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As the world's largest carbon emitter, China’s National Emissions Trading System (CN ETS) 

is a core policy instrument for achieving the "double carbon" objectives. This study employs 

the structural breaks test and GARCH models to thoroughly examine the influence of policy 

adjustments on the Carbon Emission Trading Price (CETP) within the CN ETS, as well as its 

fluctuation characteristics. The findings reveal that policy adjustments significantly impact 

China's national CETP, with all three structural breaks resulting from a combination of 

policies. Specifically, factors such as centralized trading before compliance deadline, delayed 

and uneven allocation of allowances, the introduction of an auction mechanism, enhancement 

of data quality and regulation, and sector expansion have been identified as key contributors 

to the CETP increases. Furthermore, the fluctuation of CETP exhibit characteristics such as 

clustering, leptokurtosis, explosiveness, long memory, and an " anti-leverage effect," where 

the market is more sensitive to positive news than to negative news. This behavior contrasts 

sharply with the European Union (EU) ETS, highlighting that CN ETS is still in its nascent 

stages. This system is characterized by a homogeneous structure dominated by regulated 

enterprises, with insufficient participation from financial institutions, indicating that the 

market mechanism has yet to be fully developed. Meanwhile, policy adjustments have a 

significant and long-lasting impact on market volatility, highlighting the policy-driven nature 

of CN ETS. By addressing the empirical gap between price volatility and policy effects in CN 

ETS. It provides a scientific basis for optimizing the market design and preventing abnormal 

price volatility. Additionally, it offers valuable insights for the construction of emerging 

carbon markets.  
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1. INTRODUCTION

1.1 Research background 

The issue of climate change is becoming increasingly urgent, 

prompting governments worldwide to prioritize the mitigation 

of greenhouse gas emissions [1]. Among the various strategies 

employed, the Emissions Trading System (ETS) has emerged 

as a critical policy instrument in the fight against global 

warming, achieving notable success in many regions [2]. Since 

2006, China has overtaken the EU ETS as the largest emitter 

of carbon dioxide globally [3, 4]. The implementation of a 

national ETS has become a crucial strategy for tackling the 

urgent issue of carbon emissions. This market is a vital tool for 

China to attain its low-carbon goals, and underscores the 

significance for carbon trading. In October 2011, the Chinese 

government approved the implementation of the Twelfth Five-

Year Plan, which aims to establish a domestic ETS. 

Subsequently, in 2013, eight pilot ETSs programs were 

launched across various provinces and cities. By July 2021, a 

nationwide carbon trading market encompassing the entire 

country was officially launched for trading [5]. 

As of July 2024, the CN ETS encompasses 2,257 key 

emission entities, with annual emissions amounting to 

approximately 5.1 billion tons. This represents over 40% of 

China's total carbon dioxide emissions, positioning the country 

as a global leader in greenhouse gas emissions trading. 

However, despite this achievement, the CN ETS is still in its 

early stages, with the institutional framework, sectoral 

coverage, trading mechanisms, market functions, and data 

management systems all requiring further improvement. 

Accelerating and enhancing the development of the CN ETS 

is essential to fully leverage the critical role of market prices 

in resource allocation. This is crucial for meeting emission 

reduction commitments, achieving emission control targets, 

and minimizing the costs of emission reductions across 

various industries [6]. Consequently, a comprehensive 

analysis of the policy impacts and price fluctuation 

characteristics of the CN ETS can provide valuable insights 

for refining the trading system, optimizing the pricing 

mechanism, mitigating market risks, and encouraging greater 

corporate participation in carbon trading to achieve emission 

reduction goals. 

Firstly, the Bai-Perron test for multiple structural breaks 
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was utilized to identify the precise number and timing of 

structural breakpoints in the CETP within the CN ETS. 

Secondly, using the event study method, we comprehensively 

analyzed the impact of various policy types, such as 

centralized trading before the compliance deadline, improving 

data quality and regulation, and introducing the auction 

mechanism, on the price stability of CN ETS. Thirdly, to gain 

deeper insights into the characteristics of the CN ETS and the 

nature of price volatility, the GARCH family models were 

employed to analyze the fluctuation patterns of CETP. The 

contributions of this study are manifold. Primarily, the impact 

of policy and regulatory changes on CETP in CN ETS is 

examined in detail for the first time, demonstrating the 

nonlinear interaction between regulatory intervention and 

price dynamics. Secondly, it analyzes the volatility patterns of 

CN CETP to reveal the nonlinear dynamics of the policy-

sensitive market. This analysis can help assess market risk and 

stability. This study provides regulatory reference for policy 

makers, helps market participants grasp the law of price 

volatility patterns, and provides important inspiration for the 

sustainable development of CN ETS and emerging carbon 

markets. 

The structure of the remainder of this research is organized 

as follows: Section 2 provides an overview of the relevant 

literature; Section 3 outlines the research methodology 

employed; Section 4 details the data sources utilized and 

presents the empirical analysis results; and Section 5 

concludes the paper by summarizing the key findings and 

offering corresponding policy suggestions. 

 

 

2. LITERATURE REVIEW 
 

2.1 Impact of policy adjustments on CETP 

 

The existing literature has extensively explored the factors 

influencing CETP in earlier carbon markets. The most 

prominent studies focus on the volatility of CETP in relation 

to energy prices, macroeconomic variables, and environmental 

variables [7-12]. Several scholars have also examined the 

impact of CETP in other carbon markets and offset prices 

(mainly the Clean Development Mechanism (CDM)) on 

CETP [13-15]. The impact of policy adjustments in carbon 

markets on CETP has also attracted early attention from 

scholars. A broad array of policy aspects within carbon 

markets has been identified, and Christiansen et al. [16] were 

among the first to discuss the impacts of emission reduction 

targets and national allocation programs, offsets, and storage 

or borrowing on CETP through data comparison. Subsequent 

researchers have explored other policies [17]. Empirical 

research has investigated the effects of adjustments to factors 

such as carbon emission caps and allowances on CETP. A 

strict total cap on carbon emissions has been shown to lead to 

the CETP increase, thereby triggering additional emission 

reduction measures. This conclusion also applies to China's 

carbon pilot market, where the CETP is inversely proportional 

to the total cap. Similarly, a lower supply of carbon allowances 

relative to demand can lead to higher CETP. These researchers 

agree that free government-issued carbon allowances have a 

significant impact on CETP [18, 19]. 

Few studies have examined the impacts of emission 

reduction targets [20], coverage, auctioning, storage or 

borrowing [21], and other related policies on CETP. Among 

them, there is currently no uniform conclusion on the impact 

of the size of the sector scope covered by the ETS on CETP. 

Lin and Jia [22] assessed how sector coverage influences the 

CETP within China's pilot carbon markets. They found that an 

expansion in sector coverage leads to a reduction in CETP. 

They argued that sectors with lower mitigation costs emerge 

as suppliers in the carbon markets, whereas those with higher 

mitigation costs become buyers of allowances. When market 

supply surpasses demand, the demand side can acquire 

additional allowances, consequently resulting in a decrease in 

CETP. 

Ji et al. [23] examined the factors influencing the CETP in 

China's pilot ETSs and found that expanding the scope of the 

ETS and adopting centralized trading mechanisms contributed 

to an increase in CETP. They also noted that an oversupply of 

carbon allowances and low auction prices significantly 

lowered CETP in China's pilot markets. Similarly, research by 

Wiese et al. [24] highlighted that reducing free allowance 

allocations and increasing the proportion of auctioned 

allowances were critical drivers of higher CETP in the EU 

ETS. Cantillon and Slechten [25] emphasized that the auction 

mechanism ensured allowances were allocated to those who 

valued them most, thereby enhancing market efficiency and 

facilitating price discovery. Additionally, Isah [26] observed 

that improving data quality and strengthening regulatory 

measures within the EU ETS had a notable positive impact on 

CETP. Some researchers have also analyzed that the EU 

introduced the Carbon Border Adjustment Mechanism 

(CBAM) in 2023, which aims to prevent carbon leakage 

through the imposition of carbon tariffs. This policy indirectly 

pushed up carbon prices within the EU by increasing the 

carbon cost of imported goods [27]. 

If the offset policy is also included in the policy changes, 

several studies have shown that the amount of offsets (mainly 

China Certified Emission Reductions (CCERs)) in China's 

pilot ETS in the same direction as CETP, i.e., A rise in the 

number of offset credits and a decline in their price will lead 

to a decrease in CETP [28, 29]. In general, it is complex to 

measure the impact of specific policy changes on CETP 

because quantitative data are difficult to obtain for some 

carbon policies. Moreover, due to the specificity and 

complexity of the ETS, the impact of individual policies on 

CETP of different carbon markets can vary greatly, and even 

opposite conclusions may emerge due to different econometric 

models. Therefore, the impact of individual policies on CETP 

in different markets needs further investigation, especially in 

emerging markets like CN ETS. 

 

2.2 Fluctuation characteristics of CETP 

 

The price fluctuation characteristics of the ETS, which 

serves as an environmental governance tool based on market 

mechanisms, have emerged as a pivotal domain of research. 

The fluctuation characteristics of CETP reflect not only the 

market dynamics, but also the complex interactions among 

policies, economics, and market behavior. Academic research 

on price volatility patterns in the carbon market has focused 

on market mechanisms, supply and demand dynamics, and the 

impact of external shocks on price formation, with some 

studies also focusing on the volatility characteristics of CETP, 

particularly in the EU ETS, the most mature in the world [30-

33]. 

Lv and Shao [34] employed the GARCH model to examine 

the fluctuation characteristics of CETP in six pilot ETSs in 

China. They found that the development of pilot ETSs in 
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different regions of China was imbalanced, with distinct 

fluctuation characteristics of CETP within each region. 

Furthermore, leverage effects were observed to be uneven 

across the country. Specifically, a weak asymmetric effect in 

the fluctuation of CETP was observed in Shenzhen, along with 

a weak leverage effect. In contrast, prominent asymmetric 

effects were identified in Shanghai and Guangdong. Zhang [35] 

also used the same methodology to empirically analyze CETP 

in seven pilot carbon markets. Zhang also found that the 

logarithmic returns of CETP in Shenzhen and Hubei are less 

volatile and less affected by other unpredictable factors. To a 

certain extent, these returns reflect market information and 

indicate a relatively mature development. 

Cong and Lo [36] investigated the fluctuation 

characteristics of CETP in the Shenzhen pilot market. They 

found that returns were negatively correlated with the 

expected risk, as represented by the conditional variance. Zhou 

and Li [37] investigated the fluctuation characteristics of 

CETP in Hubei using a GARCH model. Their results revealed 

that the return series of CETP exhibited features reminiscent 

of financial time series, including fluctuation aggregation, 

sharp peaks, thick tails, and non-normal distribution. The 

study further revealed a positive leverage effect on the 

fluctuation of CETP in Hubei, indicating that external negative 

news has a more significant impact on the fluctuation of CETP 

in this region than positive news. Sheng et al. [38] used an 

ARMA-GARCH model to explore the fluctuation 

characteristics of CETP in seven pilot carbon markets. They 

argued that regional CETP in China are characterized by 

agglomeration, peaking, heavy tailing, memory, and inverse 

leverage. 

In addition, Wei and Chen [39] investigated the CETP 

characteristics of China's pilot ETS through a threshold model 

and a mechanism switching model, and found that the CETP 

showed a nonlinear structure with three operating ranges: high, 

medium, and low, with a stabilizing mechanism that could 

return the price to a normal state, and with medium rise as the 

main form of fluctuation. The study reveals the three stages of 

development of China's pilot ETS and the differences among 

the pilots. 

Most of extant studies have employed GARCH and its 

evolving correlation models to characterize the CETP 

fluctuation of China's pilot carbon markets. Moreover, extant 

studies on China's CETP have primarily focused on several 

pilot carbon markets. Given the recent opening of CN ETS and 

its status as the world's largest trading entity, it is imperative 

to employ relevant models to study its price fluctuation 

characteristics, which may differ significantly from those 

observed in the pilot carbon markets. 

In summary, extant research has primarily focused on the 

causes of CETP volatility from the perspectives of energy 

prices, macroeconomics, and environmental variables. There 

is a paucity of in-depth exploration of policy and regulatory 

factors. Indeed, policy and regulatory shifts, including the 

extension of covered sectors, the implementation of auction 

mechanisms, and the reduction in allowance allocation, have 

been shown to exert a profound influence on the price 

volatility of ETS. This underscores the pressing need for 

further research in this area. Existing studies have 

predominantly centered on mature ETSs in Europe, and 

China's pilot ETSs. Moreover, the existing research mainly 

focuses on the mature carbon markets in Europe and the 

United States and the pilot carbon markets in China. As the 

most extensive ETS in the world, CN ETS was established 

relatively late. Consequently, there is little research in the 

academic community on the influencing factors and 

fluctuation characteristics of its CETP. 

 

 

3. METHODOLOGY 

 

3.1 Structural breaks test model 

 

Various structural breaks tests are available to identify 

changes in an econometric series. The Bai and Perron test can 

effectively identify multiple structural changes, which is 

essential for understanding how policies or events impact time 

series data. The model is primarily used to identify diverse 

breakpoints in a linear model, i.e., a significant change in the 

statistical properties of the time series at one or more points in 

time [40, 41]. 

The structural breaks test model assumes that the time series 

could be divided into multiple sub-intervals, with the data 

within each sub-interval following a different linear model. 

The Bai and Perron test methodology identifies the optimal 

number and location of breakpoints by comparing the model 

fit under different breaks assumptions. The CETP of CN ETS 

is known as the Chinese Emission Allowance (CEA). Drawing 

on structural breaks test conducted by previous researchers in 

other markets [8, 42], an equation is formulated to examine 

structural changes in the CEA. 

 
𝐶𝐸𝐴𝑡 = 𝑎𝑗 + 𝑢𝑡

(𝑡 = 𝑇𝑗 , 𝑇𝑗+1, … , 𝑇𝑗+1 − 1; 𝑗 = 0,1, … 𝑚)
 (1) 

 

We consider a time series containing 𝑚 potential mean 

breakpoints, and this sequence results in 𝑚+1 different time 

states. For each observation ( 𝑇𝑗 , 𝑇𝑗+1, … , 𝑇𝑗+1 −

1), 𝐶𝐸𝐴𝑡  represents CETP in CN ETS, where is the expected 

CETP under regime j, and is the error in period t; 𝑎𝑗 denotes 

the mean of the price series, while the error term 𝑢𝑡 denotes 

the heteroskedasticity or correlation series. By reducing the 

residual sum of squares of the model equations and applying a 

specified information criterion that accounts for the number of 

breakpoints, we computed and evaluated the associated 

statistics sup𝐹𝑇
∗(𝑘; 𝑞), Dmax statistic (UDmax and WDmax), 

and 𝑆𝑢𝑝𝐹𝑇(𝑖 + 1|𝑖)  to achieve efficient localization of the 

breakpoints. Finally, combining the event study methodology, 

we analyze how changes in policies and regulations affect 

CETP, and summarize the specific impacts of these policies 

on CEA fluctuations. This study not only deepens our 

comprehension of the dynamics within the carbon market, but 

also offers valuable reference information for policymakers 

[43]. 

 

3.2 GARCH family models 

 

To study the fluctuation characteristics of the CETP in CN 

ETS, this study employs the GARCH family models, 

including GARCH, TGARCH, and EGARCH. These 

approaches are constructed to characterized and forecast 

conditional variance. They have significant advantages in 

capturing the fluctuation characteristics of financial time series 

data. When using these models, the analysis typically utilizes 

the returns on financial prices, which are calculated as the first-

order logarithmic differences of closing prices between 

consecutive trading days. This study uses the return on CEA 

(r) for analysis. First, the return (r) is defined as follows: 
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𝑟𝑡 = ln (
𝐶𝐸𝐴𝑡

𝐶𝐸𝐴𝑡−1

) (2) 

 

where, 𝐶𝐸𝐴𝑡  represents the CETP at time t. In all GARCH 

family models, the basic yield model and error term model are 

as follows: 

 

𝑟𝑡 = 𝜇 + 𝜖𝑡 (3) 

 

𝜖𝑡 = 𝜎𝑡𝑧𝑡 (4) 

 

In this context, 𝑟𝑡 signifies the return of the CETP at time t. 

The parameter μ represents the mean of these returns, 𝜖𝑡 

denotes the error term or residual, 𝜎𝑡  is the conditional 

standard deviation, and 𝑧𝑡  follows a standard normal 

distribution, characterized by independence. Then, this study 

will construct the conditional variance equations for the three 

models and analyze the fit comparison, and finally adopt the 

model with the best fit. 

 

3.2.1 GARCH  

The Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model represents an 

enhancement of the ARCH model, designed to more 

effectively capture the persistent volatility features, or long 

memory characteristics, inherent in financial time series data 

[44-46]. The conditional variance equation for the GARCH (p, 

q) model is as follows: 

 

𝜎𝑡
2 = 𝛼0 + ∑  

𝑝

𝑖=1

𝛼𝑖𝜖𝑡−𝑖
2 + ∑  

𝑞

𝑗=1

𝛽𝑗𝜎𝑡−𝑗
2  (5) 

 

In this formulation, 𝜎𝑡
2 represents the conditional variance. 

The term 𝛼0 denotes the constant component, while 𝛼𝑖 and 𝛽𝑗 

are the coefficients corresponding to the ARCH and GARCH 

terms, respectively. The variables p and q signify the orders of 

the error lag and the conditional variance lag, respectively. The 

parameters 𝛼0, 𝛼𝑖, 𝛽𝑗 are subject to estimation. 

 

3.2.2 TGARCH 

The “Threshold GARCH” (TGARCH) model is frequently 

employed to capture the leverage effect in financial markets. 

This is achieved through the incorporation of a threshold 

mechanism that differentiates between the disparate impacts 

of positive and negative news on volatility. For the 

TGARCH(1,1), the conditional volatility is formulated as: 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛾1𝜖𝑡−1
2 𝐼(𝜖𝑡−1 < 0) + 𝛽1𝜎𝑡−1

2  (6) 

 

where, 𝛼0, 𝛼1, 𝛾1, 𝛽1 are the parameters to be estimated. 𝛼1 is 

the coefficient of the lagged error squared term; 𝛾1  is the 

coefficient of the additional error squared term, which denotes 

the additional effect of the negative errors on the volatility; 𝛽1 

is the coefficient of the lagged conditional variance term. 

When I = 1, it signifies the influence of positive news, whereas 

I = 0 indicates the influence of negative news. The parameter 

𝛾1  is utilized to capture the asymmetry in the effects of 

positive and negative news on the financial market's volatility. 

A notably non-zero coefficient for 𝛾1 suggests an asymmetric 

reaction of conditional variance to good and bad news. 

Specifically, a negative value for 𝛾1 implies that bad news has 

a more pronounced effect on volatility compared to good news, 

while a positive value for 𝛾1 indicates that positive news exerts 

a greater influence [37, 47]. 

 

3.2.3 EGARCH  

The “Exponential GARCH” (EGARCH) model addresses 

the limitations of the GARCH model in detecting volatility 

asymmetries by modeling the logarithm of conditional 

variance [48-50]. Its equation is as follows:  

 

ln(𝜎𝑡
2) = 𝜔 + 𝛽 ln(𝜎𝑡−1

2 ) + 𝛼𝑧𝑡−1

+ 𝛾[|𝑧𝑡−1| − 𝐸|𝑧|] 
(7) 

 

where, ω, α, β and γ are the parameters to be estimated; ω is a 

constant term indicating the average of the long-run volatility 

level; β is the autoregressive coefficient of conditional 

variance reflecting the persistence of volatility; α captures the 

asymmetric effect (the different impacts of positive and 

negative shocks). When α < 0, ln (𝜎𝑡
2) rises (falls) in response 

to the price decline (rise) of the negative market shock z. 𝛾 

captures the symmetric volatility effect (the effect of the 

absolute value of the shock), 𝛾[|𝑧𝑡−1| − 𝐸|𝑧|] measures the 

magnitude effect of the innovation. If 𝛾 > 0, then 𝛾[|𝑧𝑡−1| −
𝐸|𝑧|] raises (lowers) ln (𝜎𝑡

2) when the extent of the market 

shock exceeds (is below) expectations [51]. 

 

3.3 Data description 

 

This study analyzes the CETP using data on China Emission 

Allowance (CEA) from CN ETS, which launched on July 16, 

2021. The daily average price of CEA was collected from July 

16, 2021, to July 31, 2024, sourced from China's Wind 

database. Given that the vast majority of missing values in the 

data occur during holiday periods, we choose to delete these 

missing values to ensure data authenticity. 

 

 

4. EMPIRICAL RESULTS  

 

4.1 Structural changes analysis of CETP 

 

4.1.1 Structural breaks test 

We applied the Bai-Perron test to determine breakpoints, 

initially conducting the sup𝐹𝑇
∗(𝑘; 𝑞) test. This test identified 

five statistically significant structural breaks (Table 1). It was 

noted that the confidence intervals for the coefficients 

corresponding to the second and third breaks exhibited 

considerable width, indicating an unstable estimation, likely 

due to the subtle effect of the breakpoint or insufficient 

variation in the surrounding data. Following the approach of 

the experts [52], we excluded these two breaks and performed 

the Dmax statistic (UDmax and WDmax) and 𝑆𝑢𝑝𝐹𝑇(𝑖 + 1|𝑖) 

test for the remaining three breaks. 

 

Table 1. Structural breaks initially tested 

 
# Index Date [95% Conf. Interval] 

1 112 12/29/2021 111 113 

2 297 10/10/2022 252 342 

3 407 3/21/2023 354 460 

4 517 8/30/2023 516 518 

5 628 2/20/2024 627 629 
T = 738; SSR = 14578.30; Trimming = 0.15 
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The results are displayed in Table 2. The t-statistics for all 

values are highly significant, indicating a strong statistical 

probability that the observed results are not merely due to 

chance. This finding suggests the presence of three distinct 

structural changes in the CEA sequence. The timing of these 

breaks is as follows: December 29, 2021; August 30, 2023; 

and February 20, 2024 (Table 1). 

In the CEA time-series analysis plot, three key structural 

breaks have been clearly labeled. These breaks significantly 

and clearly divide the evolutionary trajectory of the CEA data 

into four distinct intervals. It is worth noting that after each of 

these breaks, the CEA trend exhibits significant variability, 

highlighting the complexity of the dynamics in the time series 

(Figure 1). 

 

4.1.2 Policy analysis of structural breaks 

Based on the dates of the breakpoints, we searched for the 

corresponding major impact policy events (Table 3), which 

were primarily sourced from the National Carbon Market 

Information Network, the Carbon Emissions Trading Network, 

and the Carbon Trading Network. 

 

Table 2. Statistical test results for CEA structural breaks 

 
Test Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value 

supW(tau)  292335.91 7.6 5.96 5.21 

UDmax(tau) 292335.91 12.37 8.88 7.46 

WDmax(tau) 420845.99 13.83 9.91 8.2 

F(s+1|s)* 102.12 14.8 11.14 9.41 

 

 
 

Figure 1. CEA time series with structural breaks 

 

Table 3. Relevant policy events associated with CEA structural breakpoints 

 
Structural 

Breaks Date 
Important Policy Date 

2022/12/29 
The Ministry of Ecology and Environment (MEE) issued the "Notice on the Completion of Carbon Emission 

Allowance Compliance for the First Compliance Period of the National ETS." 
2021/10/23 

 
The allocation of 2021 allowance s varied among provinces, with Hainan, Shanghai, and Jiangxi starting as 

early as November 24, while some provinces did not issue allowances until December, leaving less than a 

month before the compliance deadline. 

2021/11/1 

 The MEE released the draft for public consultation on the "Greenhouse Gas Emission Accounting Methods 

and Reporting Guidelines for Power Generation Facilities (2021 Revised Edition)." 
2021/12/2 

 
Zhang, Director of the Energy and Environment Economics Research Institute at Tsinghua University, stated 

that future national carbon market allowance allocations will become stricter and include an auction 

mechanism. 

2021/12/2 

2023/8/30 

Liu, general manager of the Shanghai Environmental Energy Market, announced at the 2023 Zero Carbon 

Summit that during the “14th Five-Year Plan” period, high-emission sectors such as chemicals, construction 

and civil aviation will be included in the national ETS with an expected allowance issuance of 6.5-7.0 billion 

tons, covering more than 8,000 enterprises, and expanding trading volume and steadily rising prices. 

2023/8/9 

 
Eight departments, including the MEE issued a notice on the building materials sector stabilized growth 

program, aiming to promote the implementation of the enterprise green energy reduction policy and to study 

and promote the inclusion of the cement sector in the CN ETS. 

2023/8/25 

 
The MEE said it has recently launched the issuance of allowance s and compliance work in the CN ETS for 

the years 2021 and 2022. The sector is also planning to expand sector coverage to promote green and low-

carbon technological innovation. 

2023/8/28 

2024/2/20 
The State Council has signed and issued the "Interim Regulations on the Management of Carbon Emission 

Trading." 
2024/2/4 
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Figure 2. Market reactions triggered by carbon market policy changes 

 

Policy adjustments alter the expectations of market 

participants regarding the future scarcity of allowances and the 

intensity of regulation, directly influencing their trading 

behavior. The impact of policies on CETP depends not only 

on their direct regulation (such as allowances allocation) but 

also on the intermediary role of market expectations. 

According to the Rational Expectations Theory [53], market 

participants will dynamically adjust their supply and demand 

expectations based on policy signals. When policy signals are 

clear (such as announcing sector expansion plan in advance), 

the market can quickly form an equilibrium price; conversely, 

policy ambiguity (such as delayed allowance issuance) 

triggers adaptive expectations [54], leading to short-term price 

over-adjustment. Furthermore, the "information cascade 

theory" in behavioral finance [55] can explain the 

phenomenon of centralized transactions before the compliance 

deadline. Enterprises mimic others' behavior due to 

information asymmetry, which intensifies price fluctuations. 

As an emerging market, the lack of policy transparency and 

market education in China's ETS further amplifies the 

volatility driven by expectations. Figure 2 summarizes how 

policy changes affect CETP by altering market expectations 

and triggering market reactions. Specifically, the reasons for 

the three structural breakpoints are as follows: 

 

(1) The causes of the first structural breakpoint  

i. Compliance mechanism: centralized trading before the 

compliance deadline 

The notice on carbon allowance clearing issued on October 

23, 2021, clarified that December 31, 2021, is the deadline for 

the first compliance cycle of CN ETS. This marks the first 

compliance period since the market's inception, covering 

carbon allowance clearing for the years 2019-2020. Covered 

companies were ill-prepared and urgently needed to purchase 

carbon allowances ahead of the compliance period in order to 

meet compliance requirements, leading to a surge in demand 

and a significant rise in CETP. This phenomenon has been 

observed in several pilot carbon markets. 

ii. Delayed and uneven distribution of allowances 

The tension between supply and demand is attributable to 

the uneven issuance of allowances. The inconsistent issuance 

of allowances across provinces has resulted in some regions 

issuing allowances less than a month before the compliance 

deadline. Enterprises in these provinces have had to purchase 

allowances in the market due to the delayed issuance, 

exacerbating the imbalance between supply and demand and 

driving up CETP, which ultimately reached a high point at the 

end of December. 

iii. Data quality and regulatory enhancements 

On December 2, 2021, the Ministry of Ecology and 

Environment (MEE) released the draft "Guidelines for the 

Accounting and Reporting of Greenhouse Gas Emissions from 

Power Generation Facilities (Revised Edition 2021)" for 

public comments. This policy adjustment directly impacted 

corporate compliance behavior and market expectations. The 

draft has led market participants to expect stricter regulation 

in the future, particularly with the introduction of more 

accurate accounting methods. Companies may face higher 

requirements for emission reductions, further highlighting the 

scarcity of carbon allowances and driving up CETP. 

iv. Anticipation of the introduction of an auction mechanism 

Panic buying, triggered by uncertainty about future policies 

and rumors of possible future allowance auctions, has 

increased market tension. The introduction of an auction 

mechanism will improve market efficiency and 

simultaneously signal allowance tightening to avoid the 

problem of excess allowances due to free allocation. The 

market expects a tighter supply of carbon allowances in the 

future, leading companies to significantly increase their 

purchases in a short period of time, thereby pushing up CETP. 

Overall, from the end of 2021 to the beginning of 2022, 

several policy events gradually strengthened the market's 

expectation of a tight carbon allowance supply. These included 

concentrated trading before the compliance deadline, uneven 

and tightening changes in the allocation of allowances, and 

stricter greenhouse gas accounting and reporting methods. 

These factors led to structural changes in the national CETP. 

This abrupt change reflected the high sensitivity of market 
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participants to future policy changes in the newly launched 

national carbon market, which had been operating for less than 

half a year. The uncertainty of policies led to panic reactions 

in the market, causing a significant surge in CETP during this 

period. 

 

(2) The causes of the second structural breakpoint  

The sudden structural change in the CETP of CN ETS on 

August 30, 2023, can be primarily attributed to the anticipated 

escalation in demand, consequent to the augmentation of 

sector coverage. On August 9, 2023, the Shanghai 

Environmental Energy market formally announced its plans to 

integrate high-emission sectors, including chemicals, 

construction, and civil aviation, into the national ETS during 

the "14th Five-Year Plan" period. Subsequently, on August 25, 

several ministries and commissions formally notified the 

inclusion of the cement sector in the CN ETS. Finally, on 

August 28, the MEE reiterated its plan to expand the coverage 

of the sector clear. These three events signify a further 

expansion of sector coverage, with allowance issuance 

expected to reach 6.5-7 billion tons, encompassing over 8,000 

enterprises (excluding the cement sector). The inclusion of 

additional sectors is projected to substantially augment market 

demand for carbon allowances, thereby enhancing market 

activity and liquidity, and consequently driving up CETP. 

 

(3) The causes of the third structural breakpoint  

On February 4, 2024, the Interim Regulation on the 

Administration of Carbon Emissions Trading was released, 

marking a more standardized and institutionalized 

management of the ETS. The regulations include the following: 

clarifying that the sector coverage of the ETS will be gradually 

expanded to encompass high-emission sectors, including the 

iron and steel sector, petrochemicals, building materials, and 

chemicals; stipulating that the allocation of allowances will be 

gradually implemented by combining free allocation and 

auction allocation, with the proportion of paid allocation 

gradually increasing; establishing a trading method based on 

the transfer of agreements and one-way bidding, and clarifying 

that the main parties of the transaction include key emission 

units and other subjects; balancing supply and demand through 

the market adjustment mechanism to prevent CETP from 

getting out of control; imposing strict requirements on data 

quality and a mechanism to penalize illegal acts. In the short 

term, these factors are expected to lead to an increase in the 

CETP due to anticipated changes in supply and demand. In the 

long run, the improvement of market mechanisms will enable 

the CETP to more accurately reflect the costs of emission 

reduction, thereby promoting the sustainable development of 

the ETS. 

Moreover, the elimination of policy uncertainty fosters a 

pronounced adjustment in the behavior of market participants. 

Prior to the release of the regulation, the market may have had 

some uncertainty and speculation regarding the specific details 

of the policy. Once the regulation was released, policy 

uncertainty was eliminated, clarifying the market participants' 

expectations of stricter future carbon market regulation. Firms 

may then reassess the value of their carbon assets. Some firms 

might preemptively adjust their market positions to cope with 

potential future compliance pressures. The concentrated 

outbreak of such behavior can easily lead to significant price 

fluctuations, resulting in structural changes in CETP. This 

abrupt change is both a rapid market response to new policies 

and a result of the market's self-adjustment mechanism during 

the policy implementation process. 

 

4.2 The fluctuation characteristics of CETP 

 

Since the return can better reflect the volatility of CEA, we 

analyze the return series of CEA. The return series for CEA, 

when plotted, suggests the presence of a certain degree of 

volatility aggregation (Figure 3). 

  

 
 

Figure 3. CEA return volatility series 

 

We subsequently analyzed the distributional properties of 

the CETP return series to determine if the CEA return series 

satisfies the prerequisites for fitting the GARCH model. As 

illustrated in Table 4, the mean of the return series is -

0.0000765, a small positive value approximating zero. This 

finding suggests that the overall price of CEA has exhibited a 

slight upward trend over the period analyzed. For the daily 

returns, the standard deviation is substantial, and the variance 

is significant, indicating the presence of volatility clustering in 

the return series. The skewness of the return series is -

0.1247416, indicating a slight left-skewness. The kurtosis of 

9.758751 is significantly greater than 3, consistent with the 

distribution characteristics of "sharp peaks and thick tails." 

This suggests that the frequency of extreme values (i.e., 

significant rises or falls) in the CEA return series is much 

higher than that predicted by the normal distribution, 

indicating that the CETP of CN ETS is prone to sudden and 

substantial fluctuations. The p-value of the JB test, at 5.e-290 

near zero, shows the return series is not normally distributed. 

In conclusion, the CEA return series exhibits the hallmark 

features commonly observed in financial time series, namely 

volatility, clustering, and explosiveness. The series is suitable 

for constructing a GARCH model for further analysis and 

forecasting. 

 

Table 4. Distribution attributes of the CEA return series 

 
Statistical Indicators  Statistics 

Obs 699 

Mean -0.0000765 

Std. dev. 0.0755073 

Variance 0.0057014 

Skewness -0.1247416 

Kurtosis 9.758751 

JB test value 1332 

P-value 5.e-290 

 

The next step is to test for the ARCH effect in the regression 

series. We first examined the stationarity of the CEA return 

series. The results (Table 5) indicate that the unit root test 

statistic (-27.421) is significantly lower than the critical value 
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(-3.43) at the 1% significance level, with a p-value of 0. 

Therefore, the null hypothesis of "existing unit root" can be 

rejected at the 1% level, indicating that the CEA return series 

is stable. Then, by comparing multiple information criteria 

under different lag orders, we determine the optimal lag order 

in the model is 4 (Table 6). 

We first fit the return series to a model with a fourth-order 

lag term and constant using ordinary least squares (OLS). 

Following this, we employed Engel's Lagrange Multiplier 

(LM) test to determine the existence of an ARCH effect. The 

ARCH-LM test results (Table 7), which reject the null 

hypothesis at the 5% significance level, offer evidence for the 

presence of an ARCH effect in the return series.  

Next, this study used a systematic approach to identify the 

optimal GARCH family model. First, after preliminary 

analysis of the return series, we examined the autocorrelation 

structure of the squared residual series. Using the VAR lag-

order selection criteria, the optimal lag order for the squared 

residual series is determined to be 2, providing the basis for 

selecting the ARCH term order. Based on the analysis, we 

systematically estimated and compared various GARCH 

family models. We evaluate their log - likelihood, AIC, and 

BIC values. Log-likelihood reflects a model's explanatory 

power; a higher value means better fit. Lower AIC and BIC 

values indicate a better fit. The comparison results are shown 

in Table 8. 

The TGARCH(1,1,1) has the largest value of Log-

likelihood and the smallest value of AIC, which is greater than 

2 with the Suboptimal GARCH(1,1), although the BIC 

criterion weakly supports the GARCH(1,1), the γ parameter in 

the TGARCH model is significantly positive (p-value of 

0.002), which suggests that there is a leverage effect, and at 

this point, even if BIC is slightly higher, the TGARCH(1,1,1) 

should still be chosen to capture the leverage effect properties 

of the data [56]. 

Next, we examined whether the residuals conformed to a 

normal distribution, and the Jarque-Bera test showed that the 

residuals did not obey a normal distribution and that the 

residual distribution had significant left skewness and sharp 

thick tails. In order to better capture the conditional 

heteroskedasticity properties of the return series, this study 

attempted the following different assumptions on the error 

distributions based on the TGARCH (1,1,1): including the 

Student's t-distribution (with degrees of freedom of 6, 5, 4, and 

3, respectively) and the Generalized Error Distribution (GED, 

with shape parameter of 1.8, 1.5, 1.2, and 1.0, respectively), 

respectively. 

As in Table 9, the model assuming that the error term obeys 

the Student's t-distribution (with 3 degrees of freedom) has the 

highest log-likelihood value (1010.652) and the lowest AIC 

and BIC values (-2003.305 and -1964.289, respectively). 

Therefore, this model is selected as the final best model that 

better captures the sharp peaks and thick tails characteristic of 

the return series and provides a solid foundation for further 

risk assessment and forecasting. 

We conducted further ARCH effect and Ljung-Box tests on 

the residuals, and the results indicated that the ARCH effect 

has been eliminated (conditional heteroskedasticity), i.e., the 

variance of the residuals does not change over time; the white 

noise test showed that the residual series is white noise with 

no significant autocorrelation, suggesting that the model has 

fitted the data well. Finally, we specifically analyze d the 

simulation estimation results for the TGARCH (1,1,1) (Table 

10). 

 

Table 5. Stability test results of the R series 

 
Return Series  Test Statistic  1% Critical Value 5% Critical Value 10% Critical Value P 

R  -27.421 -3.43 -2.86 -2.57 0 

 

Table 6. Lag order selection criteria for R 

 
Lag LL LR df p FPE AIC HQIC SBIC 

0 629.802    0.006297 -2.22979 -2.22679 -2.22211 

1 715.645 171.69 1 0 0.004661 -2.53066 -2.52466 -2.51528 

2 736.614 41.938 1 0 0.004342 -2.60147 -2.59247 -2.57841 

3 741.537 9.8459 1 0.002 0.004282 -2.61538 -2.60338 -2.58464 

4 751.253 19.431* 1 0 0.004152* -2.64629* -2.63128* -2.60786* 

 

Table 7. ARCH-LM test results of the R series 

 
lags(p) chi2 df Prob > chi2 

1 9.034 1 0.0027 

2 18.201 2 0.0001 

3 19.961 3 0.0002 

4 21.527 4 0.0002 

 

Table 8. Comparison of fitting results for different GARCH models 

 
Model Specification Log-Likelihood AIC BIC Parameters 

GARCH (1,1) 781.4998 -1547 -1512.319 8 

GARCH (2,1) 770.9966 -1525.993 -1491.313 8 

GARCH (2,2) 770.1543 -1524.309 -1489.628 8 

TGARCH (1,1,1) 784.263 -1550.526 -1511.511 9 

TGARCH (2,1,1) 771.0922 -1524.184 -1485.169 9 

TGARCH (2,2,1) 770.1545 -1522.309 -1483.294 9 

EGARCH (1,1) - - - - 

TGARCH (2,2,2) - - - - 
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Table 9. Model fitting results under different error distribution assumptions 

 
Error Distribution Parameter Log Likelihood AIC BIC Convergence 

Student's t 6 960.1281 -1902.26 -1863.24 Yes 

Student's t 5 975.0483 -1932.1 -1893.08 Yes 

Student's t 4 991.8959 -1965.79 -1926.78 Yes 

Student's t 3 1010.652 -2003.31 -1964.29 Yes 

GED 1.8 817.4561 -1616.91 -1577.9 Yes 

GED 1.5 872.09 -1726.18 -1687.17 Yes 

GED 1.2 929.3998 -1840.8 -1801.78 Yes 

GED 1 Did not converge N/A N/A No 

 

Table 10. TGARCH(1,1,1) model estimation results (t = 3) 

 
Variable Coefficient P>|z| 

Conditional Variance Equation   

Constant Term (ω) 0.0002 0.000 

ARCH Term (α) 1.5254 0.000 

Asymmetric Term (γ) -0.8457 0.023 

GARCH Term (β) 0.3363 0.000 

Conditional Mean Equation   

Rt−1 -0.5265 0.000 

Rt−2 -0.2241 0.000 

Rt−3 -0.1411 0.000 

Rt−4 -0.0946 0.000 

_cons 0.0003 0.754 

 

From the above results we can get the mean equation and 

conditional variance equation of CEA return as follows: 

 

𝜎𝑡
2 = 0.0002 + 1.5254𝜖𝑡−1

2 − 0.8457𝜖𝑡−1
2 𝐼𝑡−1

+ 0.3363𝜎𝑡−1
2  

(8) 

 

𝑅𝑡 = 0.0003 − 0.5265𝑅𝑡−1 − 0.2241𝑅𝑡−2

− 0.1411𝑅𝑡−3 − 0.0946𝑅𝑡−4 + 𝜖𝑡 
(9) 

 

In the GARCH family of models, α+β is a crucial indicator 

of the persistence of volatility in return series. According to 

the latest TGARCH (1,1,1) model estimation results, the 

volatility persistence coefficient (α+β) for the return series is 

1.8617 (1.5254+0.3363), which exceeds the constraint of 1. 

This suggests that the volatility of CEA returns in the CN ETS 

exhibits extremely high persistence. Such high persistence 

implies that the impact of market shocks on volatility will 

persist for a considerable period, with the market reacting 

strongly and retaining a strong memory to information. 

From the perspective of market efficiency, the level of 

volatility persistence can reflect the speed of market 

absorption and reaction to information. This implies that CN 

ETS has not yet reached full weak-style effectiveness. This 

reflects the characteristics of the early stage of market 

development, and may also be related to factors such as 

frequent policy interventions, a single structure of market 

participants, insufficient liquidity and information asymmetry.  

The coefficient of the asymmetric term γ is -0.8457, which 

is significant at the 5% significance level (p-value of 0.023). 

This negative γ coefficient indicates that there is a significant 

asymmetric effect, but contrary to the “leverage effect” in 

traditional financial markets, positive shocks have a greater 

impact on volatility than negative shocks in the CN ETS. 

Specifically, when there is a positive shock, the increase in 

volatility is α (1.5254); while when there is a negative shock, 

the increase in volatility is α+γ (1.5254-0.8457=0.6797), 

which is only about 44.6% of the positive shock. This “anti-

leverage effect” phenomenon may reflect the specific nature 

of the carbon market, suggesting that market participants are 

more sensitive to information about CETP increases. This may 

be due to the structure of the carbon market, in which 

participants are mainly enterprises whose trading behavior is 

driven by policy rather than purely profit motives, making the 

market more sensitive to positive information. Positive shocks 

(e.g., sector expansion) are often associated with favorable 

policies, which increase market expectations of future CETP 

increases and trigger larger market reactions, with enterprises 

likely to purchase allowances in advance to avoid future costs, 

increasing volatility; whereas negative shocks are viewed as 

short-term adjustments, with enterprises reacting more 

moderately. 

In addition, the results of the conditional mean equation 

indicate that there is a significant autocorrelation in the CEA 

return series, where the coefficients of 𝑅𝑡−1  to 𝑅𝑡−4  are -

0.5265, -0.2241, -0.1411, and -0.0946. All these coefficients 

are statistically significant at the 0.1% level. These negative 

autocorrelation coefficients suggest that there is a significant 

mean reversion property of CEA returns, meaning that an 

increase (decrease) in returns in the current period is often 

followed by a decrease (increase) in returns in subsequent 

periods. The absolute values of the coefficients decline as the 

lag order increases, indicating that more recent returns have a 

greater impact on current returns. The constant term (0.0003) 

is statistically insignificant (p-value of 0.754), suggesting that 

in the absence of other information, the average level of 

returns is close to zero. This characteristic reflects the 

following features of CN ETS: The significant autocorrelation 

of CEA return indicates that the carbon market has not reached 

the weak-form efficiency, and investors can use historical 

information to predict the future returns and capture excess 

returns. This phenomenon reflects the inadequacy of the price 

discovery mechanism, which may be due to the limited market 

participants, the slow price adjustment caused by asymmetric 

information, and the policy-driven characteristics of the 

carbon market. The lag of policy implementation makes the 

change of return dependent on time, which further strengthens 

the autocorrelation performance. 

 

 

5. DISCUSSION 

 

5.1 Comparative analysis with the EU ETS 

 

The EU ETS, launched in 2005, has gradually expanded to 

cover multiple high-emission sectors such as power generation, 

industry, and aviation, making it the most mature and 

representative carbon market globally. In contrast, CN ETS, at 

its initial stage, covers only the power sector, with a coverage 

of approximately 5.1 billion tons of CO2 emissions, 

accounting for over 40% of China's total emissions. This 

positions it as the largest carbon market globally. 
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5.1.1 Comparison of market design and operational 

mechanisms 

As the two most prominent ETSs worldwide, the EU ETS 

and CN ETS share commonalities in their market design, 

operational mechanisms, and policy goals, while also 

displaying notable distinctions. Their similarities are primarily 

rooted in the adoption of a cap-and-trade framework, which 

imposes a cap on carbon emissions and allocates emission 

allowances to encourage enterprises to meet emission 

reduction targets through market-driven mechanisms. 

Furthermore, both markets have progressively expanded their 

sectoral coverage and placed significant emphasis on 

improving data quality and regulatory oversight. It is worth 

noting that the EU ETS experienced a similar pilot phase 

during its early stages, gradually incorporating more sectors 

and emission sources, mirroring the developmental trajectory 

of China's ETS as it transitioned from pilot programs to a 

nationwide market. 

There are three main differences. First, the allocation of 

allowances. The EU ETS has gradually introduced the auction 

mechanism since the third phase (2013), while CN ETS is still 

dominated by free allocation. Second, the price mechanism. 

The EU ETS regulates CETP volatility by the establishment of 

the Market Stabilization Reserve (MSR), and has already 

established a future market, but the CN ETS has not yet 

established a similar price stabilization mechanism. Third, the 

data quality and compliance. While the EU ETS has strict data 

quality and compliance requirements with strong penalties for 

violations, the CN ETS still needs to be further improved in 

terms of data quality management and corporate compliance. 

 

5.1.2 Comparison of the impact of policy changes on CETP 

During its early development, the EU ETS underwent 

several major policy adjustments that significantly influenced 

CETP. This is comparable to the policy sensitivity observed in 

CN ETS, as highlighted in this study. 

i. Concentrated trading before compliance deadlines 

The 2024 Carbon Market Report emphasized that the surge 

in market demand prior to compliance deadlines often leads to 

an increase in CETP. By analyzing trading data from 2022 and 

2023, the report found that the CETP increases observed in the 

first quarter of each year were directly linked to concentrated 

trading activity driven by compliance requirements [57]. This 

pattern closely aligns with the CETP growth observed in the 

CN ETS ahead of the deadline for its first compliance cycle, 

suggesting that this is a common characteristic of carbon 

markets rather than a phenomenon unique to the CN ETS. 

ii. Delayed and Uneven Allowance Allocation 

The European Parliament noted that uneven allocation of 

allowances could lead to market distortions, particularly when 

certain sectors receive more free allowances. Such policies 

may reduce market liquidity, thereby driving up CETP [58]. 

This is similar to the phenomenon observed in this study, 

where inconsistencies in allowance issuance timing across 

provinces in China led to supply-demand imbalances and 

CETP increases. However, due to the more mature market 

mechanisms and higher liquidity of the EU ETS, the impact of 

such issues is relatively smaller. 

iii. The relationship between the auction mechanism and 

CETP 

As highlighted in the literature review, some studies suggest 

that increasing the number of auctioned allowances is a key 

driver of rising CETP in the EU ETS [24]. However, the 2024 

Carbon Market Report noted that the total volume of 

allowances auctioned in 2023 increased by 7%, reaching 523 

million tons of CO2 equivalent. This rise was partially 

influenced by the renewable energy acceleration plan of EU, 

which prompted the early auctioning of certain allowances to 

facilitate the energy transition. This temporary increase in 

supply placed downward pressure on CETP [57]. This 

phenomenon illustrates the complexity of the auction 

mechanism's impact on CETP, as it depends on factors such as 

the specific implementation method, timing, and market 

expectations. When auctions are viewed as a long-term 

strategy to enhance market efficiency and improve price 

discovery, they tend to drive CETP upward. In contrast, when 

auctions are employed to temporarily boost the supply of 

allowances, they can exert downward pressure on CETP. 

This complexity carries significant implications for China's 

ETS. When implementing an auction mechanism, it is crucial 

to thoroughly assess the objectives, timing, and prevailing 

market conditions to prevent excessive price volatility 

resulting from improper execution. The observed CETP 

increase in CN ETS, driven by expectations surrounding the 

introduction of an auction mechanism, likely reflects the 

market's optimistic anticipation of auctions as a component of 

long-term market-oriented reforms, rather than a response to 

short-term supply fluctuations. 

iv. The impact of strengthening data quality and regulation 

After the EU ETS implemented of several regulatory 

enhancements, such as new anti-fraud measures, registry 

regulations, and the Market Stability Reserve (MSR), the 

CETP increased from €25 per ton of CO₂ in 2020 to nearly 

€100 per ton of CO₂ in 2022 [26]. A similar CETP increase 

was observed in the CN ETS in response to policies focused 

on improving data quality and regulatory oversight, as 

identified in this study. This underscores the importance of a 

robust regulatory framework in fostering market confidence 

and enabling effective price discovery. 

v. The impact of sectoral expansion 

The effect of expanding sectoral coverage on CETP within 

the EU ETS reveals a complex and dynamic relationship. Hu 

et al. [59] found that integrating high abatement cost sectors 

with substantial allowance demand, such as the aviation 

industry, into the EU ETS led to increased allowance demand, 

thereby driving carbon prices higher. In contrast, Hintermann 

et al. [60] noted that incorporating Kyoto Protocol flexible 

mechanisms into the EU ETS introduced additional allowance 

supply, which lowered the market equilibrium price. This 

complexity differs from the upward price impact of sectoral 

expansion observed in the CN ETS in this study, potentially 

reflecting variations in the developmental stages and market 

structures of the two systems. 

 

5.1.3 Comparison of the CETP fluctuation characteristics 

Jiang et al. [30] showed that CETP fluctuations in the EU 

ETS display typical characteristics such as price spikes, fat 

tails, autocorrelation, volatility clustering, and conditional 

variance, reflecting significant risks of extreme price 

movements in carbon markets. These findings align closely 

with the CETP fluctuation patterns observed in the CN ETS, 

indicating that such traits may be universal features of carbon 

markets. 

Nevertheless, there are notable differences in the specific 

manifestations of volatility between the two systems. Yu et al. 

[31] observed that CETP returns in the EU ETS exhibit a 

distinct non-normal distribution, marked by left skewness and 

high kurtosis, which points to the presence of extreme values 
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and fat-tail phenomena in price fluctuations. In contrast, this 

study finds that the returns of CN ETS exhibit slight left 

skewness, with a kurtosis of 9.76, significantly higher than that 

of the EU ETS, suggesting that extreme fluctuations are more 

frequent in CN ETS. 

Regarding market efficiency, the EU ETS demonstrated 

weak-form efficiency only during Phase II (2008-2012). In 

contrast, inefficiencies were evident in Phase I and Phase III, 

driven by factors such as high transaction costs, information 

asymmetry, and irrational investor behavior, which 

contributed to heightened price volatility. Similar findings are 

noted in this study for the CN ETS, where high volatility 

persistence and significant autocorrelation indicate that both 

markets encounter challenges related to market efficiency at 

various stages of development. 

Moreover, Li et al. [32] identified that the EU ETS exhibits 

multifractal characteristics and nonlinear complex correlations, 

implying that price volatility possesses long-term memory and 

dependencies across multiple time scales. This aligns with the 

long-term memory traits of price volatility observed in the CN 

ETS in this study. However, this feature may be more 

pronounced in CN ETS, as evidenced by the TGARCH model, 

where the α+β value reaches 1.86, far exceeding the constraint 

condition of 1. 

It is worth noting that the two markets exhibit significant 

differences in terms of the leverage effect. The EU ETS 

demonstrates a typical leverage effect, where negative news 

exerts a greater influence on price volatility compared to 

positive news [31, 33]. In contrast, the CN ETS displays an 

"anti-leverage effect." This distinction highlights a 

fundamental disparity in the composition of market 

participants between the two regions. The EU ETS includes a 

diverse array of participants, such as industrial enterprises, 

financial institutions, and professional traders. It possesses 

strong financial characteristics, with active derivatives trading, 

and market prices are primarily determined by supply and 

demand mechanisms. Conversely, the CN ETS is 

predominantly composed of allowance-regulated enterprises, 

with limited involvement from financial institutions. 

Transactions in this market are more policy-driven, rendering 

it particularly sensitive to favorable policy signals, while its 

financial attributes remain relatively weaker. 

 

5.2 Policy implications 

 

5.2.1 Improve the market mechanism and strengthen policy 

coordination 

The Chinese government needs to design a market 

stabilization and reserve mechanism to prevent extreme 

volatility. At the same time, the compliance mechanism and 

allowance allocation should be optimized to ensure that the 

allowance issuance time for each province is consistent, as 

well as the timing and quantity of auctions should reasonably 

designed to avoid downward pressure on CETP caused by a 

large the number of short-term auctions. In addition, it is 

necessary to improve the transparency and predictability of 

policies to reduce the impact of sudden policy changes on the 

market. Ensure the consistency of carbon market policies with 

energy policies and industrial policies to avoid large price 

fluctuations caused by policy conflicts. 

 

5.2.2 Improve data quality and supervision efficiency 

A more rigorous and transparent Monitoring, Reporting and 

Verification (MRV) system is fundamental to improving 

market confidence, and the EU ETS experience should be used 

to improve data quality and reliability. Meanwhile, the CN 

ETS regulators should strengthen market supervision, increase 

the cost of violations, and strengthen the binding force of 

compliance. In addition, they should improve the information 

disclosure mechanism, regularly release market operation 

reports and policy interpretations, improve market 

transparency, and help participants form reasonable 

expectations. 

 

5.2.3 Enrich market structure and functions 

The CN ETS authorities should steadily promote the 

expansion of sectors, orderly include high-emission sectors in 

the CN ETS, and expand the scale of the market. According to 

the characteristics of "anti-leverage effect" found in this study, 

the scope of market participants should be expanded, financial 

institutions and individual investors should be introduced in an 

orderly manner, the current single market structure dominated 

by performing enterprises should be improved, and market 

liquidity should be increased. And the Chinese regulators 

should develop derivatives such as carbon futures and options, 

provide diversified risk management tools, and enhance 

market depth. 

By implementing these measures, the issues of price 

volatility and policy sensitivity in the CN ETS can be 

effectively mitigated. This would facilitate the market's 

progression toward greater maturity, stability, and efficiency, 

while also offering valuable lessons for other emerging ETSs. 

 

 

6. CONCLUSIONS 

 

This study investigates the policy implications of the CN 

ETS and the fluctuation characteristics of its CETP. By 

systematically assessing the effects of various policies on 

CETP stability and deeply analyzing the traits and patterns of 

price volatility in the carbon market, the study reaches the 

following key conclusions: 

Firstly, using the Bai-Perron multiple structural break test, 

the study identifies three significant structural breakpoints in 

the CETP dynamics of the CN ETS, all of which are closely 

linked to policy adjustments. Policies such as concentrated 

trading before compliance deadlines, delays and inequalities 

in allowance allocation, the introduction of auction 

mechanisms, enhancements in data quality and regulatory 

oversight, and the expansion of sectoral coverage have all 

exerted substantial influence on CETP. 

Secondly, through the application of GARCH family 

models, the study finds that the CETP fluctuation of CN ETS 

exhibits characteristics such as clustering, leptokurtosis, 

explosiveness, and long memory. These findings indicate that 

the market is insufficiently responsive to information, suffers 

from low liquidity, and has a relatively homogeneous 

participant structure, suggesting that market mechanisms 

remain underdeveloped. Compared to the EU ETS, CN ETS 

demonstrates an "anti-leverage effect," whereby positive news 

exerts a greater influence on CETP volatility than negative 

news. This reflects the dominance of allowance-regulated 

enterprises in CN ETS and their heightened sensitivity to 

favorable policy signals, contrasting sharply with the 

diversified participant structure of the EU ETS. 

Thirdly, the findings of this study on the operational 

characteristics of CN ETS can provide references for emerging 

carbon markets. The research shows that policy stability and 
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transparency are critical to reducing CETP volatility. We find 

that compliance mechanisms, allowance allocation methods, 

data quality management, trading activity, and structure of 

market participants all influence CETP dynamics, and that 

emerging markets should optimize these aspects to improve 

market efficiency and avoid abnormal CETP fluctuations. 

However, this study has certain limitations. First, although 

the data covers key policy windows during the initial phase of 

CN ETS, the sample period is relatively short, which may limit 

the ability to capture long-term trends or cyclical patterns in 

CETP. Second, the study primarily focuses on the direct 

impact of domestic policy adjustments on CETP, without fully 

exploring the potential effects of changes in the international 

policy environment, such as the EU’s Carbon Border 

Adjustment Mechanism (CBAM). Future research could 

further analyze the spillover effects of cross-border policies 

like carbon border taxes on CN ETS, such as the transmission 

of carbon cost pressures to export-oriented enterprises and the 

adaptive adjustments in domestic allowance allocation, 

providing references for the coordination of international 

carbon pricing mechanisms.  

In addition, future studies could adopt more advanced 

methodologies (e.g., machine learning or alternative volatility 

models) to further investigate how macroeconomic factors, 

such as oil price fluctuations and economic cycles, interact 

with CETP volatility in CN ETS, offering more precise risk 

management tools for market participants. Finally, the 

identified characteristics of CETP volatility and policy 

sensitivity in this study provide important implications for 

ESG investment strategies. Investors could incorporate carbon 

price volatility patterns to evaluate corporate emission 

reduction costs and compliance risks, optimizing green asset 

allocation. Meanwhile, policymakers could enhance market 

stabilization mechanisms to strengthen the synergy between 

carbon markets and ESG financial products, thereby 

facilitating the transition to a low-carbon economy. 
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