LiDAR analyses with CA further enhances scalability by 

providing a data-driven approach to defining grid structures, 

enabling high-resolution thermal simulations. 

However, the resolution of LiDAR data has a significant 

impact on computational efficiency and the accuracy of 

results. Higher resolution analyses provide more detailed 

façade geometries, improving the accuracy of heat transfer 

simulations by capturing thermal bridges, surface roughness 

and material heterogeneity. However, such complex cases 

come with an increased computational cost, as higher lattice 

resolutions require more processing power and longer 

simulation runtimes. A trade-off needs to be made between 

data accuracy and model efficiency, particularly when 

applying this approach to large-scale urban environments. 

 

 

5. CONCLUSION 

 

In this paper, we considered the integration of Terrestrial 

LiDAR with CA modeling. This integration is used to analyze 

the thermal dynamics of the building envelope. We focused on 

the CA lattice construction using the LiDAR data as input. The 

Terrestrial LiDAR captures precise geometric measurements 

of buildings, while CA modeling provides a local description 

of the thermal dynamics. We applied the model to a real 

building in Northern Morocco. The application captures the 

building's facade using FARO LiDAR. After data processing, 

we constructed the lattice. We compared two scenarios: the 

first one with the facade fully exposed to solar irradiation and 

the second one using shading around two windows. The results 

show the importance of using shading devices in decreasing 

the temperature of the building's facade. The LiDAR coupled 

to CA modeling introduces a powerful methodology to 

analyze the thermal performance of buildings. While the 

LiDAR improves the model's ability to account for real-world 

geometric complexity, CA provides the computational 

efficiency needed to simulate heat transfer over time. This 

approach opens new possibilities to improve the accuracy of 

building performance simulations and to optimize the 

configuration and material choices for the energy efficiency of 

buildings. 

Future work: Dynamic shading will be incorporated as a 

time-dependent attribute influencing local cell states. The 

present study considers shading as a static feature 

Incorporating dynamic shading into the model can be achieved 

through the attributes concept, where each cell is assigned a 

time-dependent Shading Attribute. This attribute modifies the 

local solar exposure of a cell based on shading device position, 

1098



 

external environmental conditions, or user-defined control 

strategies. 
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