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Climate change is anticipated to alter precipitation patterns, which could lead to in 

increased frequency and severity of flooding events that threaten populations and 

infrastructure. Comprehending these effects is crucial for enhancing flood management 

measures. This research employs the hydrologic engineering center's hydrologic 

modeling system (HEC-HMS) in conjunction with future climate forecasts to evaluate 

flood hazards in Jordan's Wadi Al Mujib Basin. Climate forecasts utilize the most recent 

global climate models from the coupled model intercomparison project phase 6 

(CMIP6), which offers different future scenarios relates to greenhouse gas emissions, 

known as shared socioeconomic pathways (SSPs). Four scenarios’ data for study area 

were employed: SSP126 (low emissions), SSP245 (moderate emissions), SSP370 (high 

emissions), and SSP585 (extremely high emissions). Results indicate that higher-

emission scenarios (SSP370 and SSP585) lead to a significant increase in rainfall 

intensity and flood frequency, especially for extended storm duration and longer return 

periods. Peak discharge values are closely following rainfall trends, with minimal 

differences between observed and projected floods for the 2- and 5-year return periods 

under SSP245 and SSP370. However, under SSP370 and particularly SSP585, peak 

discharge increases substantially for the 50- and 100-year return periods, highlighting 

the increased risk of floods caused by increased emissions. These findings underline the 

importance of integrating hydrological models with climate projections for forecasting 

flood dangers. This methodology can assist policymakers and engineers to develop 

adaptable flood mitigation strategies that reduce the escalating hazards associated with 

climate change. 
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1. INTRODUCTION

Climate change has changed the number and severity of 

flooding events worldwide [1], causing many problems for 

communities, especially in arid regions [2]. Jordan has desert 

climate [3]. Jordan's low greenhouse gas (GHG) emissions 

make it a negligible contributor to global climate change [4], 

but climate-related disasters like flash floods, landslides, rock 

falls, and droughts have killed 110 people, affected hundreds 

of thousands, and caused significant economic losses over the 

past 30 years [5]. Thus, successful disaster management and 

mitigation require accurate flood risk estimation based on 

flood-frequency analysis, which uses past rainfall and flood 

data to predict future flood magnitude and recurrence [6]. 

Current population trends show that global urbanisation has 

major direct and indirect effects on climate and weather. 

Under global climate change and variability, extreme events 

are more likely. Floods, unpredictability in rainfall patterns, 

and heat wave variability may be caused by climate change 

[7], which may affect dam design and operation. Thus, these 

changes affect hydropower and water supply. Thus, accurate 

identification of how climate change affects flood events is 

essential for drought risk management and flood control [8]. 

Hydrological modelling helps understand and predict 

climate change's effects on flood events by simulating diverse 

hydrological processes in changing climates [9]. Research 

objectives, data, and watershed attributes determine 

hydrological model selection [10]. The hydrologic 

engineering center's hydrologic modeling system (HEC-HMS) 

model has been widely used to model rainfall-runoff processes 

to assess how climate change affects flood behaviour [11]. 

Using HEC-HMS to assess flood risk in the Bagmati river 

basin in Nepal, high-emission scenarios increased peak flow, 

resulting in rainfall-runoff correlations and a flood discharge 

modelling tool [12]. Using the HEC-HMS model, the study 

[13] predicted climate-induced streamflow variability in the

Blue Nile Basin. Another SWAT model study examined how

climate change affects streamflow in the Mesoscale Rur

watershed in western Germany, highlighting the risk of floods

under higher precipitation levels [14].

HEC-HMS, designed by the U.S. Army Corps of Engineers, 

is widely used to simulate watershed-scale hydrological 

processes and evaluate flood dynamics [15]. HEC-HMS has 

been a versatile tool for climate change impact assessments, 

watershed management, and flood forecasting worldwide 

since its founding [16]. It can model precipitation-runoff 

relationships, channel flow, and flood hydrographs for many 

hydrological conditions and regions [17]. Users can evaluate 
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storms and land-use changes using the model's basin 

modelling, meteorological modelling, control specifications, 

and simulation results analysis [11]. By calibrating and 

validating simulated outputs with real data, HEC-HMS 

improves flood risk assessment and water resource planning 

[18]. 

HEC-HMS has been used worldwide to model hydrological 

processes, flood risks, and runoff [19]. Al-Mukhtar and Al-

Yaseen [20] simulated peak discharge and volumes for the 

Ngong River basin in Nairobi utilising HEC-HMS. The study 

[21] applied the model to evaluate flood management 

measures in the Audi-União District in Brazil. HEC-HMS also 

assessed how land-use changes affected the Kan watershed in 

Tahran, Iran [22]. 

Due to climate projection uncertainty, several models have 

been developed to guide hydrological events under climate 

change [23]. The coupled model intercomparison project 

(CMIP) has progressed through several phases to improve 

climate knowledge [24]. CMIP Phase 6 (CMIP6) presents an 

updated set of scenarios called shared socioeconomic 

pathways (SSPs) [25], which improve on Representative 

Concentration Pathways (RCPs) from CMIP5 [26]. By 

varying radiative forcing (2.6-8.5 W/m² by 2100), RCPs were 

used to study potential greenhouse gas emission pathways 

[27]. The more integrated SSP approach combines 

socioeconomic factors with RCP-style radiative forcing levels 

[28]. This allows for more advanced climate change research, 

especially on hydrological extremes like floods [29]. SSPs 

allow researchers to assess climate change's wider effects 

under different emission and adaptation scenarios by including 

economic development and policy reactions [30]. 

This research employed four SSPs-SSP126, 245, 370, and 

SSP585- to evaluate prospective flood hazards in the Wadi Al 

Mujib Basin. These scenarios were selected to examine a wide 

range of possible climate circumstances, from a low-emission, 

sustainability-oriented future (SSP126) to a high emission, 

worst case scenario (SSP585). Although previous research has 

investigated the effects of climate change on flooding using 

RCPs, there is a lack of studies that combine HEC-HMS 

hydrological modeling with CMIP6 SSPs in arid and semi-arid 

areas such as Wadi Al Mujib. This work addresses the gap by 

delivering more sophisticated prospective flood hazards, 

providing valuable insights for adaptive flood management 

and policy formulation in Jordan. 

 

 

2. STUDY AREA 

 

The Al Mujib Basin, an essential water resource in Jordan, 

covers an area of 6,456 km², or around 7.22% of Jordan’s land 

area. The area falls into two sub-catchments: Wadi Al Mujib 

(4,419 km²) and Wadi Al Walaa (2,037 km²). The area falls 

into two sub-catchments: Wadi Al Mujib (4,419 km²) and 

Wadi Al Walaa (2,037 km²). The basin spans four 

governorates: Madaba (6.01%) and Amman (35.13%) in the 

center region, and Karak (33.09%) and Ma'an (25.77%) in the 

southern region. The basin serves as crucial for supply of 

water, agriculture, and groundwater recharge. 

 

 

 
 

Figure 1. Al Mujib Basin features (slope, location and elevation) and gauges locations (rainfall and discharge stations) 
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Figure 2. Al Mujib Basin LCLU and HSG 

 

Table 1. Information of precipitation gauges 

 
Station ID Station Name Palestine North (km) Palestine East (km) Latitude Longitude Elevation (m) 

CD0006 WADI WALA EVAP. ST 1107500 223000 31.56 35.77 494 

CD0010 RABBA EVAP.ST 1075500 220500 31.27 35.74 965 

CD0020 SIWAQA EVAP ST. 1086800 253700 31.37 36.09 731 

CD0003 EL MUWAQQAR 1136500 255000 31.82 36.11 907 

CD0016 JUDAYDA 1105000 211500 31.54 35.65 770 

CD0001 SAHAB 1142500 245000 31.87 36.00 860 

CD0007 DHIBAN 1100800 224000 31.50 35.78 720 

CD0011 QATRANA POLICE POST 1072500 249500 31.24 36.04 771 

CD0023 QASR EVAP. ST 1080900 221000 31.32 35.75 721 

CC0004 MUSHAQQAR EVAP. ST 1132900 22620 31.79 35.80 841 

 

The basin exhibits an extensive variety of elevations and 

gradients. Most of the basin lies between 667 and 1269 meters 

above sea level, with a small portion falling below sea level. 

Consequently, it influences runoff dynamics and hydrological 

responses (Figure 1). 

For essential HEC-HMS data, discharge station data from 

CD0041, located at the basin outlet, which recorded 

observations from 1980 to 1998 and was utilized in model 

calibration. On the other side, Water and Irrigation Ministry of 

Jordan's rainfall stations data from 1980 to 2023 was used as 

the main source of precipitation data to construct the 

hydrological model. in addition, land cover and land use 

(LCLU) data for 2021 was acquired by analyzing Sentinel-2 

satellite images at a 10-meter resolution. As well, soil 

properties were derived from the Global Hydrologic Soil 

Groups (HYSOGs250m) dataset, which belongs to Oak Ridge 

National Laboratory Distributed Active Archive Center 

(ORNL DAAC). Figure 2 presents the spatial distribution of 

LCLU and Hydrologic Soil Groups (HSGs) across the basin. 

Table 1 shows the information of precipitation gauges. 
 

 

3. HEC-HMS MODEL 
 

3.1 Model setup 
 

HEC-HMS Version 4.12 was employed to simulate rainfall-

runoff dynamics in the Wadi Al Mujib Basin. The model 

consists of a basin model that depicts watershed 

characteristics, a meteorological model for climatic inputs, and 

control specifications for establishing simulation parameters. 

The model development began with the import of a 30-meter 

Digital Elevation Model (DEM) to delineate sub-basins and 

extract hydrologically relevant features using the Sink Fill 

method. 

Thirty-one sub-basins and fourteen reaches were identified 

(Figure 3). Curve Number (CN), land use, soil cover, and 

antecedent moisture conditions were derived by using spatially 

distributed LCLU and HSG data. The CN method (Figure 3) 

was employed for rainfall-runoff transformation to ensure the 

model captured spatial and temporal variations in infiltration 

and runoff generation. Precipitation input was based on 

historical rainfall data (1980-2023) stations. However, areal 

precipitation was computed by assigning representative 

weights to each gauge by using the Thiessen polygon. 

Muskingum method, for flow routing, was selected due to 

its suitability for channel storage representation in the basin. 

Whilst Clark Unit Hydrograph method was used for runoff 

transformation, and for reflect the watershed response 

dynamics concentration time (Tc) and storage coefficient (R) 

were incorporated. 

Tc and R in relation to precipitation and watershed 

properties are: 
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𝑇𝑐 = 2.2 × (
𝐿 ∗ 𝐿𝑐

√𝑆𝑙𝑜𝑝𝑒10−85

)0.3 (1) 

 
𝑅

𝑇𝑐+𝑅
= 0.65  or  𝑅 =

13

7
𝑇𝑐 (2) 

 

These parameters were determined based on watershed 

characteristics, where L denotes the longest flow path mile, Lc 

is the centroidal flow path in mile and slope 10-85 is average 

slope of the flow path represented by 10 to 85 percent of the 

longest flow path (ft/mi) [31, 32]. 

 

 

 
 

Figure 3. Curve number and impervious percentage for each subbasin, reaches, discharge and rainfall stations 

 

3.2 Model calibration and validation 

 

March 1991 and January 1998 floods were among the most 

notable in the seven-year streamflow statistics at Wadi Al 

Mujib Basin station CD0041. Several factors led to the 

selection of these events for HEC-HMS model calibration and 

validation. First, this period's minimal land use and land cover 

changes-maintained watershed characteristics. The short time 

between these events reduced the likelihood of significant 

changes in other watershed attributes like soil properties or 

basin slope. The March 1991 event was used for model 

calibration. Parameters influencing hydrological processes, 

such as the CN in the SCS method, time of concentration (Tc), 

and storage coefficient (R) in the Clark Unit Hydrograph 

method, were adjusted to ensure the simulated discharge 

accurately corresponded with the observed data regarding of 

peak discharge, hydrograph shape, and timing of the peak. 

Calibration trials employed the Peak-Weighted RMS Error 

objective function with the Univariate Gradient method to 

minimize discrepancies systematically. The Nash-Sutcliffe 

efficiency coefficient (E) was used to evaluate the model's 

performance quantitatively is shown in: 

 

𝐸 = 1 −
∑ (𝑄𝑜,𝑖 − 𝑄𝑠,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜,𝑖 − 𝑄𝑜
̅̅̅̅ )2𝑛

𝑖=1

 (3) 

 

where, 𝑄𝑜,𝑖 denotes observed discharge at time step i, 𝑄𝑠,𝑖  is 

the simulated discharge at time step i,  𝑄𝑜
̅̅̅̅  is mean of the 

observed discharges and n is the total number of time steps. 

Nash-Sutcliffe efficiency coefficient ranges from -∞ to 1, 

when it equal is one, that means simulated and observed peak 

discharge perfectly match, but when its value is zero this 

implies model predictions are as mean of the observed data. 

Whereas negative values indicate that the observed mean is 

better than model [33]. 

 

 

4. CMIP MODELS AND CLIMATE CHANGE 

SCENARIOS 

 

A wide range of general circulation model (GCM) 

experiments have been to investigate the anticipated climatic 

consequences of rising greenhouse gas emissions [34]. The 

CMIP has created global climate projection datasets using 

standardised experimental protocols. However, GCMs have 

much lower spatial resolution than hydrological modelling at 

watershed or sub-watershed scales [35], usually hundreds to 

thousands of kilometres. Due to this scale mismatch, 

downscaling techniques are needed to bridge the gap between 

global climate models and localised hydrological assessments 

[35]. Regional climate models (RCMs) and statistical or 

dynamical downscaling methods [36] refine the coarse outputs 

Name Area_SqKm Impervious (%) Curve Number 

S1 158.68 6.67 84.68 

S2 102.79 0.99 84.45 

S3 228.23 1.17 78.55 

S4 415.4 1.07 77.71 

S5 279.03 2.06 78 

S6 108.19 15.52 84.22 

S7 120.6 0.11 77.95 

S8 308.88 10.62 77.39 

S9 315.81 1.41 77.98 

S10 131.81 3.55 78 

S11 115.67 0 77.79 

S12 140.32 1.79 77.58 

S13 378.8 0.22 77.6 

S14 175.08 0.35 78.83 

S15 148.7 13.78 77.37 

S16 596.07 5.72 77.84 

S17 86.49 5.86 86.49 

S18 232.42 9.29 83.66 

S19 352.65 3.34 78.38 

S20 306.34 2.07 77.76 

S21 175.05 0.61 77.96 

S22 45.65 0 77.5 

S23 3.76 3.63 77.26 

S24 432.14 2.92 78.77 

S25 141.39 1.49 77.7 

S26 115.52 1.14 78.75 

S27 532.79 0.42 77.58 

S28 132.56 0.16 79.3 

S29 16.02 8.53 78.27 

S30 162.11 5.87 84.39 

S31 0.13 0 98 
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of global models to generate detailed climate data tailored to 

hydrologic studies. Coordinated Regional Climate 

Downscaling Experiment (CORDEX) is used to evaluate 

RCMs and downscaling methods [37]. By providing uniform 

regional simulation methods, CORDEX helps evaluate model 

accuracy and generates high-resolution climate data for impact 

assessments. This framework also helps connect local 

environmental studies with global climate scenarios from the 

RCPs and SSPs to analyse regional climate impacts [38]. In 

this study, high-resolution climate projection data from the 

Max Planck Institute for Meteorology’s MPI-ESM1-2-HR 

model was utilized. As a key partner in the CMIP6 

HighResMIP project, this model provided both historical flux 

precipitation data for this study from 1900-2014 and future 

projections under different climate scenarios from 2015-2100. 

The data encompasses various SSPs including SSP126, 245, 

370, and SSP585, and using particular equations provided 

below, the statistical downscaling technique known as linear 

scaling bias correction, which guarantees that the corrected 

climate projections more closely match observed historical 

values, this technique seeks to minimize the inherent biases in 

regional climate model simulations by means of more precise 

inputs for hydrological climate-change impact studies. 
 

𝑝∗
𝐶𝑜𝑛𝑡𝑟

(𝑑) = 𝑃𝐶𝑜𝑛𝑡𝑟(𝑑). [
µ𝑚(𝑝𝑜𝑏𝑠(𝑑))

µ𝑚(𝑃𝑐𝑜𝑛𝑡𝑟(𝑑))
] (4) 

 

𝑝∗
𝑠𝑐𝑒𝑛

(𝑑) = 𝑃𝑠𝑐𝑒𝑛(𝑑). [
µ𝑚(𝑝𝑜𝑏𝑠(𝑑))

µ𝑚(𝑝𝑐𝑜𝑛𝑡𝑟(𝑑))
] (5) 

 

where, 𝑃𝐶𝑜𝑛𝑡𝑟(𝑑)  donates precipitation of control scenario 

(day), 𝑃𝑠𝑐𝑒𝑛(𝑑)  is the precipitation of scenario (day), 

𝑝∗
𝐶𝑜𝑛𝑡𝑟

 is the adjusted precipitation of control scenario for 

(day), 𝑝∗
𝑠𝑐𝑒𝑛

(𝑑) is the adjusted precipitation of scenario for 

(day), µ𝑚(𝑝𝑜𝑏𝑠(𝑑))  is the mean observed precipitation for 

(day) and µ𝑚(𝑝𝑐𝑜𝑛𝑡𝑟(𝑑)) is the mean precipitation of control 

scenario for (day). 

Linear scaling method accurately adjusts mean precipitation 

data, but it has limits, especially in capturing extreme 

precipitation events, which are vital for flood modeling. Linear 

scaling assumes that biases stay the same for all levels of 

precipitation. This could lead to the underestimation of 

infrequent events crucial for peak discharge in hydrological 

models. Conversely, alternative techniques like quantile 

mapping offer a more precise adjustment for severe 

occurrences but require comprehensive observational datasets 

to obtain accurate distributions. 

 

 
 

Figure 4. Overview of SSPs and their challenges for 

mitigation and adaptation [39] 

MPI-ESM1-2-HR model was chosen for its improved 

spatial resolution and proven efficacy in modeling 

precipitation and temperature variations in arid and semi-arid 

areas. In comparison to other CMIP6 models, such as GFDL-

ESM4 or CESM2, MPI-ESM1-2-HR has a higher spatial 

resolution (about 100 km) and has been widely utilized in 

regional climate impact studies, making it an appropriate 

selection for evaluating climate change effects in the Wadi Al 

Mujib Basin. 

As illustrated in Figure 4, the SSPs include SSP1-2.6 

(sustainable development, low emissions), SSP2-4.5 (middle-

of-the-road development, moderate emissions), SSP3-7.0 

(regional rivalry, high emissions), and SSP5-8.5 (fossil-fueled 

development, very high emissions). These pathways are 

invaluable for generating time-dependent projections of 

greenhouse gas emissions, radiative forcing, and their impacts, 

aiding in both mitigation strategy assessment and climate risk 

analysis [40]. In this study, SSP1-2.6, 2-4.5, 3-7.0, and SSP5-

8.5 are used to represent low, moderate, high, and very high 

greenhouse gas emission scenarios, respectively. 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 LCLU and HSG 

 

LCLU classifies the scene as desolate. The Wadi Al Mujib 

Basin was 94% bare ground, 3% built-up, and 2% agricultural. 

This indicates little farming. The remaining 1% includes trees, 

water, and land uses. This distribution shows the basin's arid 

and semi-arid climate, which limits vegetation and agriculture. 

Group D soils with high runoff potential and low infiltration 

cover most of the basin, according to the HSG study. The 

basin's hydrological response and flooding susceptibility are 

affected by sparse land cover, heavy rainfall, and surface 

runoff, which generate and strengthen floods. 

Even though Wadi al Mujib doesn't have a lot of developed 

land, human activities like building cities, improving 

infrastructure, and changing the way farms work are changing 

the way water flows through the basin. Meanwhile, the 

expansion of impervious surfaces like roads will likely reduce 

infiltration while increasing runoff, therefore aggravating 

flood risks. Additionally, agricultural practices, although 

limited in the study area, may contribute to soil degradation 

and reduced water retention capacity. 

 

5.2 Projection and observed precipitation 

 

Calibrated precipitation data from 1900 to 2014 was used as 

the control scenario for comparison. In the calibration phase, 

linear scaling and bias correction reduced differences between 

simulated and observed precipitation data, improving the 

baseline model's accuracy. The calibrated model projected 

2015-2100 precipitation trends under several SSPs. 

In Figure 5, the Wadi Al Mujib Basin's precipitation 

frequencies for different return intervals and durations show 

clear patterns. The 100-year return period precipitation 

amounts for 1, 2, 3, 4, and 5 days are 53.15 mm, 90.88 mm, 

112.91 mm, 121.94 mm, and 127.90 mm. The fifth day of 100-

year precipitation is 15.96 mm (13%), while the fifth day of 

50-year precipitation is 7.48 mm (7%). These findings show 

that precipitation intensities increase with duration, but over 

longer periods, the difference between durations becomes 

irrelevant. Data shows that most of the 5-day precipitation 
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occurs in the first few days due to their higher quantities, but 

they are not significantly different from shorter periods. 

 

 
 

Figure 5. Observed precipitation in Al Mujib Basin 

 

 
 

Figure 6. Precipitation in Al Mujib Basin with SSP126 

 

 
 

Figure 7. Precipitation in Al Mujib Basin with SSP245 

 

Figures 6-9 show that precipitation intensities rise with 

longer return times and durations for the selected SSPs. In the 

SSP126 scenario Figure 6, 100-year precipitation values for 1, 

2, 3, 4, and 5 days are 73.72, 108.78, 125.34, 135.29, and 

141.78 mm. The 5-day 100-year precipitation is 4.8% higher 

than the 4-day. In Figure 7, SSP 245 precipitation amounts to 

86.13, 122.8, 142.77, 152.35, and 160.26 mm. The 100-year 

precipitation values for 1, 2, 3, 4, and 5 days in the SSP370 

scenario Figure 8 are 78.10, 110.47, 136.03, 152.17, and 

162.11 mm. The 5-day precipitation is 6.5% higher than the 4-

day. The SSP585 scenario (Figure 9) predicts 90.74, 133.20, 

156.68, 165.27, and 177.04 mm of 100-year precipitation, 

7.1% more than the 4-day event. As emission scenarios 

increase from SSP126 to SSP585, precipitation rises 

continuously, indicating that climate change is affecting 

expected precipitation patterns. 

 

 
 

Figure 8. Precipitation in Al Mujib Basin with SS370 

 

 
 

Figure 9. Precipitation in Al Mujib Basin with SSP 585 

 

5.3 Hydrologic model setup, calibration and validation 

 

5.3.1 Hydrologic model setup 

Figure 10 reveals differences between observed and 

simulated discharges, with the simulated values typically 

exhibiting greater peaks in some years. for instance, the 

simulated discharges are much higher than the observed 

discharges for the years 1984, 1990, and 1992. 

The highest discrepancy is seen at 23 March 1991with value 

411.6 CMS and with same time the maximum observed 

discharge along observed period is 288 CMS. 

 

5.3.2 Hydrologic model calibration and validation 

The hydrological model was calibrated by means of 

simulated discharge comparison comparatively to observed 

discharge data at the watershed outflow for the flood event in 
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March 1991, Table 2 and Figure 11 shows that although the 

simulated peak discharge was 325.7 cubic meters per second 

(CMS), the measured peak discharge for this event was 287.6 

CMS, therefore producing a 13.24% difference. For both 

observed and simulated data, the peak discharge fell on March 

23, 1991, at 01:00. With a 0.619 Nash-Sutcliffe efficiency for 

this calibration, the simulated and observed discharge values 

fit somewhat moderately. 

 

 
 

Figure 10. Observed and simulation annual peak discharge 

 

Table 2. Summery result for March 1991 flood event 

 

Header 
Peak Discharge 

(CMS) 
Time of Peak Nash-Sutcliffe 

Observed 287.6 23/03/1991  

Simulated 325.7 23/03/1991 0.619 

Difference 13.24% 01:00  

 

 
 

Figure 11. Calibrated peak discharge over time by HEC-

HMS 

 

Table 3. Validation summery result for November, 

December, and January 1998 flood event 

 
Validation 

Summary 

Peak Discharge 

(CMS) 
Time of Peak Nash-Sutcliffe 

Observed 201.5 12/01/1998  

Simulated 232.7 13/01/1998 0.819 

Difference 15.48% 23:00  

 

On the other hand, for model validation purposes, was tested 

with the flood events in November, December, and January of 

1998. Table 3 summarizes the results of this validation 

process. As illustrated in Figure 12, the observed peak 

discharge for the January 12, 1998, event was 201.5 CMS, 

while the simulated peak was 232.7 CMS, showing a 

difference of 15.48%. At the same time the peak discharge 

occurred at 23:00 on January 13, 1998, according to the 

simulation, which was slightly later than the observed peak. 

Nevertheless, the Nash-Sutcliffe efficiency for this validation 

was 0.819, suggesting a good agreement between the 

simulated and observed data. 

Though there are variations in both peak discharge values 

and timing, the calibration and validation findings show 

generally that the model can fairly match the observed 

discharge patterns. These findings highlight the need of 

optimizing model parameters for correct forecasts in next 

flood occurrences. 

 

 
 

Figure 12. Validation summery result of Al Mujib Subbasin 

 

5.4 Shifts in flood streamflow due to climate change 

 

Precipitation data for four different SSP scenarios (SSP126, 

SSP245, SSP370, and SSP585) was utilized in the calibrated 

hydrological model to evaluate the effects of climate change 

on flood occurrences in the study area. Thus, flood flows were 

estimated under the historical observations and the four SSP 

scenarios as presented in Figure 13 for return periods of 2, 5, 

10, 25, 50, and 100 years. 

 

 
 

Figure 13. Observed and projections peak discharge with 

various return periods 
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Floods vary across return periods, showing a steady rise. 

The SSP126 scenario estimates 487 CMS for the 100-year 

flood, 22.0% higher than 399.4 CMS. The 50-year flood in the 

SSP126 scenario is 412 CMS, up 14.9% from 358.8 CMS. 

However, the 10-year flood is 327 CMS, 24.5% higher than 

262.7 CMS. Compared to 153.1 CMS and 219 CMS, the two-

year and five-year floods increased 9.7% and 21.9%, 

respectively. In the SSP245 scenario, flood discharge 

increases significantly from observed to expected values for 

all return periods. The 100-year flood discharge under SSP 

245 is 572 CMS, up 43.2% from 399.4 CMS. The 50-year 

flood under SSP 245 spikes 37.3% to 492.6 CMS, matching 

the observed 358.8 CMS. The SSP 245 scenario projects 42% 

increases for the 2-year flood and 72% for the 100-year flood, 

rising flood risks above past records. 

For the SSP370 scenario, throughout all return periods the 

rise in flood stream flows from the observed data to the future 

forecasts is noteworthy. While the 5-year flood rose by 35.7% 

(297 CMS) the 2-year flood discharge rose by 45.0% (511 

CMS compared to 399.4 CMS). The 10-year flood saw an 

increase of 32.9% (349 CMS compared to 262.7 CMS), and 

the 25-year flood increased by 32.5% (421 CMS compared to 

317.8 CMS). The 50-year flood saw a 21.2% increase (434.9 

CMS compared to 358.8 CMS), and the 100-year flood 

increased by 28.0% (511 CMS compared to 399.4 CMS). 

These rises point to a notable increase in flood risk. The 50-

year flood discharge for the SSP585 scenario is far higher than 

the 25-year flood. While the 25-year flood is 531 CMS, 

suggesting a roughly 6.3% rise, the 50-year flood discharge is 

564.4 CMS. The SSP585 scenario projects a discharge of 614 

CMS when compared to the measured 100-year flood of 399.4 

CMS, 54% more. Furthermore, the 100-year flood under 

SSP585 surpasses the 10-year flood (361 CMS) by 70%, so 

stressing the significant rise in flood hazards under high 

emission scenarios. 

Overall, the SSP 585 scenario under all return periods 

exhibits the highest flood stream flows compared to the 

recorded values. In addition, the peak discharge ranges for the 

2-year flood are from 24% to 54% and for the 100-year flood 

compared to the observed values. With the SSP 245 and SSP 

370 scenarios showing more moderate flood stream flows, the 

SSP 585 scenario, especially at the 100-year return period 

showcases the biggest rise. 
 

5.5 Relation between precipitation scenarios and peak 

discharge changes 
 

The precipitation and flood streamflow data for return 

periods of 2, 5, 10, 25, 50, and 100 years are investigated and 

shown in Figure 14 to help one grasp how flood characteristics 

vary over several SSP scenarios. Precisely for the SSP 

scenarios, precipitation values often surpass the matching 

observed values during all return periods. With a precipitation 

during the 2-year return period of 24.08 mm in the SSP126 

scenario, the precipitation shows a 29% rise over the recorded 

figure of 18.63 mm. Likewise, under the SSP245 scenario, 

from 53.15 mm to 86.13 mm the 100-year precipitation rises 

by 61%. With values of 57.53 mm against the recorded 47.45 

mm, the precipitation rises by 52% in the SSP370 scenario at 

the 50-year return period. 

Peak discharge values rise most in the SSP585 scenario. At 

SSP585, the 100-year flood discharge is 614 CMS, 54% higher 

than 399.4 CMS. This increase exceeds the SSP126 100-year 

flood's 31% increase to 487 CMS. In particular, the high-

emission SSP585 scenario shows that flood stream flows are 

more responsive to SSP scenarios than precipitation, with 

flood discharges increasing more than precipitation. These 

findings suggest that greenhouse gas concentrations will 

rapidly increase flood hazards, affecting flood control. 

 

 
 

Figure 14. Observed and projections maximum precipitation 

with various re-turn periods 

 

5.6 Study limitations and uncertainties 

 

Despite of this study assessment climate change impacts on 

floods in the Wadi Al Mujib Basin, but must be acknowledged 

several limitations and uncertainties: 

1). Uncertainties in Downscaling Climate Data. 

The projections of precipitation in this study rely on 

downscaled CMIP6 climate models under various SSP 

scenarios. While to improve model accuracy, bias correction 

and linear scaling techniques were applied inherent 

uncertainties in downscaling remain. These uncertainties arise 

from spatial resolution limitations, and potential biases in 

future climate projections, which could influence in pattern of 

precipitation like intensity and frequency. 

2). Precision of HSG Data. 

Hydrological soil groups affect infiltration rates and runoff. 

Soil datasets may display spatial inaccuracies resulting from 

inadequate data or low resolution. This may lead to inaccurate 

estimations of infiltration rates and, consequently, variations 

in anticipated peak discharge. 

3). Assumptions in the HEC-HMS Model. 

HEC-HMS model is employed in hydrological simulations 

based on various assumptions, that may include some principal 

constraints: 

• The model assumes uniform rainfall distribution 

over each subbasin, which may not reflect variability in 

storm events. 

• For runoff estimation, SCS-CN method does not 

fully capture the dynamic changes in soil moisture, 

particularly in arid and semi-arid area. 

• The routing method applied in the model 

(Muskingum method) may introduce uncertainties in 

peak discharge predictions, particularly for extreme 

events. 

4). Calibration and Validation Constraints. 

The model was calibrated and validated based on historical 

flood events; nevertheless, the availability of extensive high-

resolution discharge data is constrained, so the moderate Nash-

Sutcliffe Efficiency (NSE) values indicate differences 

between actual and simulated values, either arising from data 
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inconsistencies, measurement errors, or neglected 

hydrological processes such as groundwater interactions. 

The model was calibrated and validated based on historical 

flood events; nevertheless, the availability of extensive high-

resolution discharge data is constrained, so the moderate NSE 

values indicate differences between actual and simulated 

values, either arising from data inconsistencies, measurement 

errors, or neglected hydrological processes. 

5). Impact on Results. 

These limitations introduce some degree of uncertainty in 

the projected flood risks under different SSP scenarios. 

Uncertainties in downscaling may affect precipitation 

intensity, while soil data limitations could influence runoff 

estimations. Additionally, HEC-HMS model assumptions may 

result in slight deviations in peak discharge predictions. Future 

studies should explore higher-resolution climate models and 

improved soil datasets. 

In hydrological modeling, particularly when utilizing 

climate projections, uncertainty is an inherent challenge. 

Furthermore, the sources of uncertainty, like model parameter 

sensitivity and diversity in hydrological responses, require 

more investigation. For more comprehensive confidence 

levels for peak discharge values, future studies ought to 

integrate uncertainty quantification methodologies, such as 

Monte Carlo simulations or sensitivity analysis, and to assess 

a range of possible outcomes while improving the resilience of 

flood estimation and the confidence levels linked to 

anticipated peak discharge values. 

 

 

6. CONCLUSIONS 

 

This study demonstrates that increasing greenhouse gas 

concentrations lead to significant rises in peak discharge and 

precipitation in the Wadi Al Mujib Basin, with the most 

pronounced increases occurring under SSP370 and SSP585. 

Peak discharge for extreme flood events, such as the 100-year 

return period, rises by 54% under SSP585, emphasizing the 

growing flood risk. The strong correlation between emission 

scenarios and intensified flood hazards underscores the urgent 

need to integrate climate projections into flood management 

planning. 

This study introduces a full picture of future flood risks in 

dry and semi-dry areas by combining HEC-HMS modeling 

with CMIP6-based SSP scenarios. The findings highlight the 

necessity of adaptive flood management strategies, including 

improved infrastructure resilience, floodplain zoning, and 

early warning systems. Therefore, these insights equip 

policymakers and engineers with data-driven guidance to 

mitigate the increasing flood threats posed by climate change. 

 

 

7. RECOMMENDATIONS 

 

Based on findings and conclusions of this study several 

recommendations can be proposed: 

(1) Develop and implement robust flood management 

plans that account precipitation variability includes 

upgrading existing infrastructure to be withstand higher 

flood volumes and intensities, this involves improving 

water storage capacity and promoting water 

conservation practices especially to mitigate 

evaporation. 

(2) Increase awareness among local communities about the 

risks associated with intensified precipitation events. 

Implement early warning systems for floods and 

promote community-based disaster preparedness 

initiatives. 

(3) Advocate for and implement policies that support 

sustainable development practices and effective climate 

change adaptation strategies, and this includes 

incentivizing using climate smart agricultural practices, 

promoting reforestation efforts, and fostering 

international cooperation on transboundary water 

management and evaluation the effect of climate as 

national scale. 

(4) Develop spatial and temporal distribution models for 

precipitation, evaporation, and streamflow across 

Jordan, incorporating climate change scenarios to 

assess influence of climate change on the water budget 

include ground water, and flood risks. 

 

 

8. FUTURE WORK 

 

(1) Investigate how projected changes in flood patterns due 

to climate change could influence water diplomacy and 

transboundary water management agreements in the 

region. 

(2) Generate and continuously update land cover and land 

use maps to reflect changes over time by remote 

sensing data and field surveys for validation. 

(3) To enhance runoff estimations, determining and 

periodically update hydrological soil group 

classifications and curve numbers based on local soil 

characteristics and land use changes. 

(4) Construct IDF curves specific to Jordan to understand 

how precipitation patterns may change under different 

climate scenarios, this can guide infrastructure 

planning and flood risk management. 
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