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Water quality is always critical for most aquatic species and is crucial in the support of 

juvenile fish. However, current approaches for water quality assessment do not provide 

the required level of detail for pollution classification because they fail to account for 

temporal dependencies between different water quality variables. This research 

introduces a new transformer-based model, called HydroTransNet, which is developed 

to classify the water quality using multi-head self-attention and positional encoding. 

HydroTransNet quantifies the dynamic interactions of water quality variables over time 

and provides a temporal resolution of the dependencies of the various metrics at the 

sampling points within the large and complicated aquatic systems. The model 

architecture consists of several transformer encoder layers, universal normalization, and 

a fully connected layer that enhances the model’s predictive accuracy of water quality 

parameters. HydroTransNet was tested on several datasets, and the datasets contain 

water quality data under different conditions. The results indicate that HydroTransNet 

is better than traditional machine learning methods and has an accuracy of 99.1%. The 

proposed model has important implications for ecological monitoring: it affords a real 

opportunity for assessing the pollution level in the freshwater ecosystems and 

contributes to improvement of the environmental quality and resources. Because of the 

HydroTransNet’s effectiveness in observing critical parameters of water, it presents an 

effective model for real-time environmental observation with applications in the 

preservation and rehabilitation of natural aquatic habitats. 
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1. INTRODUCTION

Assessment of water quantity in rivers, lakes, and oceans is 

one of the most important indicators of ecological status, as it 

affects fish and different water inhabitants [1]. These 

ecosystems are disturbed by pollution and contamination, 

which results to decrease in species, and the creation of certain 

conditions that are more likely to influence complete food 

chains [2]. Monitoring of water quality [3-8] is crucial to the 

preservation of the affected ecosystems but the traditional 

methods of water sampling and laboratory analysis are time-

consuming and do not provide real time data [9-14]. These 

methods do not easily fit the dynamic and variable nature of 

natural water bodies especially those that are influenced by 

seasonal changes, anthropogenic impacts and effects of 

urbanization [15-18]. Hydroinformatics have also been 

applied to supplement the traditional water quality monitoring 

through development of models that provide outlooks based 

on the history. While these models help improve the efficiency 

of monitoring, they have some shortcomings in describing the 

behavior of the multiple water quality parameters and their 

interactions [19]. Standard approaches to data analysis based 

on machine learning and statistical methods are unable to 

identify these connections because variability and 

interdependence are high in real-world aquatic environments 

[20-24]. 

New opportunities for their overcoming are opening with 

the help of the latest advances in deep learning [25, 26], 

including the transformer model. The transformer models 

were initially introduced for processing sequential data in 

natural language processing and are most useful in capturing 

patterns and dependencies in time-series data, which will be 

useful in capturing temporal relationships within water quality 

metrics. To this end, we propose HydroTransNet, a 

transformer-based classifier for water quality classification 

based on temporal dependencies of the environmental 

features. HydroTransNet incorporates multi-head self-

attention mechanisms and positional encoding to improve the 

interpretability of the temporal feature of water quality data 

and is a more flexible and robust solution to environmental 

monitoring. In this respect, HydroTransNet takes into account 

the temporal order of observations and their applicability to 

build a precise and adaptable system for the long-term water 

quality monitoring. This has the possibility of improving the 
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development of water quality monitoring activities in order to 

improve the health of the ecosystem. Section 2 includes a 

detailed review of existing research works within the field. 

The proposed model is explained in detail through Section 3 

by introducing its framework in addition to methodology and 

important system components. Section 4 provides an extensive 

examination of results together with a discussion which 

interprets all findings and their effects. Section 5 concludes by 

summing up major findings and recommending directions for 

potential research development. 

 

 

2. RELATED WORK 

 

Several techniques have been proposed by other researchers 

to predict water quality. For example, Arepalli et al. [6] 

employed a highly complex data analysis using GRU to 

forecast water quality for salmon fish. This helps us 

understand and manage better water quality for salmon fish. 

Other research focused on some aspects of water quality. Ubah 

et al. [7] used AI to predict the factors influencing the water 

irrigation quality and Talukdar et al. [8] developed a model to 

predict overall health of the aquatic ecosystem. Other sectors 

that also gain from such developments include fish farming or 

aquaculture. Li et al. [9] put forward a smart system that 

regulates the level of ammonia in fishponds, which in turn 

increased the growth rate among the fishes. Metin et al. [10] 

and Nagaraju et al. [11] proposed how to predict toxic 

compounds in water used in aquaculture to improve their 

quality for fish farming. They also introduced another 

intelligent approach to accurately predict ammonia levels in 

real-time for aquaculture, aiding in better fish health and 

productivity. Yu et al. [12] employed the latest methods in 

computer science for the purpose of better conservation and 

utilization of water. Panwar et al. [13] proposed AquaVision, 

an autonomous transfer learning model that detects trash in 

bodies of water. The model achieved better accuracy on 

AquaSat dataset.  

Nasir et al. [14] found antioxidant defence mechanisms 

against ammonia stress in freshwater turtles, Chen et al. [15] 

employed deep learning methods. Huu and Duc [16] 

developed ammonium monitoring system with up to 80% 

accuracy in aquaculture using deep learning image processing 

and Internet of Things technologies. In their work, Wang et al. 

[17] used LSTM neural network model with Landsat-8 

Sentinel -2 data to enhance the measurement and detect 

outliers. The researchers also included reference from their 

work conducted by Chen et al. [15]. Arepalli and Naik [18] 

have pointed out that fish farming can cause serious pollution 

in water bodies and affect aquatic ecosystems and organisms. 

Hence, it is important to evaluate them accurately so as to 

prevent further degradation. They analyze traditional methods 

because they are expensive, time consuming, prone to errors 

therefore suggesting integration of AI, IoT data analytics into 

evaluation process. In their research work they come up with 

new framework where data is collected using IoT devices then 

Ordinary Differential Equation Gated Recurrent Unit 

(AODEGRU) model integrated attention mechanisms applied 

achieve better classification accuracy. From experiments 

conducted this model shows high rates accuracy much better 

than any other existing methods. 

Arepalli and Naik [19] proposed water quality classification 

framework Dilated Spatial-temporal Convolution Neural 

Network (DSTCNN) model, that identifies both shortcomings 

in traditional aquaculture water quality monitoring procedures 

as well as difficulties that deep learning models encounter 

including overfitting and interpretation barriers. Real-time 

monitoring through IoT systems has enhanced assessment 

capacity yet accuracy standards as well as generalization 

capabilities need improvement. 

 

 

3. PROPOSED WORK 
 

The model takes as input a series of water quality 

measurements X={x1, x2, xT}, where T is the length of the 

sequence, and each feature vector contains different water 

quality parameters. The output of the model is a predicted class 

that indicates the quality of the water. 

The HydroTransNet exists as a transformer-based model 

structure which processes water quality information to identify 

time dependencies successfully. A sequence of transformer 

encoder layers makes up the model structure along with multi-

head self-attention processing units to examine connections 

between water quality measurements across different time 

intervals. This architecture contains 6 encoder layers and each 

layer has eight attention heads for simultaneous examination 

of different aspects in input data. A dimension of 512 functions 

within the embedding system to generate representations 

which deliver significant features alongside operationally 

efficient processing. Positional encoding was incorporated to 

maintain the sequential order of information since 

transformers by nature do not handle sequence arrangement. 

The model obtains increased stability through the 

implementation of layer normalization alongside dropout 

regularization techniques for preventing overfitting. The last 

layer in the sequence converts the extracted features into 

classification labels through a fully connected transformer. 

The architectural design of HydroTransNet surpasses 

traditional machine learning models because it succeeds at 

modeling the complex as well as dynamic nature of water 

quality variations. 

Compute positional encoding: 

The positional encoding equations use sinusoidal functions 

to encode token positions, ensuring unique and smooth 

variations across dimensions. The combination of sine and 

cosine functions with different frequencies allows the model 

to capture both short-term and long-term positional 

relationships in the sequence. 
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Here, d is the dimension of the entrenching. 

Map input sequence to embedding space: 

o Embed the input sequence 𝐸 = 𝑋𝑊𝑒 + 𝑏𝑒 

o Add positional encodings to the embedded input: 
 

𝐸′ = 𝐸 + 𝑃𝐸 (2) 

 

Multi-head self-attention: 

In the mechanism of self-attention with multiple heads, 

every head of attention calculates queries, keys and values by 
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multiplying different weight matrices with input embeddings. 

This enables each head of attention to concentrate on various 

parts of information and grasp diverse connections between 

elements in a sequence. 

For each attention head h, compute queries Q, keys K, and 

values V: 

 

𝑄ℎ = 𝐸′𝑊ℎ
𝑄

 

𝐾ℎ = 𝐸′𝑊ℎ
𝐾 

𝑉ℎ = 𝐸′𝑊ℎ
𝑉 

(3) 

 

Compute scaled dot-product attention: 

In each attention head, the attention scores are calculated by 

enchanting the dot product of the queries and keys, scaling it 

by the square root of the dimension of the keys, and then 

applying the Softmax function to obtain normalized attention 

weights. These weights are used to calculate a weighted sum 

of the values, producing the output of the attention mechanism. 

 

Attentionℎ(𝑄ℎ , 𝐾ℎ, 𝑉ℎ) = Softmax (
𝑄ℎ(𝐾ℎ)𝑇

√𝑑𝑘
) 𝑉ℎ (4) 

 

The multi-head attention mechanism concatenates the 

outputs of all attention heads into one vector. This vector is 

then transformed by a final weight matrix to give the output of 

the multi-head attention layer. 

Concatenate attention heads: 

 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1 … , headH)WO (5) 

 

Add and normalize: 

The original input embeddings are added to the output of 

the multi-head attention mechanism in the add and normalize 

step (residual connection). This sum is then passed through 

layer normalization, which stabilizes and improves the 

training of the model by normalizing the output and ensuring 

it has a mean of zero and variance of one. 

o Add residual connection and apply layer normalization: 
 

E′′ =  LayerNorm(E′ + MultiHead(𝑄, 𝐾, 𝑉)) (6) 
 

Feed-forward network (FFN): 

o Apply position-wise FFN: 
 

𝐹𝐹𝑁(𝑥) =  𝑅𝑒𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (7) 

 

o Add residual connection and apply layer normalization:  

 

Output = LayerNorm(E′′ + FFN(E′′)) 
 

Global average pooling: 

o Apply global average pooling to the output sequence to 

obtain a fixed-size representation: 
 

𝑧 =
1

𝑇
∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑖

𝑇

𝑡=1

 (8) 

 

Fully connected layer: 

o Pass the pooled representation through a fully 

connected layer to map it to the output classes: 

 

𝑦 = Softmax(𝑧𝑊 + 𝑏) (9) 

 

 

Algorithm 1: HydroTransNet 

Input: X={x1, x2, 𝑥𝑇} 

Output: Classify weather the water quality is 

contaminated for aquaculture or not 

1) Positional encoding 

2) Compute positional encoding 

3) For each position pos in the sequence and each 

dimension i: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖
𝑑

)  

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10000
2𝑖
𝑑

)  

4) Input embedding 

5) Map input sequence to embedding space: 

a) Embed the input sequence XXX using a 

linear layer: 

6) 𝐸 = 𝑋𝑊𝑒 + 𝑏𝑒 

a) Add positional encodings to the embedded 

input: 

7) 𝐸′ = 𝐸 + 𝑃𝐸 

8) Transformer encoder layer 

9) Multi-head self-attention 

10) For each attention head h, 

a) compute queries Q, keys K, and values V: 

b) 𝑄ℎ = 𝐸′𝑊ℎ
𝑄

 

c) 𝐾ℎ = 𝐸′𝑊ℎ
𝐾 

d) 𝑉ℎ = 𝐸′𝑊ℎ
𝑉 

e) Compute scaled dot-product attention: 

f) Attentionℎ(𝑄ℎ , 𝐾ℎ, 𝑉ℎ) =

Softmax(
𝑄ℎ(𝐾ℎ)𝑇

√𝑑𝑘
)𝑉ℎ 

g) Concatenate attention heads: 

h) MultiHead(Q, K, V) =
Concat(head1. … , headH)WO 

11) Add and normalize: 

a) Add residual connection and apply layer 

normalization: 

b) E′′ = LayerNorm(E′ +
MultiHead(Q, K, V)) 

12) FFN: 

a) Apply position-wise FFN: 

i. 𝐹𝐹𝑁(𝑥) = 𝑅𝑒𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

b) Add residual connection and apply layer 

normalization: 

i. Output = LayerNorm(E′′ + FFN(E′′)) 

13) Repeat steps 3-5: 

a) Apply multiple transformer encoder layers by 

repeating the above steps. 

14) Global average pooling 

a) Apply global average pooling to the output 

sequence to obtain a fixed-size 

representation: 

𝑧 =
1

𝑇
∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑖

𝑇
𝑡=1   

15) Fully connected layer: 

a) Pass the pooled representation through a fully 

connected layer to map it to the output 

classes: 
16) 𝑦 = Softmax(𝑧𝑊 + 𝑏) 
17) The output y represents the predicted class 

probabilities for water quality. 

 

The algorithm of water contamination analysis starts with a 

series of water quality measurements, each having different 
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parameters. Initially, positional encodings are calculated to 

indicate where each measurement stands in the sequence. 

These encodings are then added to the embedded input data so 

as to create a positional-aware representation. The model’s 

heart consists of several transformer encoder layers. Each 

layer has a multi-head self-attention mechanism that computes 

queries, keys and values for determining which measurements 

are more important than others. Values are weighted by 

attention scores and outputs from all attention heads are 

concatenated and transformed. This is followed by adding 

residual connections and normalizing the results. Next, FFN is 

applied to further process the data. After repeating these steps 

for multiple encoder layers, global average pooling is used to 

aggregate sequence data into a fixed-size vector. Then this 

vector goes through a fully connected layer which classifies 

whether the water quality is contaminated with final output 

representing predicted class probabilities. 

The FFN within the HydroTransNet architecture turns the 

multi-head self-attention layer output into improved features 

for analysis. After the attention mechanism retrieves water 

quality parameter relationships the output enters a position-

wise FFN which is also known as the fully connected layer. 

Two linear transformations follow each other in the 

architecture with ReLU set as the non-linear function. Through 

the first transformation the model expands the embedding 

dimensional space before the second transformation reduces it 

back to the input dimension for maintaining consistency with 

original parameters. Its double-layer architecture permits the 

model to develop advanced abstractions of water quality data 

without compromising operational speed. 

Each position of sequence processing occurs independently 

through the FFN because it treats every individual data point 

without examining its contextual position. The attention 

mechanism's learned contextual relationships stay intact 

because the model continues to process individual 

representations to obtain improved classification precision. To 

prevent overfitting and guarantee dataset generalization 

dropout regularization functions between both transformations 

in the model. Layer normalization occurs for a second time 

following feed-forward operations to support stable activation 

distribution which improves training convergence. The 

combination between the fully connected layer and 

normalization steps with residual connections results in 

HydroTransNet becoming an accurate platform for real-world 

environmental monitoring applications. 

 

 

4. RESULTS AND DISCUSSION 

 

We have evaluated the proposed model against 

contemporary models using accuracy, precision, recall and F1-

score publicly available datasets. To ensure reliability and 

robustness in our studies, we used confusion matrix analysis 

to evaluate the proposed model. The IoT-enabled sensors 

collected the water quality parameters from aquaculture fish 

ponds through continuous measurement of essential 

environmental factors that sustain fish health. Water quality 

sensors operated regularly to measure pH alongside dissolved 

oxygen (DO), temperature, turbidity, conductivity, ammonia 

levels, nitrate concentration and biochemical oxygen demand 

(BOD) parameters. The fishponds received assessments from 

calibrated multi-parameter water quality probes that were put 

at various depths throughout different fish pond locations for 

capturing distinct water quality patterns. The online data 

communication between sensors and cloud storage occurred 

through wireless technologies including LoRa Wi-Fi and 

GSM for instant data transmission. The system performed 

automated data recording and programmed anomaly finding 

together with pattern evaluation to recognize water quality 

problems early on. 

Data preprocessing techniques applied to the dataset 

completed noise reduction and removed missing values and 

normalization steps for maintaining dataset reliability and 

consistency. The research data was structured through CSV or 

JSON formats before its placement in a public repository for 

easy tool integration and access to users. The dataset gained 

additional value for research uses and predictive modeling 

through recordation of essential metadata such as sensor 

calibration specifications and environmental conditions along 

with timestamps. This dataset functions as an important tool 

that helps researchers alongside aquaculture managers and 

environmental scientists to establish predictive models which 

optimize water quality control and enable them to create data-

based sustainable strategies for fish health improvements 

within aquaculture systems. 

The following sections present detailed findings from our 

results discussions. 

Figure 1 illustrates the accuracy of four models-DSTCNN, 

attention-based model known as the AODEGRU, temporal 

fusion transformer (TFT), and HydroTransNet-across multiple 

epochs. The accuracy of HydroTransNet is consistently 

increasing and reaches 99.1% by the 100th epoch which shows 

its strong learning ability and robustness among others. TFT 

also performs well with an accuracy rate of 98%, but it slightly 

falls behind HydroTransNet. AODEGRU has a good start with 

a peak performance of 94.9% but fluctuates around this value 

in later epochs which indicates that it may be sensitive to 

changes in data. DSTCNN improves steadily but plateaus at 

around 94.7%, suggesting that feature learning might have 

saturated. 

Figure 2 compares the precision of the models where again 

HydroTransNet leads achieving a precision rate of 98% by the 

final epoch. This means that HydroTransNet makes fewer 

false positive predictions than other models and can be used 

when high confidence in positive predictions is required 

because they are more reliable. TFT performs strongly too 

having achieved a final precision level equal to 96% closely 

following behind HydroTransNet’s value. AODEGRU and 

DSTCNN exhibit lower precisions indicating higher tendency 

for false positives especially during later stages of training. 

Higher precision shown by HydroTransNet is very important 

in critical applications where false positives are expensive. 

 

 
 

Figure 1. Accuracy 
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Figure 2. Precision 

 

 
 

Figure 3. Recall 

 

 
 

Figure 4. F1-score 

 

 
 

Figure 5. Loss 

 

In Figure 3, recall values for the models are plotted. Here, 

HydroTransNet achieves the highest recall rate equal to 99% 

by the 100th epoch which shows its capability to detect true 

positives, i.e., high sensitivity towards finding contaminated 

water (target class). TFT also performs well with a recall level 

maintained at around 97%, meaning that most positive 

instances are captured by this model hence making it reliable 

too. Slightly lower recalls shown by AODEGRU and 

DSTCNN imply that they may miss more true positives 

compared to HydroTransNet. High recall of HydroTransNet is 

particularly useful when all positive cases must be detected. 

Figure 4 presents the F1-score which is a measure that 

balances between precision and recall hence providing an 

overall assessment of how well each model performs. 

HydroTransNet achieves the highest F1-score equal to 98% at 

the end of training thus indicating its balanced and superior 

performance in both precision and recall. TFT also shows 

strong performance with final F1-score being 96% but still 

does not outperform HydroTransNet. AODEGRU and 

DSTCNN have slightly lower F1-scores meaning that while 

they individually perform good on either precision or recall, 

their effectiveness is not as balanced as that of 

HydroTransNet. Higher F1-score for HydroTransNet 

highlights its general superiority in classification tasks. 

Figure 5 shows loss values for each model during training; 

lower losses represent better convergence and overall 

performance of models. The most significant drop in loss is 

observed by HydroTransNet which reaches a minimum value 

of 0.08 by the 100th epoch thus showing its efficiency in 

learning and optimization. TFT and AODEGRU also exhibit 

steady decrease in loss but their final values are slightly higher 

than those obtained by HydroTransNet implying less efficient 

convergence on them. DSTCNN ends up having relatively 

higher loss although it improves throughout training which 

may indicate overfitting or difficulty with complex patterns 

within data. Lower loss achieved by HydroTransNet reflects 

stronger training robustness and ability to generalize well on 

unseen data points. 

Figure 6 shows the comparison of existing and proposed 

HydroTransNet models, the proposed model is better for 

detecting water contamination. It has almost perfect accuracy 

with only one false negative and no false positives which 

means that it can identify both contaminated and non-

contaminated samples correctly. This precision and recall are 

what make HydroTransNet the most dependable model since 

it can detect accurately in areas where accurate detection is 

important for preventing risks of contamination. However, 

Deep Convolutional Neural Network (DCNN) and 

AODEGRU also have their own strengths, but they come with 

some weaknesses as well. DCNN has more false negatives 

than HydroTransNet which may result into missing out on 

contaminations while AODEGRU shows slightly better 

sensitivity by having fewer false negatives than DCNN, but it 

also records higher rates of false positives together with lower 

counts of true negatives thus showing signs of over-predicting 

contaminations. TFT takes a middle ground approach by 

having higher numbers of true negative detections, but this 

comes at a cost of sensitivity because there will be more false 

negatives especially in environments that are sensitive to 

contamination. These limitations point out why 

HydroTransNet was designed in such a way that it provides 

better accuracy than any other existing model while still being 

reliable enough to address their weaknesses. 
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Figure 6. Confusion matrix analysis 

5. CONCLUSION 

 

HydroTransNet is a novel transformer-based model for 

water quality classification that is proposed in this research 

paper. In contrast to traditional approaches, HydroTransNet 

can identify temporal dependencies between the water quality 

parameters satisfactorily and has superior performance. The 

model can represent the spatial and temporal dynamics of 

water bodies by using multi-head self-attention mechanisms 

and positional encoding. HydroTransNet has demonstrated the 

ability to achieve near perfect results with an accuracy of 

99.1% which means that it could easily change the way water 

quality is assessed and monitored. This model can be 

employed by the environmental agencies and researchers to 

analyze and control the aquatic environment. With the 

information on water quality available in HydroTransNet, 

aquatic life like fish, and general health of water bodies can be 

protected. Furthermore, the performance of the model in 

predicting the state of water indicates that the model could be 

useful in decision-making concerning the management of 

water resources pollution and conservation of ecosystems. 

This paper paves the way for the subsequent studies that 

explore the applicability of transformer-based models in other 

environmental monitoring fields like satellite imagery, deeper 

historical data. 
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