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The increasing complexity of modern financial markets calls for advanced, adaptive 

portfolio optimization techniques. In our paper, we present a novel system that 

combines a hierarchical multi-agent system with Bayesian Neural Networks (BNNs) 

within the Proximal Policy Optimization (PPO) framework to enable uncertainty-

aware, dynamic decision-making. Our approach introduces a hierarchical structure 

where a high-level agent monitors macroeconomic trends while low-level agents 

manage groups of assets, capturing aggregated dynamics within sectors. This design 

enables the system to balance broad market signals with detailed asset-level analysis, 

capturing both macroeconomic and microeconomic dynamics for more precise 

investment decisions. To validate the IPS system’s capabilities, we benchmark it against 

a single-agent PPO model, a multi-agent PPO configuration using traditional neural 

networks, a multi-agent PPO configuration using BNNs and two widely adopted risk-

based strategies: Risk Parity and Minimum Variance Portfolio. The results, drawn from 

both Pre-COVID (stable) and COVID (volatile) market scenarios, demonstrate that our 

system consistently outperforms both learning-based baselines and traditional 

optimization approaches. The IPS system achieved the highest peak cumulative return 

of 40% in stable markets and 20% in volatile conditions. It also demonstrated superior 

risk management with the lowest Maximum Drawdown (-4.5%) in stable periods and 

the lowest volatility (12.8%) during market turbulence, highlighting its robustness and 

adaptability across varying market conditions. 
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1. INTRODUCTION

Financial markets are inherently dynamic and complex, 

presenting significant challenges for portfolio management [1, 

2]. Conventional models rely on static assumptions about asset 

returns and correlations, which often fail to capture the 

dynamic, non-linear behaviors of markets. These models 

typically struggle to adapt to sudden market shifts, making 

them suboptimal for decision-making in highly volatile 

environments [3, 4]. Moreover, as the volume of available 

financial data increases, traditional approaches often fall short 

in processing and utilizing these vast amounts of information 

effectively, limiting their predictive accuracy and adaptability. 

Recent advancements in machine learning, particularly 

reinforcement learning (RL), offer promising alternatives [5, 

[6]. Multi-Agent Reinforcement Learning (MARL) [7] has 

demonstrated its potential by enabling multiple agents to 

independently learn and interact in dynamic environments [8-

10]. While MARL-based systems allow for better adaptability 

compared to traditional models, they often neglect the 

complexities of uncertainty and risk management in highly 

volatile markets. In addition, existing approaches frequently 

rely on Conventional Neural Networks (CNNs), which offer 

deterministic predictions that fail to account for the inherent 

uncertainty in financial forecasting. Furthermore, these 

systems lack mechanisms to prioritize critical information 

dynamically, limiting their ability to focus on the most 

relevant data amidst the increasing volume of financial 

information. 

The Integrated Portfolio Strategist (IPS) system presented 

in this paper is a novel framework designed to bridge these 

gaps by combining a hierarchical multi-agent system with 

Bayesian Neural Networks (BNNs) within the Proximal 

Policy Optimization (PPO) framework. Unlike traditional 

models that rely on static assumptions or single-agent systems, 

the IPS dynamically adjusts portfolio allocations by 

leveraging a high-level agent to analyze macroeconomic 

trends and low-level agents to manage sector-specific asset 

groups. The use of BNNs [11] enhances decision-making by 

incorporating uncertainty [12, 13], providing the system with 

a probabilistic framework that allows it to account for market 

volatility and forecast errors. Attention mechanisms further 

improve the system’s performance by enabling agents to 

communicate and collaborate effectively, dynamically 

prioritizing the most critical macroeconomic signals and 

sector-specific trends. This combination of uncertainty-aware 

modeling and dynamic communication ensures robust 

adaptability in unpredictable market conditions. Moreover, the 

IPS system utilizes Genetic Algorithms (GAs) for 

hyperparameter optimization [14, 15], ensuring that the system 

remains responsive to market shifts without relying on manual 

tuning. This integration allows the IPS to adapt its 
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configuration and optimize performance under different 

market conditions, an advancement over traditional systems 

that often require constant manual intervention or rely on 

preset parameters.  

In comparison to existing portfolio optimization systems, 

the IPS offers several key advancements: 

⚫ Dynamic Adaptability: The hierarchical structure 

and multi-agent approach enable the IPS to respond to 

both macroeconomic signals and sector-specific 

dynamics, a significant improvement over static 

models. 

⚫ Uncertainty Modeling: The incorporation of BNNs 

allows the IPS to quantify uncertainty, providing a 

more reliable basis for decision-making in volatile 

markets. 

⚫ Enhanced Information Prioritization: Attention 

mechanisms enable agents to dynamically prioritize 

relevant data while facilitating inter-agent 

communication, enhancing collaboration and decision 

accuracy in complex and data rich environments. 

⚫ Enhanced Risk Management: The IPS demonstrates 

superior risk-adjusted returns and drawdown 

management, particularly in stress test scenarios like 

the COVID-19 market crisis, where traditional models 

often perform poorly. 

⚫ Automated Hyperparameter Optimization: The 

use of GAs automates the fine-tuning of the system, 

optimizing the allocation of resources across agents 

and sectors without human intervention. 

Thus, the IPS system fills a critical gap in portfolio 

management by offering an adaptive, uncertainty-aware 

approach that balances risk and return more effectively in 

complex and volatile financial environments.  

 

 

2. PORTFOLIO OPTIMIZATION IN DYNAMIC 

FINANCIAL MARKETS 

 

The financial markets are inherently characterized by high 

volatility and frequent fluctuations [16], making portfolio 

optimization a challenging task. Traditional portfolio 

optimization methods, such as the Mean Variance 

Optimization [17], optimize the trade-off between expected 

return and risk by minimizing the portfolio variance: 

 

min
𝑤

𝑤𝑡 ∑ 𝑤 Subject to 𝑤𝑡𝜇=𝜇𝑝 and ∑ 𝑤𝑖 = 1𝑖  (1) 

 

where, w represents the portfolio weights, Σ is the covariance 

matrix of asset returns, μ is the vector of expected returns, and 

μp is the desired portfolio return. 

While this formulation is foundational, it assumes 

stationarity and linear relationships, which may not hold in 

dynamic and complex financial markets. To address these 

limitations, RL-based approaches [18] have been increasingly 

applied in portfolio optimization. The IPS leverages MARL 

[7] to dynamically adjust portfolio allocations in response to 

evolving market conditions, addressing the limitations of 

traditional static approaches.  

 

 

3. THE PROPOSED SYSTEM 

 

The IPS framework employs a MARL [7] approach to 

handle complex financial decision-making under dynamic and 

uncertain conditions. The architecture includes two types of 

agents: The high-level agent, which analyzes macroeconomic 

trends and provides strategic insights and the Low-Level 

agents that manage sector-specific asset groups, balancing 

group performance with overall portfolio objectives. The 

overall architecture of this system is illustrated in Figure 1. 

 

 
 

Figure 1. The IPS framework with the high-level agent generating macroeconomic insights and the three low-level agents 

managing sector-specific decisions for portfolio allocation and rebalancing 
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3.1 Hierarchical agent structure and decision making 

 

The hierarchical structure of the IPS system is modeled 

using the Hierarchical Markov Decision Process (HMDP) 

framework, a formal extension of the standard MDP applied 

in Hierarchical Reinforcement Learning (HRL) [18]. HMDPs 

have been widely used to capture multi-level temporal 

abstraction in decision-making processes by decomposing a 

global policy into sub-policies at different hierarchies of 

control [19]. In this formulation, each decision-making level 

corresponds to a semi-Markov process operating at its own 

temporal resolution. The high-level policy selects abstract 

actions (e.g., strategic allocations), which invoke lower-level 

policies that carry out more granular decisions (e.g., asset 

reallocations). In our framework, the high-level agent operates 

over a slower time scale and captures macroeconomic signals 

to make strategic portfolio-level decisions. In contrast, low-

level agents act more frequently within their group-specific 

environments, executing sectoral or asset-level actions that 

refine the high-level strategy. Formally, each agent solves an 

MDP defined by the tuple ⟨S, A, P, R, γ⟩, with state and action 

spaces tailored to its decision level. The high-level agent uses 

macroeconomic state space Smacro and action space Amacro, 

while low-level agents operate over group-specific spaces 

Sgroup and Agroup. The overall IPS policy is modeled as a joint 

hierarchical policy: 

 

𝜋(𝑠𝑡) 

= 𝜋𝑚𝑎𝑐𝑟𝑜(𝑎𝑡
𝑚𝑎𝑐𝑟𝑜  |𝑠𝑡

𝑚𝑎𝑐𝑟𝑜). 

𝜋𝑔𝑟𝑜𝑢𝑝(𝑎𝑡
𝑔𝑟𝑜𝑢𝑝

|𝑠𝑡
𝑔𝑟𝑜𝑢𝑝

, 𝑎𝑡
𝑚𝑎𝑐𝑟𝑜) 

(2) 

 

This formulation ensures coordinated decision-making 

across both strategic and operational levels, enabling the IPS 

to integrate macroeconomic insights with sector-specific 

portfolio actions. 

 

3.1.1 High-level agent: Macro-economic signal processing 

The high-level agent in the IPS framework uses PPO [20] to 

update its policy in a stable and reliable manner. PPO 

constrains the magnitude of policy updates while maximizing 

long-term returns, making it well-suited for financial 

environments where overreaction to short-term changes can be 

costly. The PPO algorithm aims to maximize the following 

objective: 

 

𝐿𝑃𝑃𝑂(𝜃𝑚𝑎𝑐𝑟𝑜) 

= 𝔼𝑡[min(𝑟𝑡(𝜃𝑚𝑎𝑐𝑟𝑜)𝐴𝑡
𝑚𝑎𝑐𝑟𝑜 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃𝑚𝑎𝑐𝑟𝑜), 1

− 𝜀, 1 +  𝜀)𝐴𝑡
𝑚𝑎𝑐𝑟𝑜)] 

(3) 

 

The high-level agent provides strategic guidance for group-

level portfolio adjustments, enabling hierarchical coordination 

with: 

Inputs: The high-level agent processes macroeconomic 

indicators 𝑋𝑡
𝑚𝑎𝑐𝑟𝑜, including economic and market signals and 

global events influencing market movements. 

Reward Function: Designed to balance risk-adjusted 

returns, portfolio stability, sectoral performance, and leverage 

management. The reward function incentivizes decisions 

aligned with market conditions. It integrates: 

 

𝑅𝑡
𝑚𝑎𝑐𝑟𝑜 =  𝛼. 𝑆𝑅𝑡 +  𝛽. 𝑅𝑡

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
+ 𝛾. 𝑆𝑡

𝑠𝑒𝑐𝑡𝑜𝑟 − 𝛿. 𝐿𝑡 (4) 

 

where, SRt is the Sharpe Ratio, calculated as:  

 

𝑆𝑅𝑡 =
𝔼[𝑅𝑡] − 𝑅𝑓

𝜎𝑡

 (5) 

 

here, 𝔼[𝑅𝑡] is the expected return, Rf is the risk-free rate, and 

𝜎𝑡 is the standard deviation of returns. 

𝑅𝑡
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

: The stability term, defined as the inverse of 

portfolio volatility: 

 

𝑅𝑡
𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=
1

𝜎𝑡

 (6) 

 

This term rewards agents for maintaining a stable portfolio 

with lower volatility. 

𝑆𝑡
𝑠𝑒𝑐𝑡𝑜𝑟: Sector-specific Sharpe Ratios, which measure the 

performance of capital allocation to individual sectors. This 

term rewards effective sector allocation based on 

macroeconomic conditions, such as increasing exposure to 

defensive sectors during market downturns. 

Lt: The leverage ratio, representing the extent of portfolio 

leverage. A penalty term is included to discourage excessive 

leverage during volatile markets. 

The parameters α, β, γ, and δ control the relative importance 

of each component in the reward function, enabling the system 

to adapt its priorities dynamically. This reward function aims 

to ensure that high-level agents optimize portfolio strategies 

across macroeconomic, stability, sectoral, and leverage 

dimensions. 

Actions: The high-level agent interprets macroeconomic 

signals to guide portfolio adjustments, including: Adjusting 

risk exposure (risk-on/risk-off), reallocating capital across 

asset classes, setting sectoral preferences, and modifying 

leverage ratios to adapt to market trends. 

 

3.1.2 Low-level agents: group-level signal processing 

In the IPS framework, each sector is managed by a 

dedicated low-level agent, which processes sector-specific 

signals to capitalize on shared market characteristics and 

optimize decision-making at a granular level. These agents are 

specialized to exploit common dynamics within their 

respective sectors, allowing IPS to adapt granularly to sectoral 

trends while aligning with overarching macroeconomic 

strategies. 

Technology Sector Agent: The low-level agent for the 

technology sector focuses on high-growth opportunities, 

targeting assets with significant potential for value growth. 

This agent specializes in navigating the inherent volatility of 

the sector by optimizing asset allocation within subsectors 

such as semiconductors, cloud computing, and artificial 

intelligence. 

Healthcare Sector Agent: The healthcare sector agent 

prioritizes stability and defensive performance, particularly 

during periods of economic uncertainty. This agent focuses on 

assets such as pharmaceutical companies and biotechnology 

firms, which are known for their resilience during market 

downturns.  

Energy Sector Agent: The energy sector agent is tailored 

to manage the cyclical nature of this industry, focusing on 

macroeconomic indicators such as oil prices and geopolitical 

trends. This agent dynamically adjusts allocations within the 

sector to capitalize on market cycles.  

To guide their decision-making, these agents rely on: 

Inputs: These agents receive sector-specific inputs, 

including aggregated Open, High, Low, Close, Volume 

(OHLCV) market data and technical signals that capture 
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trends and momentum for all assets within its assigned sector. 

This input structure enables low-level agents to refine their 

decisions based on sector-specific factors, while aligning their 

actions with the strategic guidance provided by the high-level 

agent. 

Reward Function: The reward function for low-level 

agents in the IPS framework is designed to optimize sector-

level decisions by balancing risk and growth objectives. The 

reward for a low-level agent managing a specific sector, Ri, is 

calculated as: 

 

𝑅𝑖 = 𝜔𝑖
𝑟𝑖𝑠𝑘 .

𝐸[𝑅𝑖]

𝜎𝑖

+ 𝜔𝑖
𝑔𝑟𝑜𝑤𝑡ℎ

. 𝜆. 𝐶𝑖 (7) 

 

where, 𝜔𝑖
𝑟𝑖𝑠𝑘 : A weighting parameter that determines the 

emphasis on risk-adjusted returns; 
𝐸[𝑅𝑖]

𝜎𝑖
: The Sharpe Ratio, 

representing the expected return 𝐸[𝑅𝑖]  per unit of risk 

(volatility σi); 𝜔𝑖
𝑔𝑟𝑜𝑤𝑡ℎ

: A weighting parameter that prioritizes 

growth-focused objectives; λ: A growth scaling factor that 

controls the contribution of growth metrics to the reward 

function; Ci: A growth-oriented measure, such as capital 

allocation to high-potential sectors or industries. 

Actions: Based on the received signals and computed 

rewards, each low-level agent undertakes sector-specific 

actions, such as adjusting portfolio weights for its assigned 

sector, reallocating resources among sector-specific assets, 

and managing exposure within the sector. These actions 

directly influence the portfolio's structure by optimizing risk 

and return within the agent’s assigned sector, while adhering 

to the guidelines set by the high-level agent. 

This architecture ensures that low-level agents respond 

precisely to sector-specific dynamics while remaining 

synchronized with the strategic guidance of the high-level 

agent, enabling fine-grained control and improved portfolio 

coherence.  
 

3.2 Bayesian neural networks for risk assessment in IPS 

 

In the IPS framework, BNNs [11] are integrated into both 

the policy and value networks of each PPO agent, replacing 

deterministic neural networks. BNNs model epistemic 

uncertainty by treating network parameters as probability 

distributions rather than fixed values, allowing agents to avoid 

overconfident decisions in volatile financial environments. 

Mathematically, this is formalized through Bayes’ theorem, 

where a prior distribution 𝑝(𝜃)  over network weights is 

updated with data 𝐷 to produce a posterior:  

 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)𝑝(𝜃)

𝑝(𝐷)
 (8) 

 

To implement this in practice, we use Monte Carlo Dropout 

(MC Dropout) as an approximation to Bayesian inference, 

following [21]. During training and inference, dropout is 

applied at each forward pass, and multiple stochastic passes 

are used to estimate predictive distributions. The prior is 

implicitly defined by a Bernoulli distribution from the dropout 

mask, while the posterior is approximated using variational 

inference with stochastic gradient descent. 

Although BNNs introduce additional computational 

overhead (approximately 1.5× compared to deterministic 

networks), this cost is justified by their ability to improve risk-

aware decision-making and robustness in uncertain market 

conditions. 

 

3.3 Attention-based communication for agent coordination 

in IPS 

 

In many standard MARL frameworks, agents operate 

independently based only on local observations, without 

explicitly accounting for broader system-level information. 

While this may work in simple environments, financial 

markets are complex, dynamic systems with interdependent 

signals — such as macroeconomic indicators, sector-level 

trends, and correlated asset movements. Without effective 

inter-agent communication, agents risk missing broader 

market contexts, leading to suboptimal portfolio decisions. 

To address this, the IPS architecture integrates agent-

specific attention mechanisms that enable selective 

information exchange and prioritization. For the high-level 

agent, inputs include macroeconomic indicators such as GDP 

growth, interest rates, and global indices. For low-level agents, 

inputs consist of sector-specific OHLCV data and technical 

indicators. To enable selective communication, each agent 

first linearly projects its input feature vector 𝑋 into query (Q), 

key (K), and value (V) representations using learned weight 

matrices: 

 

𝑄 = 𝑊𝑄 . 𝑋, 𝐾 = 𝑊𝑘 . 𝑋, 𝑉 = 𝑊𝑣 . 𝑋 (9) 

 

During communication, each agent ai receives its own 

observation oi and shared signals xj from other agents. The 

attention mechanism computes relevance scores eij using the 

scaled dot-product: 

 

𝑒𝑖𝑗 =
𝑞𝑖 . 𝑘𝑗

√𝑑
 (10) 

 

These scores are normalized using the Softmax function to 

produce attention weights: 

 

𝑎𝑖𝑗 =
𝑒𝑥𝑝 (𝑒𝑖𝑗)

∑ 𝑒𝑥𝑝 (𝑒𝑖𝑘)𝑛
𝑘=1

 (11) 

 

Finally, the context vector ci, which represents the weighted 

aggregation of shared signals, is computed as: 

 

𝑐𝑖 = ∑ 𝑎𝑖𝑗𝑣𝑗

𝑛

𝑗=1

 (12) 

 

where, vj=wvxj is the value vector derived from xj. 

 

3.4 Hyperparameter optimization in IPS 

 

In IPS, hyperparameters are dynamically adjusted using 

GAs, which are well-suited for exploring high-dimensional 

spaces, avoiding local optima, and accommodating both 

continuous and discrete parameter types (Figure 2). 

GAs optimize hyperparameters such as learning rates, 

discount factors, and sector-specific allocations by encoding 

them into chromosomes. 

The GA workflow includes: 

1. Initialization: Generating an initial population of 

candidate solutions (chromosomes). 

2. Fitness Evaluation: Evaluating each chromosome using 

cumulative returns and risk-adjusted metrics. 
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3. Selection, Crossover, and Mutation: Selecting top-

performing chromosomes, combining traits via crossover, and 

introducing mutations to maintain diversity and avoid local 

optima. 

4. Iteration and Convergence: Repeating these steps until 

a termination criterion is met. 

Table 1 presents possible hyperparameter settings for high-

level and low-level agents in IPS. 

 

 
 

Figure 2. Integration of genetic algorithms in the IPS system for agent configuration and optimization 

 

Table 1. Possible hyperparameter settings for high-level and low-level agents in IPS 

 
Agent Type Hyperparameter Range/Options Description 

High-Level Agent 

Learning Rate 0.001 – 0.1 Controls the step size during optimization. 

Discount Factor 0.9 – 0.99 Determines the importance of future rewards. 

Exploration Rate 0.1 – 0.5 Probability of exploring new actions. 

Batch Size 16, 32, 64, 128 Number of samples processed before updating. 

Epochs 100 – 300 Number of complete passes through the dataset. 

Regularization (L2) 0.0001 – 0.01 Reduces overfitting by penalizing large weights. 

Low-Level Agent 

Learning Rate 0.001 – 0.1 Controls the step size during optimization. 

Discount Factor 0.8 – 0.95 Determines the importance of future rewards. 

Exploration Rate 0.1 – 0.5 Probability of exploring new actions. 

Batch Size 16, 32, 64 Number of samples processed before updating. 

Epochs 50 – 200 Number of complete passes through the dataset. 

Dropout Rate 0.1 – 0.5 Probability of dropping units during training. 

 

 

4. EXPERIMENTS AND RESULTS 

 

4.1 Dataset overview 

 

The IPS is evaluated using historical data from three major 

equity indices - S&P 500 [22], DAX [23] and FTSE 100 [24] 

- spanning January 2010 to June 2020. This diversified dataset 

includes 60 assets distributed across sectors, with 20 assets 

from the technology sector sourced from the S&P 500 and 

DAX, including semiconductors, software, and cloud 
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computing. Another 20 assets belong to the healthcare sector, 

encompassing pharmaceutical companies, biotechnology 

firms, and healthcare equipment providers from all indices. 

The remaining 20 assets are from the energy sector, drawn 

from the FTSE 100 and DAX.  

Each asset was allocated an initial investment of $16,666.67 

from a $1,000,000 portfolio. The training period from 2010 to 

2018 enabled the IPS to learn historical patterns, while the 

testing phase focused on two key periods: the pre-COVID era 

(2019–2020), characterized by stable market conditions for 

baseline evaluation, and the COVID-19 period (March–June 

2020), serving as a stress test under extreme market volatility. 

 

4.2 Dataset preprocessing 

 

To prepare the dataset for the IPS, a combination of 

normalization and handling of missing data was applied. Min-

max scaling was used to rescale feature values to a range 

between 0 and 1, ensuring consistency across all features. 

Missing values were addressed using forward and backward 

fill techniques to maintain continuity in the time series data. 

For training the IPS system, the hardware configuration 

included an Nvidia Tesla V100 GPU with 16 GB VRAM to 

handle deep learning tasks, an Intel Xeon Gold 6248 CPU with 

20 cores and a clock speed of 2.5 GHz for auxiliary tasks and 

parallelized operations, 64 GB of DDR4 RAM for efficient 

data handling, and a 1 TB SSD for rapid data retrieval. In the 

implementation we utilize PyTorch for Bayesian Neural 

Networks, TensorFlow for attention mechanisms, and DEAP 

(Distributed Evolutionary Algorithms in Python) for 

optimizing Genetic Algorithms. 

 

Table 2. Optimized hyperparameters using GA in Pre-

COVID scenario 

 
Agent Type Hyperparameter Range/Options 

High-Level Agent 

Learning Rate 0.01 

Discount Factor 0.95 

Exploration Rate 0.3 

Batch Size 64 

Epochs 200 

Regularization (L2) 0.001 

Low-Level Agent 

Learning Rate 0.005 

Discount Factor 0.9 

Exploration Rate 0.4 

Batch Size 32 

Epochs 150 

Dropout Rate 0.2 

 

Table 3. Optimized hyperparameters using GA in COVID 

scenario 

 
Agent Type Hyperparameter Range/Options 

High-Level Agent 

Learning Rate 0.005 

Discount Factor 0.85 

Exploration Rate 0.5 

Batch Size 64 

Epochs 150 

Regularization (L2) 0.001 

Low-Level Agent 

Learning Rate 0.002 

Discount Factor 0.85 

Exploration Rate 0.5 

Batch Size 32 

Epochs 120 

Dropout Rate 0.3 

 

 

4.3 Experiment setup 

 

4.3.1 GA-optimized configuration 

The optimized hyperparameters for the IPS framework, 

obtained via GA tuning, are detailed in Table 2 (Pre-COVID) 

and Table 3 (COVID). 

The GA-optimized configurations were tailored to the 

distinct Pre-COVID and COVID scenarios: 

Higher Dropout and Exploration Rates: In the COVID 

scenario, the dropout rate increased from 0.2 to 0.3 and the 

exploration rate from 0.4 to 0.5, mitigating overfitting and 

encouraging agents to explore diverse strategies in volatile 

conditions. 

Adjusted Learning Rates and Discount Factors: 

Learning rates for high- and low-level agents were reduced to 

0.005 and 0.002, respectively, to stabilize training in volatile 

markets. Lower discount factors placed greater emphasis on 

short-term rewards, aligning with rapidly changing market 

conditions. 

 

4.3.2 Evaluation metrics 

The IPS's performance was evaluated using key metrics to 

quantify risk and return, including Total Return, Sharpe Ratio, 

Maximum Drawdown, Sortino Ratio, and Volatility.  

 

4.3.3 Testing configurations 

Four configurations were tested to assess IPS effectiveness: 

Single-Agent PPO: A baseline model using standard neural 

networks (NNs) and manually tuned hyperparameters, serving 

as a comparison point for advanced configurations. 

Multi-Agent PPO with NNs: Introduces multiple agents, 

each managing a specific sector (Technology, Healthcare, 

Energy) using PPO with standard NNs. This configuration 

isolates the benefits of multi-agent systems without 

uncertainty modeling. 

Multi-Agent PPO with BNNs: This configuration applies 

BNNs within a multi-agent PPO setup. It serves to assess the 

isolated impact of uncertainty modeling on portfolio 

optimization. 

IPS System: Features multiple agents using PPO with 

BNNs for uncertainty modeling, enhanced with Genetic 

Algorithms for dynamic hyperparameter tuning. 

 

4.3.4 Traditional baseline strategies 

To broaden the benchmarking scope beyond reinforcement 

learning methods, two traditional portfolio optimization 

strategies were implemented: 

Risk Parity: Allocates capital such that each asset 

contributes equally to the overall portfolio risk. It is widely 

used in institutional portfolio management for balanced risk 

exposure. 

Minimum Variance Portfolio: Constructs a portfolio that 

minimizes overall return volatility by optimizing asset weights 

based on their covariances. 

These models were implemented using the PyPortfolioOpt 

library and evaluated over the same datasets and timeframes 

as the RL-based configurations to ensure fair comparisons. 

 

4.4 Results 

 

4.4.1 Performance during stable markets (Pre-COVID) 

During the Pre-COVID period (January 2019 – December 

2019), the IPS system achieved the highest cumulative return, 

reaching nearly 40%, clearly outperforming all other strategies. 
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Figure 3 illustrates this gap visually, showing that IPS 

maintained a steep and steady growth trajectory, while 

competing strategies lagged behind—especially Single-Agent 

PPO and traditional baselines like Risk Parity and Mean 

Variance Portfolio, which flattened early in the period. 

Table 4 complements this by reporting detailed metrics, 

where IPS achieved the highest Sharpe Ratio (1.25) and 

Sortino Ratio (1.55), reflecting strong risk-adjusted 

performance. Its Maximum Drawdown of −4.5% was also the 

lowest across all methods, confirming superior downside 

protection. Moreover, the IPS system maintained the lowest 

volatility (4.2%), reinforcing its stability during this calm 

market phase. 

 

 
 

(a) 

 
(b) 

 

Figure 3. Cumulative return for single-agent PPO, multi-agent PPO (NN), multi-agent PPO (BNN), IPS, Risk Parity, and Mean 

Variance Portfolio in (a) Pre-COVID and (b) COVID scenarios 

 

Table 4. Performance metrics comparison for single-agent PPO, multi-agent PPO (NN), multi-agent PPO (BNN), IPS, Risk 

Parity, and Mean Variance Portfolio in Pre-COVID and COVID scenarios 

 

Metric 
Single-

Agent PPO 

Multi-Agent 

PPO (NN) 

Multi-Agent PPO 

(BNN) 
IPS Risk Parity 

Mean Variance 

Portfolio 

Pre-COVID 

Sharpe Ratio 1.02 1.15 1.21 1.25 1.02 1.15 

Maximum 

Drawdown (%) 
-7.8 -6.3 -5.2 -4.5 -7.8 -6.3 

Sortino Ratio 1.25 1.40 1.52 1.55 1.25 1.40 

Volatility (%) 4.6 4.8 4.4 4.2 4.6 4.8 

COVID 

Sharpe Ratio 0.55 0.62 0.71 0.78 0.55 0.62 

Maximum 

Drawdown (%) 
-20.5 -15.3 -12.3 -10.2 -20.5 -15.3 

Sortino Ratio 0.65 0.75 0.88 0.95 0.65 0.75 

Volatility (%) 15.8 14.5 13.4 12.8 15.8 14.6 
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4.4.2 Performance during volatile markets (COVID-19) 

During the COVID-19 market shock (March–June 2020), 

the IPS system consistently outperformed all baseline 

strategies, achieving a peak cumulative return of 

approximately 20%, clearly ahead of multi-agent PPO (BNN) 

with ~15%, PPO (NN) with ~10%, and Single-Agent PPO 

with ~5%. As shown in Figure 3, the IPS curve maintains 

steady growth, while other strategies—particularly Risk Parity 

and Mean-Variance—flatten or decline during high-volatility 

periods. In contrast, Risk Parity and Mean-Variance Portfolio 

exhibited subdued performance, which reflects their 

conservative nature during high-stress conditions.  

Statistical analysis supports these observations, as detailed 

in Table 4. The IPS recorded the highest Sharpe Ratio (0.78) 

and Sortino Ratio (0.95), indicating the best risk-adjusted 

returns in this volatile regime. Notably, it also achieved the 

lowest Maximum Drawdown (−10.2%), compared to −12.3% 

for multi-agent PPO (BNN), and much deeper losses for 

standard PPO and traditional portfolios. 

The Volatility metric, also reported in Table 4, confirms 

IPS's stability, with the lowest observed value at 12.8%, 

highlighting its effective risk management and adaptability. 

Risk Parity and Mean-Variance strategies, though 

traditionally stable, experienced notable short-term 

fluctuations (as seen in Figure 3), validating the realism of 

market reaction. However, their performance remained limited, 

with Sharpe Ratios of 0.55 and 0.62, respectively, and 

drawdowns reaching −20.5% and −15.3%. 

 

4.4.3 Sector-specific performance 

The IPS system’s hierarchical architecture enabled each 

low-level agent to contribute to portfolio performance with 

specialized sector strategies. This is quantitatively confirmed 

in Table 5, which reports the Sharpe Ratio, Maximum 

Drawdown, and Volatility across all three sectors (Technology, 

Healthcare, and Energy) during both the Pre-COVID and 

COVID periods. These sector-specific results highlight how 

each agent adapted to distinct market dynamics. 

 

Table 5. Performance of sector agents (Technology, 

Healthcare, Energy) in Pre-COVID and COVID scenarios 

 

Sector Period 
Sharpe 

Ratio 

Maximum 

Drawdown 

(%) 

Volatility 

(%) 

Technology 

Pre-

COVID 
1.35 -5.0 4.5 

COVID 0.80 -12.0 6.0 

Healthcare 

Pre-

COVID 
1.50 -4.0 4.0 

COVID 1.25 -3.5 4.2 

Energy 

Pre-

COVID 
1.10 -6.0 7.5 

COVID 0.70 -8.5 7.5 

 

Technology Sector Performance: In the technology sector, 

the agent capitalized on growth opportunities during the Pre-

COVID period, achieving a Sharpe Ratio of 1.35, a Maximum 

Drawdown of –5.0%, and volatility of 4.5%. During the 

COVID period, the agent shifted to more risk-averse strategies, 

reducing exposure to volatile assets, resulting in a Sharpe 

Ratio of 0.80 and a Maximum Drawdown of -12.0%. 

Healthcare Sector Performance: The healthcare agent 

adopted a defensive posture, prioritizing stability during the 

Pre-COVID period and achieving the highest Sharpe Ratio 

(1.50). During COVID, the agent maintained its risk-averse 

stance, achieving a Sharpe Ratio of 1.25, a Maximum 

Drawdown of –3.5%, and the lowest volatility (4.0%). These 

values confirm the Healthcare sector’s stabilizing effect, 

especially during turbulent periods. 

Energy Sector Performance: The energy agent 

demonstrated cyclical adaptability. It achieved a Sharpe Ratio 

of 1.10 and a Maximum Drawdown of –6.0% Pre-COVID. 

During COVID, it reallocated toward renewable assets to 

mitigate losses, resulting in a Sharpe Ratio of 0.70, a 

Maximum Drawdown of –8.5%, and Volatility of 7.5%. 

 

4.5 Discussion 

 

Table 4 and Figure 3 demonstrate that the IPS system 

consistently outperformed all baseline strategies across both 

stable (Pre-COVID) and turbulent (COVID-19) market 

conditions. It achieved the highest cumulative returns, superior 

risk-adjusted metrics, and the lowest drawdowns and volatility. 

These results validate the effectiveness of IPS’s hierarchical 

architecture, uncertainty-aware modeling, and dynamic 

coordination mechanisms. 

Table 5 further illustrates how attention-based 

communication and hierarchical policy decomposition 

enabled sector-specific agents to specialize and adapt their 

strategies. For example, the Technology agent drove portfolio 

growth during the Pre-COVID period, achieving a Sharpe 

Ratio of 1.35, while adopting a more risk-averse stance during 

COVID-induced volatility. The Healthcare agent provided 

consistent defensive strength, recording the lowest volatility 

(4.0%) pre-COVID and the lowest drawdown (−3.5%) during 

COVID. Meanwhile, the Energy agent dynamically 

reallocated toward renewable assets in response to shifting 

demand. These sector-level behaviors highlight the 

advantages of decentralized control and agent specialization in 

volatile environments. 

Compared to the single-agent PPO baseline, multi-agent 

PPO consistently demonstrated better performance across risk 

and return metrics, confirming the value of decentralized 

decision-making. Multi-agent architectures enable 

collaboration among agents, which enhances responsiveness 

to heterogeneous market signals and improves portfolio 

robustness in dynamic financial settings (Table 4 and Figure 

3). 

A key contributor to IPS’s superior performance is the 

integration of Bayesian Neural Networks (BNNs) and 

attention mechanisms. BNNs enabled probabilistic forecasting 

by modeling epistemic uncertainty, helping agents avoid 

overconfident decisions under noisy or limited data. In parallel, 

attention modules allowed agents to prioritize critical 

macroeconomic and sector-specific inputs, improving both 

coordination and precision in action selection. During the 

COVID-19 period, the IPS achieved a Sharpe Ratio of 0.78 

and volatility of 12.8%, significantly outperforming the multi-

agent PPO with deterministic NNs (Sharpe Ratio: 0.62, 

Volatility: 14.5%) and even the BNN-based PPO without 

attention or hierarchy (Sharpe Ratio: 0.71, Volatility: 

13.4%)—as shown in Table 4 and Figure 4. 

This trend of performance enhancement was consistent 

across both market regimes. During the Pre-COVID period, 

the IPS achieved the highest Sharpe Ratio (1.25) and the 

lowest drawdown (−4.5%), compared to 1.21 and −5.2% for 

the BNN-based PPO and 1.15 and −6.3% for the deterministic 

PPO. These results demonstrate the incremental value of each 
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architectural enhancement in the IPS pipeline. 

Importantly, this structured comparative analysis directly 

addresses the role of BNNs in the IPS system. The stepwise 

performance gains from Multi-Agent PPO with deterministic 

NNs → BNNs → full IPS confirm the value of incorporating 

uncertainty modeling. BNNs significantly enhance the 

robustness, risk sensitivity, and generalization capabilities of 

the IPS framework under both normal and stress-test 

conditions. 

 

4.6 Statistical significance analysis 

 

To account for the stochastic nature of both financial 

markets and reinforcement learning algorithms, we conducted 

a statistical validation of all experimental results. Each 

configuration—single-agent PPO, multi-agent PPO with 

standard neural networks (NN), multi-agent PPO with BNN, 

and the proposed IPS system—was trained and evaluated over 

10 independent runs, each initialized with a different random 

seed to ensure robustness. 

For each run, we recorded the Sharpe Ratio, Maximum 

Drawdown, and Volatility during both the Pre-COVID and 

COVID periods. We report the results as mean ± standard 

deviation to reflect performance consist&ency across trials. 

As shown in Table 6, the IPS system consistently achieved 

statistically superior performance across all key metrics. For 

instance, during the COVID-19 period, IPS reached a Sharpe 

Ratio of 0.78 ± 0.04, outperforming multi-agent PPO (BNN) 

at 0.70 ± 0.04, multi-agent PPO (NN) at 0.62 ± 0.05, and 

Single-Agent PPO at 0.55 ± 0.07. Similarly, IPS recorded a 

lower Maximum Drawdown (−10.2% ± 0.5%) and lower 

Volatility (12.8% ± 0.4%), demonstrating superior downside 

protection and robustness under extreme conditions. 

 

Table 6. Comparative performance of PPO variants using 

statistical metrics (Mean ± SD) in Pre-COVID and COVID 

scenarios 

 

Metric Scenario 

SingleA

gent 

PPO 

Multi-

Agent 

PPO 

(NN) 

Multi-

Agent 

PPO 

(BNN) 

IPS 

Sharpe Ratio 

Pre-COVID 
1.02 ± 

0.06 

1.15 ± 

0.05 

1.20 ± 

0.04 

1.25 ± 

0.04 

COVID 
0.55 ± 

0.07 

0.62 

±0.05 

0.70 ± 

0.04 

0.78 ± 

0.04 

Max 

Drawdown 

(%) 

Pre-COVID 
-7.8 ± 

0.6 

-6.3 

±0.5 

-5.2 ± 

0.4 

-4.5 ± 

0.3 

COVID 
-20.5 ± 

0.8 

-15.3 ± 

0.7 

-12.0 ± 

0.6 

-10.2 ± 

0.5 

Volatility (%) 

Pre-COVID 
4.6 ± 

0.3 

4.8 ± 

0.2 

4.5 ± 

0.2 

4.2 ± 

0.2 

COVID 
15.8 ± 

0.7 

14.5± 

0.6 

13.4 ± 

0.5 

12.8 ± 

0.4 

 

These trends were also observed during stable market 

conditions in the Pre-COVID period, where IPS maintained 

the highest Sharpe Ratio (1.25 ± 0.04) and the lowest 

drawdown (−4.5% ± 0.3%) among all methods. 

Visual comparisons in Figures 4–6 further reinforce these 

findings. Each chart includes error bars representing standard 

deviation, clearly illustrating the consistency and reliability of 

the IPS system. The performance differences are not 

attributable to random variation, but instead arise from the 

system’s architectural innovations—notably, the integration of 

BNNs, attention mechanisms, and hierarchical reinforcement 

learning. 

These results confirm that IPS delivers statistically robust 

improvements in both stable and volatile regimes, and 

substantiate the model’s effectiveness beyond pointwise 

performance. 

 

 
 

Figure 4. Sharpe ratio comparison across portfolio 

optimization models and market conditions 

 

 
 

Figure 5. Volatility comparison across portfolio optimization 

models and market conditions 

 

 
 

Figure 6. Maximum drawdown comparison across portfolio 

optimization models and market conditions 

 

 

5. CONCLUSIONS 

 

In this study, we introduced the IPS, a hierarchical 

reinforcement learning framework enhanced with BNNs, PPO, 

and attention mechanisms. The IPS demonstrated strong 

adaptability to varying market conditions, with high-level 

agents providing macroeconomic insights and low-level 
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agents performing sector-specific optimization. This 

hierarchical design enabled coherent and context-aware 

decision-making across diverse financial scenarios. 

Experimental results confirmed the IPS system’s superiority 

over single-agent and multi-agent PPO baselines using both 

deterministic neural networks and BNNs, as well as traditional 

risk-based strategies such as Risk Parity and the Minimum 

Variance Portfolio. While multi-agent PPO with BNNs 

already improved robustness and uncertainty modeling 

compared to deterministic approaches, the IPS system 

consistently achieved higher risk-adjusted returns, lower 

volatility, and reduced drawdowns, particularly during periods 

of extreme market turbulence such as the COVID-19 crisis. 

The integration of BNNs within the IPS framework enhanced 

its ability to capture uncertainty in financial environments, 

while attention mechanisms further improved inter-agent 

coordination and signal prioritization. Additionally, GAs 

contributed by dynamically optimizing hyperparameters, 

enabling the system to adapt effectively in both stable and 

volatile market conditions. 

To further enhance the applicability of the IPS framework, 

future work will explore its performance across a more diverse 

set of global equity markets, including indices from Asia, 

Latin America, and Africa. This will allow us to assess the IPS 

system’s robustness and generalizability in financial 

environments that exhibit different structural dynamics, 

liquidity profiles, and volatility patterns compared to 

developed markets. 

Additionally, we plan to benchmark the IPS framework 

against a wider range of state-of-the-art portfolio optimization 

strategies, such as transformer-based architectures, Bayesian 

ensemble models, and distributional reinforcement learning 

approaches. These comparisons will help position IPS within 

the broader ecosystem of advanced financial optimization 

systems. 

Future enhancements will also incorporate real-time data 

sources, including sentiment analysis from social media and 

news, as well as explore more advanced reinforcement 

learning techniques such as distributed actor-critic methods. 

These efforts aim to increase the scalability, adaptability, and 

real-world applicability of the IPS framework. 
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