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 This paper proposes a hybrid strategy that combines Deep Reinforcement Learning (DRL), 

Self-Adaptive Mutated Genetic Algorithm (SAM-GA) and fuzzy logic to create an effective 

home energy conservation system. Over the past decade, the demand for energy-efficient 

systems has highlighted the need for solutions that maximize energy use without 

compromising quality of life, particularly in residential environments. Traditional energy 

management techniques often struggle to handle dynamic and unpredictable electricity 

consumption patterns, leading to inefficient resource use and higher energy costs. The 

proposed model leverages DRL to improve decision-making through continuous learning, 

SAM-GA to optimize power asset allocation, and fuzzy logic to manage uncertainties related 

to electricity demand. The primary objective of this hybrid algorithm is to reduce energy 

costs and consumption in residential areas by dynamically balancing supply and demand. 

Experimental results indicate that the algorithm effectively adapts to fluctuating energy 

demands, achieving a 20% reduction in overall electricity consumption while ensuring the 

smooth operation of household tasks. This innovative approach not only optimizes energy 

usage but also provides a robust, adaptable foundation for sustainable home energy 

management. 
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1. INTRODUCTION 

 

Around the world, electricity serves as an essential 

foundation for the operation of numerous enterprises across all 

sectors. Energy generation is one of the primary drivers of a 

country's economic growth. In today’s world, people rely on 

electricity to carry out even routine tasks. The demand for 

power is rising daily. The traditional centralized power grid 

system is struggling to meet customers' growing power 

demands [1]. Because the existing energy system primarily 

depends on fossil fuels, additional electricity-generating units 

must be installed to increase energy production. Figure 1 

illustrates the framework of the Home Energy Management 

System (HEMS). Through a combination of management 

systems, advances in communication technology, and 

optimization techniques, the HEMS can plan and regulate 

equipment operations to enhance overall energy efficiency. It 

also enables consumers to work with grid operators to 

establish demand-response strategies and consumption plans 

through bidirectional communication [2]. Electricity 

production, distribution, and consumption can be visualized as 

a tree structure, where nuclear power plants or other large 

energy production units act as root nodes, distribution centers 

and transformers serve as secondary nodes, and clients 

function as leaf nodes. 

In this unidirectional network, energy flows from the source 

to the users, who act as reception nodes [3]. One of the primary 

goals of HEMS is to reduce customers' power bills while 

meeting their needs and preferences. To achieve this, HEMSs 

perform two main functions: (1) using smart meters to monitor 

real-time power consumption, and (2) scheduling household 

appliances for minimal energy use [4]. 

A fast-distributed HEMS method for multiple homes was 

developed using a Mixed-Integer Nonlinear Programming 

(MINLP) approach with nonconvex relaxation. In another 

study, a residential energy strategy managed by an Energy 

Storage System (ESS) was introduced, incorporating novel 

technologies for Electric Vehicles (EVs) and ESSs [5]. An 

alternative HEMS method based on predictive control was 

proposed by forecasting the EV state. To maintain consumer 

satisfaction during HEMS operations, recent research has 

proposed various methods. A Quality of Experience (QoE)-

aware HEMS technique was developed to continually adjust 

the QoE threshold, factoring in EVs and renewable energy [6]. 

HEMS research has increasingly incorporated Machine 

Learning (ML) techniques, especially data-driven methods, 

for enhanced energy management. Techniques for accurately 

forecasting photovoltaic system output for efficient energy 

management in buildings were explored by Chen et al. [7]. 

Load prediction using Deep Neural Network (DNN) 

techniques has also been employed to reduce energy 

consumption in homes and buildings. Reinforcement Learning 

(RL) has emerged as a promising ML technique for optimizing 

energy use in buildings. Google DeepMind’s RL-based energy 
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management system demonstrated a 40% reduction in energy 

consumption by optimizing data center cooling [8]. In HEMS 

applications RL techniques, such as Q-learning combined with 

Artificial Neural Networks (ANN), have been used to solve 

HEMS challenges, maintain appliance efficiency, estimate 

consumer comfort, and provide real-time pricing forecasts [9]. 

A novel demand-management approach for HEMS was 

proposed by combining fuzzy logic for incentive functions 

with Q-learning to reduce state-action pairings. A 

comprehensive Deep RL (DRL) approach was also developed 

to manage energy consumption in commercial buildings while 

considering occupant comfort for heating, environmental, and 

lighting conditions [10]. 

Indoor positioning technologies have progressed 

significantly, with methods like wearing badges and systems 

such as UbiSense. Many indoor positioning systems require 

frequent calibration, are costly, and rely on additional 

hardware, limiting their practicality. New indoor positioning 

systems that are cost-effective, nonintrusive, and hardware-

independent are needed. Existing systems commonly use 

Received Signal Strength Indicator (RSSI) methods with 

Bayesian filtering, hidden Markov models, and Monte Carlo 

approaches [11]. Genetic algorithms and clustering techniques 

have also been explored though they often lack interpretability 

and struggle with ambiguous data. Several studies have used 

fuzzy logic to handle uncertainties, producing understandable, 

effective systems. These systems usually require knowledge 

of all accessible Access Point (AP) locations, which is 

impractical in most settings [12]. Conversely, price-based 

programs offer an indirect way to manage customer loads. 

These programs provide consumers with time-varying rates 

based on the cost of power at different times, encouraging 

reduced electricity usage during peak hours. Time-of-Use 

(TOU) pricing is simple for consumers to understand, allowing 

them to shift power use to lower-rate periods and thus spread 

consumption throughout the day to avoid high costs [13]. 

 

1.1 Problem statement  

 

The growing demand for energy in homes, coupled with the 

need for economical and sustainable usage, presents 

significant challenges for effective home energy management. 

Traditional energy management techniques often fail to adapt 

to the dynamic nature of household energy consumption, 

leading to inefficiency, increased costs, and suboptimal 

resource allocation. These methods struggle to handle 

fluctuating energy demands and uncertainties in customer 

behavior, resulting in either excessive energy use or 

inadequate supply during peak hours. To address these 

challenges, this study proposes a hybrid approach that 

continuously optimizes energy consumption in real-time by 

integrating fuzzy logic with DRL and SAM-PSO. This 

approach aims to reduce energy costs, improve efficiency, and 

promote environmentally friendly energy usage in home 

settings by intelligently balancing load, demand, and 

availability while adapting to household schedules.  

 

 
 

Figure 1. The structure of HEMS 
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Figure 2. Structure of energy sharing community 

 

In this energy-sharing community framework, smart homes 

equipped with ESS can sell excess electricity to a shared 

energy pool and purchase power based on existing energy 

prices. If the power pool lacks sufficient energy, non-smart 

homes can purchase electricity from the wholesale market at 

lower rates than those in the pool. Non-smart homes can also 

install Distributed Generators (DGs), like solar panels, to sell 

surplus energy to the power pool at rates above the Feed-in 

Tariff (FIT). Each distributed entity can decide whether to buy 

from or sell to the pool, and Figure 2 illustrates this community 

energy-sharing framework. This design gives smart homes the 

flexibility to earn additional benefits by selling power beyond 

the standard FIT, while less advanced consumers can 

participate in the Peer-To-Peer (P2P) program and enjoy lower 

rates compared to retail electricity prices. 

 

1.2 Motivation 

 

The motivation for this research stems from the pressing 

need to make home energy management smarter, more 

efficient, and environmentally sustainable. With increasing 

global energy demands and rising costs, households are under 

pressure to reduce their energy consumption without 

compromising the comfort and quality of daily living. 

Additionally, as more homes incorporate renewable energy 

sources, such as solar panels and battery storage systems, there 

is a growing need for systems that can intelligently manage 

these resources to maximize their benefits. Traditional energy 

management approaches often lack the adaptability and 

precision to handle the complexities of modern household 

energy demands, especially under varying conditions and 

unpredictable human behaviour. By leveraging advanced 

optimization techniques like SAM-PSO, fuzzy logic, and DRL, 

this research aims to create a solution that dynamically adjusts 

to energy usage patterns, minimizes costs, and promotes 

sustainability. Ultimately, this work aspires to make home 

energy management a key component of the global shift 

toward more energy-conscious and sustainable living 

environments. 

 

1.2.1 Primary contributions 

Hybrid Model for Energy Management: This research 

introduces a novel hybrid framework that combines fuzzy 

logic, Self-Adaptive Mutated Particle Swarm Optimization 

(SAM-PSO), and Deep Reinforcement Learning (DRL) to 

address the complex and dynamic nature of home energy 

management. By integrating these three methods, the model 

adapts to varying energy demands and user behaviours with 

high precision. 

Adaptive Real-Time Optimization: The proposed model 

leverages SAM-PSO to dynamically optimize energy 

allocation and consumption in real-time. This adaptive 

optimization allows for more efficient distribution of energy 

resources, especially in fluctuating household environments, 

and supports sustainable energy management practices by 

minimizing waste. 
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Enhanced Handling of Uncertainties in Energy Demand: By 

incorporating fuzzy logic, the model addresses the inherent 

uncertainties in household energy usage, effectively adapting 

to unpredictable shifts in demand. This flexible, rule-based 

approach is particularly beneficial in residential settings where 

usage patterns can vary significantly throughout the day. 

Improved Integration of Renewable Energy: The hybrid 

model is designed to optimize not only traditional energy 

sources but also renewable energy generation and 

consumption. This contribution helps households maximize 

the use of renewable resources, reducing dependency on non-

renewable energy and lowering energy costs. 

High Accuracy in Energy Forecasting and Cost Reduction: 

Experimental results demonstrate the model’s effectiveness, 

achieving high accuracy rates in forecasting energy demand 

and optimizing energy costs. The DRL component enables 

continuous learning and adaptation, ensuring sustained 

performance improvements and cost savings over time. 

Potential for Application in Smart Home Systems: This 

paper highlights the practical applications of the proposed 

model in smart home ecosystems, offering a scalable and 

intelligent energy management solution that can be integrated 

with existing smart home devices and IoT-based energy 

monitoring systems. 

By addressing gaps in existing energy management 

solutions, this paper provides a comprehensive approach that 

not only optimizes energy usage but also enhances 

sustainability, making it a significant advancement in the field 

of smart home energy management. 

 

 

2. RELATED WORKS 

 

Using power storage mechanisms, created a revolutionary 

approach for residential area energy administration as a crucial 

demand-side management mechanism. A dynamic soft 

constraint approach was proposed to allow thermostatically 

regulated devices to plan their operations in both typical and 

unusual circumstances [14]. Using modeled load designs, 

proposed an Intelligent Appliance Control (IAC) method to 

track and manage these power-intensive equipment daily 

operations. Deep learning with reinforcement learning was 

used to manage electric equipment with respect to its cost of 

displeasing [15].  

By combining the environment for simulation with a system 

for machine learning and battery storage for electricity, DRL 

was used in HEMS. The DRL algorithm's efficacy was 

confirmed by simulations. Proposed employing Deep Q-

learning for microgrid capacity planning. DRL has been 

applied to refer to the Internet of Things (IoT) and intelligent 

cities [16]. Batch RL was proposed as a way to best plan the 

functioning of a device for storage in energy administration 

because of the importance of storage devices in future 

microgrids. The potential of several deep learning approaches 

was examined to extract pertinent characteristics and DRL was 

proposed as a means of scheduling the loads that were 

thermostatically managed [17]. Proposed using multi-agent 

reinforcement learning in order to enhance neighborhood 

energy sharing. DRL was used to address the construction 

energy-efficient optimum control issue; two deep reins In the 

meanwhile, certain energy firms in the US, EU, and Asia have 

implemented Time-of-Use (TOU) rates. Numerous studies on 

DSM that contain TOU tariffs have been conducted [18].  

Integrating DSM and TOU tariffs might lower the expenses 

and pollution of power systems at high levels of renewable 

integration while also greatly enhancing system operating 

reliability. The best rewards for a combination of TOU and 

EDRP schemes were identified after the Demand Response 

(DR) model was developed taking into account both TOU and 

Emergency Demand Response Program (EDRP) approaches 

[19]. It is clear from the previously mentioned study that the 

TOU tariff is advantageous to both network service providers 

and electrical consumers, indicating that the pricing 

mechanism will have a direct positive impact on network 

performance and electrical usage habits. Users can exchange 

excess energy thanks to the P2P energy trading technology 

[20]. The findings demonstrated that the proposed solution 

may considerably lessen the effect that charging has on the 

power grid during peak hours. For societies with peer-to-peer 

commerce capabilities created a MultiAgent System (MAS) 

that utilized a day-ahead management algorithms. This system 

would allow houses to respond to changes in their 

surroundings and engage in trade with other agencies. P2P 

energy trading's potential to lower customer energy bills and 

boost DER providers' revenue [21].  

The market players would have to choose how much energy 

to purchase or sell and when to do so in order to engage in 

peer-to-peer trade. Promoting P2P trading for domestic 

consumers would be hampered by the process of deciding 

complexity and significant processing overhead. In order to 

support the P2P trading system, it is crucial to investigate 

effective methods of regulating the DERs for consumers at 

home [22]. The highest degrees of motion confusion, 

behavioral uncertainty and subject-specific uncertainties such 

as location, orientation, and speed make it extremely difficult 

to achieve reliable behavior and activity detection in real-

world settings. When a person engages in the same activity 

category more than once, their behavior is not distinctive [23]. 

As a result, there are significant differences in behavioral traits 

across and among subjects leads to a great deal of ambiguity 

and confusion in behavior recognition [24]. Some earlier 

methods use fuzzy logic and computer vision to identify 

behavioral pattern descriptions that have been extracted. 

Fuzzy logic has shown to be an effective technique in this 

sector for identifying human actions and handling ambiguity. 

Fuzzy logic was used to identify student behavior to assess 

how well it performed in a laboratory control course [25]. The 

majority of these methods make use of intricate feature models, 

which raises the difficulty of building the fuzzy logic system. 

Proposed approach improves identification speed and provides 

a more flexible depiction of human activity by utilizing fuzzy 

logic and a simpler feature model [26]. 

 

2.1 Research gap 

 

The existing limitations in technologies to dynamically 

adapt to shifting household energy needs and unpredictable 

usage patterns represent a significant gap in home energy 

management research. Existing methodologies including rule-

based and static optimization methods, often overlook the 

complexities of real-time fluctuations and the inherent 

unpredictability in household energy use. While some newer 

models incorporate optimization or machine learning, they 

typically focus on a single approach, limiting their adaptability 

and effectiveness in handling diverse, dynamic energy 

scenarios. These models often lack the mechanisms to 

effectively integrate storage systems with renewable energy 

sources resulting in suboptimal energy distribution and 
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increased costs. Existing research also falls short in providing 

a comprehensive solution that considers the real-time 

responsiveness and computational efficiency required for 

practical smart home applications. Few studies have explored 

hybrid methods that integrate fuzzy logic, adaptive particle 

swarm optimization, and reinforcement learning to fully 

address the challenges of home energy management, despite 

advancements in deep learning and optimization. Study aims 

to address this gap by developing a robust, hybrid model that 

incorporates these advanced methods, enhancing real-time 

energy control, cost efficiency, and sustainability in residential 

environments. 

 

 

3. MATERIALS AND METHODS 

 

To improve the utilization of energy in residential settings, 

this study focuses on creating a combination approach that 

integrates fuzzy logic, DRL and SAM-GA shown in Figure 3. 

The hybrid method offers an adaptable structure for managing 

different levels of power consumption and demand habits by 

utilizing fuzzy logic to handle uncertainty in consumption 

trends. The model's optimization abilities are improved by the 

incorporation of SAM-GA dynamically allocates resources in 

real time to efficiently balance energy supply and demand. The 

framework is further strengthened by DRL allows it to learn 

and adjust to shifting energy patterns over time, improving 

choices to accomplish efficient energy administration. The 

goals of this hybrid system are to save expenses, increase 

home energy efficiency, and facilitate the use of energy from 

renewable sources. The approach seeks to make home energy 

use more economical and ecological by adjusting to the 

particular needs of every household and reacting instantly, 

supporting the more general objectives of sustainable 

development and energy saving. 

 

 

 
 

Figure 3. Proposed architecture 
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3.1 Problem formulation  

 

In a nutshell, HEMS is a mathematical optimization 

problem with complicated changes in the environment, 

involving a range of devices with unique properties. To 

maximize the equipment's DR capability and cost-

effectiveness, proper management is essential. In Figure 4, 

four-day consumption of electricity examples are chosen at 

random. The power utilization time series of an electric 

automobile, dishwasher, air conditioning, and heaters are 

displayed in various color curves as the four primary 

adjustable elements. Overall home energy consumption, total 

number of programmable and non-controllable loads, is shown 

by the blue lines. The green color curve represents solar PV 

generation. The energy consumption of the entire family, solar 

photovoltaic, cooling systems, and electric automobiles that 

have a bigger influence on consumers' energy consumption are 

chosen in this instance as seen in Figure 4. Over the course of 

a year, one house's worth of data is gathered every 15 minutes 

for the method's development. The local power operator 

chooses the energy pricing information, which includes the PV 

on-grid price and the time-of-use plan. The required simplified 

changes were done in accordance with the algorithm's 

requirements. One might consider the power price structure 

mentioned above to be fixed. The devices should be grouped 

together since they operate in distinct ways. The electrical 

devices owned by the occupants may be categorized into three 

groups based on their physical makeup and consumption 

patterns: 

1) Base load may have a fixed demand for power use 

because it cannot be reduced or changed.  

2) Time-shift load comprises appliances such as 

dishwashers and washing machines has two states: open and 

closed; the duration of operation is adjustable.  

3) Power-shift loads such as air conditioners can be variable 

within a specified consumption period. 

The problem formulation in this paper focuses on 

optimizing home energy management by minimizing energy 

costs and maximizing the use of renewable resources, while 

balancing energy demand and maintaining user comfort. This 

is achieved through a hybrid model combining Fuzzy Logic, 

SAM-GA and DRL. 

 

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

Figure 4. Power usage behavior randomly selected 

 

3.2 Objective function 

 

The primary objective is to minimize the Total Energy Cost 

(TEC) while ensuring efficient use of Renewable Energy (RE) 

and maintaining User Comfort (UC). The objective function Y 

can be formulated as: 
 

𝑌 = 𝑚𝑖𝑛(∑𝑃𝑡. 𝐸𝑡 + 𝛼. (
𝐸𝑡
𝑛𝑜𝑛−𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒

−𝐸𝑡
𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒

)

𝑇

𝑡=1

) − 𝛽. 𝑈𝐶 (1) 

 

where, T is the total time horizon. 𝑃𝑡 is the price rate of energy 

per unit (in $/kWh) at time t. 𝐸𝑡  is the total energy 

consumption at time t. 𝐸𝑡
𝑛𝑜𝑛−𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒  and 𝐸𝑡

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒  

represent the non-renewable and renewable energy 

consumption at time t, respectively. 𝛼 is a weight parameter 

for renewable energy prioritization. 𝛽 is a weight parameter 

for user comfort considerations. 

Constraints 

Energy Balance Constraint: The energy demand must be 

met by either renewable or non-renewable sources at each time 

step t: 
 

𝐸𝑡 = 𝐸𝑡
𝑛𝑜𝑛−𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 − 𝐸𝑡

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 (2) 
 

Renewable Energy Usage Constraint: Renewable energy 

use is limited by the amount available, denoted as 

𝐸𝑡
𝑅𝐸_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

, which varies with time t: 

 

𝐸𝑡
𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 ≤ 𝐸𝑡

𝑅𝐸_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 (3) 

 

User Comfort Constraint: It is measured based on certain 

comfort parameters such as temperature and lighting levels, 

which must remain within acceptable ranges: 

 

𝑈𝐶 = 𝑓𝑢𝑧𝑧𝑦(𝑇𝑠𝑒𝑡 ,  𝑇𝑎𝑐𝑡𝑢𝑎𝑙) + 𝑓𝑢𝑧𝑧𝑦(𝐿𝑠𝑒𝑡 ,  𝐿𝑎𝑐𝑡𝑢𝑎𝑙) (4) 

 

where, 𝑇𝑠𝑒𝑡  𝑎𝑛𝑑 𝑇𝑎𝑐𝑡𝑢𝑎𝑙  are the set and actual temperatures. 

𝐿𝑠𝑒𝑡  𝑎𝑛𝑑 𝐿𝑎𝑐𝑡𝑢𝑎𝑙  are the set and actual lighting levels. The 

fuzzy function adjusts comfort scores based on deviations 

from the desired settings. 

The optimization strategy applies SAM-GA to find the 

optimal allocation of energy consumption between renewable 

and non-renewable sources, while the DRL model adjusts 

energy usage patterns over time for further optimization. The 

cost function with these constraints ensures efficient energy 

allocation and minimizes the total cost while considering 

renewable sources and user comfort. 

For each particle x in SAM-GA, the position update (energy 

allocation) is given by: 

 

𝑖𝑥(𝑡 + 1) = 𝑖𝑥(𝑡) + 𝑣𝑥(𝑡 + 1) +  𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑖𝑥) (5) 
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where, 𝑖𝑥 (t) is the existing position (energy allocation) of 

particle x. 𝑣𝑥(𝑡 + 1) is the velocity update, calculated based 

on particle's best position and global best. 

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑖𝑥) represents the adaptive mutation mechanism to 

escape local minima. 

The DRL model's reward R is designed to maximize energy 

efficiency and minimize costs: 

 

𝑅 = −𝑌 (6) 

 

The optimization process iteratively improves Y by 

minimizing costs and maintaining user comfort and renewable 

energy priorities. 

 

3.3 Dataset description 
 

A range of characteristics necessary for effective home 

energy management and the development of models are 

captured in the dataset utilized in this study.  

It contains information particular to a home including a date 

and an individual identification number for every record, 

which aids in monitoring trends in energy usage over time. The 

quantity of energy generated (kWh) and consumed (kWh) are 

important energy indicators that show how dependent each 

home is on both existing and renewable sources of energy. In 

Further optimization is made possible by the detailed insights 

into energy use by particular devices that appliance 

consumption information offers. By taking into account 

economic considerations, the pricing rate and total energy cost 

per kWh enable the model to assist consumers in lowering 

their energy expenses. Additional context for comprehending 

demand changes is provided by atmospheric conditions. The 

energy-saving measures and improvements implemented are 

documented by model-specific information, such as 

modifications performed by the DRL model and optimization 

levels attained using SAM-GA. Household features, 

surroundings, energy use, expenses, and model-specific 

improvements for a hybrid method employing SAM-GA and 

DRL are among the important aspects of the information used 

for home energy conservation that is captured Table 1. Table 

2 sample data provide a snapshot of parameters such as 

timestamps, activity kinds, conditions in the environment, 

household-specific IDs, and consumption statistics. To help 

the model determine areas for optimization, the Appliance 

Usage column provides a list of the power utilization by 

different devices at the specified date. Modifications and 

effectiveness improvements made possible by DRL and SAM-

GA are shown by model-driven columns such as DRL Action 

(kWh) and SAM-GA Optimization (%) A solid basis for 

dynamic, responsive energy utilization assessment in 

residential settings is provided by this organized information. 

 

Table 1. Dataset description 

 
Attribute Description Data Type Example Values 

Household Unique identifier for each household Integer 101,102,103 

Timestamp Data and time of energy consumption record Data Time 2024-01-01 12:00:00 

Energy consumption(kWh) Amount of energy consumed by the household Float 1,25,2.48,3.76 

Temperature (*C) Recorded outdoor temperature at the time of data collection Float 18.5,22.3,15.0 

Humidity (%) Humidity level associated with energy usage Float 45.2,60.1,50.3 

Renewable Energy(kWh) Amount of renewable energy generated (e.g. solar, wind) Float 0.85,1012,0.00 

Peak Load Indicator Indicates if data was collected during a pack usage period Boolean True, False 

Activity Type Type of household activity affecting energy consumption Categorical Cooking, HVAC, Lighting 

Appliance Usage Power usage per appliance in the household Float Array [0.3,0.5,0.8] 

Price rate (S/kWh) Cost of energy per kilowatt hour at the timestamp Float 0.12,0.15,0.18 

Energy Cost ($) Total cost of energy used at the timestamp Float 0.15,0.30,0.45 

Weather Conditions Weather conditions impacting energy consumption Categorical Sunny, cloudy, Rainy 

DRL Action (kWh) Energy adjustment made by the Deep Reinforcement Learning model Float -0.2,0.0,0.3 

SAM-GA Optimization (%) Optimized percentage of energy usage through SAM-PSO Float 5.0,10.0,7.5 

 

Table 2. Sample data 
 

Household 

ID 
Timestamp 

Energy 

Consumption (kWh) 

Temperature 

(℃) 
Humidity (%) 

Renewable 

Energy (kWh) 
Peak Load Indicator 

101 
2024-01-01 

2:00:00 
2.25 19.5 46.2 0.86 False 

102 
2024-01-01 

2:30:00 
3.48 23.3 61.1 2.12 True 

103 
2024-01-01 

3:00:00 
4.76 16.0 51.3 0.01 False 

104 
2024-01-01 

3:30:00 
2.95 21.0 56.0 0.76 True 

105 
2024-01-01 

4:00:00 
3.10 20.1 59.3 0.51 False 

Household 

ID 
Activity Type 

Appliance Usage 

(kWh) 

Price Rate 

($/kWh) 

Energy 

Cost ($) 

Weather 

Conditions 

DRL Action 

(kWh) 

SAM-PSO 

Optimization (%) 

101 HVAC [0.4,0.6,0.5] 0.13 0.16 Sunny -0.3 6.0 

102 Cooking [0.9,0.7,0.6] .0.16 0.31 Cloudy 0.1 11.0 

103 Lighting [0.6,0.4,0.3] .0.19 0.46 Rainy 0.4 8.5 

104 
Washing 

Machine 
[2.0,0.8,0.6] 0.15 0.28 Cloudy -0.2 9.3 

105 Entertainment [0.5,0.6,0.7] 0.14 0.21 Sunny 0.2 7.0 
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3.4 Deep reinforcement learning for efficient HEM 

 

Customer's chosen equipment schedule and comfortable 

assortment, provide a hierarchical two-level DRL approach in 

this part of the paper. The structure uses the actor-critic 

technique shown in Figure 5. The proposed model used online 

in a real-world setting once it has been thoroughly trained 

using the offline database. The structure is divided into two 

sections: training and validaiton. The primary focus of this 

study is the validation and training component. To make the 

best decision in a real-world physical setting, the training 

phase supervises both the information acquisition and 

implementation phases. As mentioned above, agent, 

environment, reward, and action are the four basic parts in 

DRL. In addition, the details of the algorithm implementation 

would be explained according to these four parts. The general 

architecture is shown in Figure 6.  

 

 
 

Figure 5. DRL in the HEM framework 

 

 
 

Figure 6. DRL in the HEM framework in detail 
 

3.4.1 Energy management model for home appliances 

The Energy Management Model for a home that includes a 

Washing Machine (WM), Air Conditioner (AC), Photovoltaic 

(PV) system, Electric Vehicle (EV), Swinging Machine, and 

Camera can be formulated as a DRL problem.  

State Space (S): It represents the existing status of the 

appliances, energy generation, and external conditions, it can 

be defined as follows: 
 

𝑆𝑡

=

{
 
 

 
 𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑡), 𝑇𝑠𝑒𝑡

𝐴𝐶 , 𝑃𝑡 , 𝐸𝑃𝑉(𝑡), 𝐸𝐸𝑉(𝑡),

𝐸𝑊𝑀(𝑡), 𝐸𝐴𝐶(𝑡), 𝐸𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑡),

𝑂𝑝𝑒𝑟𝑠𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠𝐴𝐶 , 𝑂𝑝𝑒𝑟𝑠𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠𝐸𝑉 ,
𝐸𝑊𝑀 , 𝑂𝑝𝑒𝑟𝑠𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 , }

 
 

 
 

 
(7) 

 

where, 𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑡): existing indoor temperature at time f. 𝑇𝑠𝑒𝑡
𝐴𝐶: 

User-set temperature for the AC. 𝑃𝑡: Energy price rate at time 

t (in $/kWh). 𝐸𝑃𝑉(𝑡): Energy produced by the PV system at 

time t (in kWh). 𝐸𝐸𝑉(𝑡): Energy required for EV charging at 

time if (in kWh).  

𝐸𝑊𝑀(𝑡): Energy consumed by the washing machine (kWh). 

𝐸𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑡) : Energy consumed by the Swinging 

Machine (kWh). 𝐸𝐴𝐶(𝑡): Energy consumed by the AC (kWh). 

𝑂𝑝𝑒𝑟𝑠𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒   Binary variable 

indicating if WM is on (1) or off (0) at time t. 

𝑂𝑝𝑒𝑟𝑠𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠𝐴𝐶 ,  Binary variable indicating if AC is 

on (1) or off (0) at time t. 𝑂𝑝𝑒𝑟𝑠𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠𝐸𝑉  Binary 

variable Indicating if EV is charging (1) or off (0) at time t. 

𝐸𝑊𝑀   Binary variable indicating if the dishwasher is on (1) or 

off (0) at time t. 

Action Space (A): It consists of the actions that the agent 

can take to manage the operation of the appliances and the 

energy flow in the system. It is defined as: 

 

𝐴𝑡 = {𝑎𝑊𝑀 , 𝑎𝐴𝐶 , 𝑎𝐸𝑉 , 𝑎𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒} (8) 

 

where, 𝑎𝑊𝑀: Action for the washing machine (1 for on, 0 for 

off). 𝑎𝐴𝐶: Action for the air conditioner (1 for on, 0 for off). 

𝑎𝐸𝑉: Action for the electric vehicle (1 for charging, 0 for not 

charging). 𝑎𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 : Action for the 

𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 (1 for on, 0 for off). 

Reward Function (R): Incentivizes actions that optimize 

energy usage while minimizing costs and maintaining comfort. 

The reward at each time step 1 can be formulated as: 
 

𝑅𝑡 = −(𝑃𝑡 . (

𝐸𝑊𝑀(𝑡) + 𝐸𝐴𝐶(𝑡) + 𝐸𝐸𝑉(𝑡)

+𝐸𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑡)

+𝛼|𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑇𝑠𝑒𝑡
𝐴𝐶| + 𝛽. 𝐸𝑃𝑉(𝑡)

)) (9) 

 

where, 𝑃𝑡 . (𝐸𝑊𝑀(𝑡) + 𝐸𝐴𝐶(𝑡) + 𝐸𝐸𝑉(𝑡) +

𝐸𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑡)): Total cost incurred for operating all 

appliances at time t. 𝛼: Weight factor for penalizing deviations 

from the desired indoor temperature (for AC). |𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) −
𝑇𝑠𝑒𝑡
𝐴𝐶|: Absolute difference between actual indoor temperature 

and setpoint. 𝛽 : Weight factor that rewards the use of 

renewable energy from the PV system. 𝐸𝑃𝑉(𝑡): Amount of 

energy produced by the PV system at time t. 

Washing Machine Energy Consumption: 
 

𝐸𝑊𝑀(𝑡) = 𝑃𝑊𝑀 . 𝑎𝑊𝑀  (10) 

 

where, PWM is the power consumption of the washing 

machine when operating (kWh). 

Air Conditioner Energy Consumption: 
 

𝐸𝐴𝐶(𝑡) 
= 𝑓(|𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑇𝑠𝑒𝑡

𝐴𝐶|). 𝑎𝐴𝐶 . 𝑃𝐴𝐶  
(11) 

 

where, 𝑃𝐴𝐶  is the power consumption of the AC (kWh), and f(.) 

is a function that increases energy usage with greater 

temperature deviation. 

Electric Vehicle Energy Consumption: 
 

𝐸𝐸𝑉(𝑡) = 𝑃𝐸𝑉 . 𝑎𝐸𝑉 (12) 
 

where, 𝑃𝐸𝑉 is the power required for charging the EV (kWh). 

Swinging Machine Consumption:  
 

𝐸𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔_𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑡)

= 𝑃𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔_𝑀𝑎𝑐ℎ𝑖𝑛𝑒 . 𝑎𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔_𝑀𝑎𝑐ℎ𝑖𝑛𝑒  
(13) 
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where, 𝑃𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔_𝑀𝑎𝑐ℎ𝑖𝑛𝑒  is the power required for charging 

the EV (kWh). 
 

3.4.2 Final objective function for the agent 

The goal of the DRL agent is to maximize the cumulative 

reward R over a given period T: 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑅𝑡 =
𝑇
𝑡=1

−∑ (𝑃𝑡 . (

𝐸𝑊𝑀(𝑡) + 𝐸𝐴𝐶(𝑡) + 𝐸𝐸𝑉(𝑡)

+𝐸𝑆𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑡)

+𝛼|𝑇𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑇𝑠𝑒𝑡
𝐴𝐶| + 𝛽. 𝐸𝑃𝑉(𝑡)

))𝑇
𝑡=1   

(14) 

 

DRL agent to efficiently manage the operation of the 

appliances, leveraging the PV system to minimize costs while 

ensuring user comfort and meeting energy demands. The agent 

learns to optimize the timing and operation of appliances based 

on real-time energy prices and user preferences. A developing 

trend and a load-transferable, controlled load is household 

storage of electricity. The following describes the connection 

between the storage of energy and the State of Charge (SOC) 

using charging and discharging powers: 

 

𝑆𝑂𝐶(𝑡 + 1) = 𝑆𝑂𝐶(𝑡) +

𝑎𝑡,𝑐ℎ𝑎
𝜂𝑐ℎ∆𝑡

𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑐ℎ (𝑡) +

𝑎𝑡,𝑑𝑖𝑠𝑐
∆𝑡

𝜂𝑑𝑖𝑠𝑐𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑑𝑖𝑠𝑐 (𝑡)  

(15) 

 

where, 𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑐ℎ (t) the charging power and 𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑑𝑖𝑠𝑐 (𝑡) 

discharging power. 

 

3.5 Intelligent fuzzy self-adaptive mutated genetic 

algorithm for efficient HEM 

 

 
(a) 

 

 
(b) 

 

Figure 7. Fuzzy rules 

 

Fuzzy rules are commonly described as triangular or 

trapezoid-shaped curves. Purpose of these guidelines is to 

convey the degree of certain characteristics. The employment 

of Q-learning in the ongoing trading procedure is made 

possible by the fuzzy deduction system may also produce a 

decent approximation of the process of trading shown in 

Figures 7(a) and 7(b). 

The potential model with the highest output degrees is then 

chosen in order to categorize and identify what happens in the 

present time frame. The fuzzy rule-based system for energy 

management in home appliances aims to prioritize and control 

each device's operation based on factors such as energy 

demand, availability of renewable energy, user preferences 

and appliance priority. Below are sample fuzzy rules for 

appliances such as Washing Machine (WM), Air Conditioner 

(AC), Photovoltaic (PV) system, Electric Vehicle (EV) 

charging, and Swinging Machine. Each rule is formed by 

considering fuzzy input variables and generating 

corresponding output actions.  

In proposed hybrid model, fuzzy logic is used to handle the 

inherent uncertainty in household energy consumption 

patterns, such as irregular appliance usage, varying user 

preferences, and fluctuating energy tariffs. The fuzzy rules 

designed for appliance control are not arbitrarily defined—

they are derived using both domain expert knowledge and 

data-driven analysis, ensuring better adaptability and 

generalization across different households. 

 

Expert Knowledge-Based Rule Design 

Conducted interviews and consultations with home energy 

experts, electrical engineers, and smart appliance 

manufacturers to construct a base set of fuzzy rules. For 

example: 

• If usage priority is high and energy cost is low, then 

appliance should be ON. 

• If room occupancy is low and device energy rating is high, 

then appliance should be OFF. 

These rules reflect common-sense heuristics used in manual 

energy-saving decisions and are applicable to a wide range of 

domestic environments. 

Data-Driven Refinement 

To enhance generalizability, we implemented data 

clustering techniques (e.g., fuzzy c-means, k-means) on 

historical usage data collected from smart homes. These 

clusters revealed patterns that helped fine-tune fuzzy 

membership functions and rule thresholds. For example: 

• Frequency of usage during different hours helped define 

"high usage time." 

• Correlations between appliance runtime and occupancy 

patterns refined the control rules. 

Adaptive Rule Updating 

Incorporated a feedback-based updating mechanism, where 

the fuzzy rule base evolves over time using feedback from the 

DRL policy updates. This makes the fuzzy system self-

improving, avoiding the rigidity often associated with static 

rule sets. 

The combination of expert-derived initial rules, data-driven 

calibration, and reinforcement-based dynamic updates ensures 

that our fuzzy control system is both robust and adaptable, 

making it suitable for varied real-world scenarios. 

 

Fuzzy Variables 

Inputs:  

Energy Demand (ED): Represents the existing household 

energy demand (Low, Medium, High). 

Renewable Availability (RA): Availability of energy from 
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PV (Low, Medium, High). 

User Preference (UP): User's priority setting for comfort vs. 

energy saving (Low, Medium, High). 

Appliance Priority (AP): Priority level of each appliance 

(Low, Medium, High). 

Outputs: 

Appliance Operation Level (AOL): Output decision level 

for appliance operation (Off, Standby, On). 

Fuzzy Rules 

Here is a selection of sample fuzzy rules for each appliance: 

Rule Structure 

Each rule can be written in the format: IF Condition_1 AND 

Condition_2 AND... THEN Output. 

Rules for Washing Machine (WM) 

1. IF ED is High AND RA is Low AND AP is Low THEN 

AOL for WM is Off. 

2. IF ED is Low AND RA is High AND AP is High THEN 

AOL for WM is On. 

3. IF ED is Medium AND RA is Medium AND AP is 

Medium THEN AOL for WM is Standby. 

Rules for Air Conditioner (AC) 

1. IF ED is High AND UP is Low AND RA is Medium 

THEN AOL for AC is Standby. 

2. IF ED is Low AND UP is High AND RA is High THEN 

AOL for AC is On. 

3. IF ED is Medium AND UP is Medium AND RA is Low 

THEN AOL for AC is Off. 

Rules for Photovoltaic System (PV) 

1. IF RA is High THEN PV Operation Level is On. 

2. IF RA is Medium THEN PV Operation Level is Standby. 

3. IF RA is Low THEN PV Operation Level is Off. 

Rules for Electric Vehicle (EV) Charging 

1. IF ED is Low AND RA is High AND AP is High THEN 

AOL for EV Charging is On. 

2. IF ED is Medium AND RA is Medium THEN AOL for 

EV Charging is Standby. 

3. IF ED is High AND RA is Low AND UP is Low THEN 

AOL for EV Charging is Off. 

Rules for Swinging Machine 

1. IF ED is Low AND RA is Medium AND AP is High 

THEN AOL for Dishwasher is On. 

2. IF ED is Medium AND RA is Low THEN AOL for 

Dishwasher is Standby. 

3. IF ED is High AND RA is Low THEN AOL for 

Dishwasher is Off. 

 

 
 

Figure 8. IF SAM-GA-fuzzy inference model 
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For each appliance, mathematically represent the fuzzy 

inference model for determining the Appliance Operation 

Level 𝐴𝑂𝐿𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒  based on the inputs ED, RA, UP, and AP. 

Using fuzzy membership functions 𝜇𝐸𝐷(𝑖), 𝜇𝑅𝐴(𝑗), 𝜇𝑈𝑃(𝑘), 
and 𝜇𝐴𝑃(𝑙), the fuzzy rule output for each rule 𝑅𝑥 is given as: 

 

𝑅𝑥 = 𝑚𝑖𝑛 (𝜇𝐸𝐷(𝑖), 𝜇𝑅𝐴(𝑗), 𝜇𝑈𝑃(𝑘), 𝜇𝐴𝑃(𝑙))  
→  𝐴𝑂𝐿𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒  

(16) 

 

The final output for each appliance is computed using the 

Center of Gravity (COG) defuzzification method for each 

appliance's aggregated output. This output will define the 

optimal operational level of each appliance to ensure efficient 

energy management as shown in Figure 8. 

The aggregated operation level for an appliance, using 

defuzzification, is given by: 

 

𝐴𝑂𝐿𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 =
∑ 𝑅𝑥. 𝐴𝑂𝐿𝑥𝑥

∑ 𝑅𝑥𝑥

 (17) 

 

where, 𝐴𝑂𝐿𝑥  represents each rule's consequent (e.g., Off, 

Standby, On) converted to a numerical equivalent (e.g., Off=0, 

Standby=0.5, On=1), and 𝑅𝑥  represents the strength of each 

rule. This output will define the optimal operational level of 

each appliance to ensure efficient energy management. These 

fuzzy rules provide adaptive and flexible energy management 

by taking into account real-time energy demand, renewable 

availability and user preferences. The fuzzy inference system 

combined with rules for each appliance helps optimize energy 

consumption, ensuring efficient management and enhanced 

user comfort. The Intelligent Fuzzy SAM-GA is used to try to 

address the home power load scheduling issue with India. To 

encourage the development of essential genes in future 

generations and so increase the fitness of chromosomes, the 

proposed IFRG method was developed with the premise that 

critical genes must be conserved. This is because genes are the 

fundamental structural components of chromosomes, and 

certain genes within a chromosome convey greater data that is 

relevant to the issue than others. It may be instances in which 

some of the crucial genes are damaged during the crossover 

vehicle and mutation processes. 

 

3.6 Algorithm: Hybrid IF-SAMGA and DRL for efficient 

HEM 

 

Step 1: Initialization 

Define State Space S: States include: Appliance operational 

statuses; Renewable energy availability; User preferences; 

Energy demand levels. 

Define Action Space A: Actions include turning appliances 

on/off, adjusting operational levels, and scheduling appliances 

based on fuzzy rules and optimization strategies. 

Initialize Parameters: Population size P for the genetic 

algorithm. Crossover probability pe and mutation probability 

Pm. DRL model parameters (e.g., learning rate, discount 

factor). 

Define Fuzzy Rules for each appliance based on energy 

demand, renewable energy availability, and user preferences. 

Step 2: Fuzzy Logic System 

Input Fuzzy Variables: Obtain real-time data for: Energy 

demand (ED); Renewable availability (RA); User preference 

(UP); Appliance priority (AP). 

Apply Fuzzy Rules: Use fuzzy inference to determine the 

Appliance Operation Level 𝐴𝑂𝐿appliance for each device. 

Defuzzification: Calculate the aggregated Appliance 

Operation Level 𝐴𝑂𝐿aggregated  using the center of gravity 

(COG) method. 

 

𝐴𝑂𝐿aggregated =
∑ 𝑅𝑥. 𝐴𝑂𝐿𝑥𝑥

∑ 𝑅𝑥𝑥

 (18) 

 

where, 𝑅𝑥  represents the rule strength and 𝐴𝑂𝐿𝑥  is the 

operational level for each rule. 

Step 3: Self-Adaptive Mutated Genetic Algorithm 

(SAMGA) Optimization 

Population Initialization: Generate an initial population P of 

solutions where each individual represents a possible 

configuration of appliance operation levels. 

Fitness Evaluation: Define the fitness function f(i) to 

minimize total energy consumption while maintaining user 

preferences and appliance priorities. 

 

𝑓(𝑖) = ∑(𝐸𝑥 × 𝐴𝑂𝐿𝑥) + 𝛼. 𝑃𝑢𝑠𝑒𝑟_𝑠𝑡𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑁

𝑥=1

+ 𝛽. 𝑅𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒_𝑢𝑠𝑎𝑔𝑒  

(19) 

 

where, 𝐸𝑥  is the energy consumption of appliance x. 

𝑃𝑢𝑠𝑒𝑟_𝑠𝑡𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is a penalty term based on user preference 

satisfaction. 𝑅𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒_𝑢𝑠𝑎𝑔𝑒 is a reward term for renewable 

energy utilization. 𝛼 and 𝛽 are weight parameters. 

Selection: Use roulette wheel or tournament selection to 

select individuals for reproduction. 

Crossover and Mutation: Apply crossover with probability 

Pe and mutation with probability Pm. Self-adaptive mutation is 

used to adjust mutation probability based on convergence, 

encouraging diversity. 

Self-Adaptive Mutation Probability: Adjust Pm based on 

fitness variance in the population: 

 

𝑝𝑚 =
𝜎𝑓

𝜇𝑓
 (20) 

 

where, 𝜎𝑓 is the standard deviation of fitness and 𝜇𝑓 is the 

mean fitness. 

Update Population: Replace the worst-performing 

individuals with newly generated offspring. 

Convergence Check: Repeat steps until convergence criteria 

are met (e.g., minimal change in fitness over iterations). 

Step 4: DRL for Real-Time Decision-Making 

Initialize DRL Agent: Define agent parameters for learning 

optimal policy π. Discount factor 𝛾. Learning rate 𝛼. 

Policy Update: For each time step t: Observe the existing 

state 𝑆𝑡 . Select an action  𝐴𝑡  based on the existing policy 𝜋 

(e.g., e-greedy). 

Environment Interaction: Execute action 𝐴𝑡 transition to the 

next state 𝑆𝑡+1, and observe reward 𝑅𝑡. 
Reward Function: Define a reward function R that balances 

energy efficiency and user satisfaction: 

 

𝑅 = −(∑𝐸𝑥 × 𝐴𝑂𝐿𝑥

𝑁

𝑥=1

) +⋋. 𝑃𝑢𝑠𝑒𝑟𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛

+ 𝛿. 𝑃𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒_𝑢𝑠𝑎𝑔𝑒 

(21) 

 

where, ⋋ and 𝛿 are weighting factors. 

Q-Value Update: Update the Q-values based on the 
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observed reward:  

 

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝑎 [𝑅𝑡 + 𝛾max
𝑎
𝑄(𝑆𝑡+1, 𝑎)

− 𝑄(𝑆𝑡 , 𝐴𝑡)] 
(22) 

 

Policy Optimization: Use the learned Q-values to improve 

the policy 𝜋 , guiding future action selection to minimize 

energy use and maximize user satisfaction. 

Step 5: Hybrid Decision-Making 

Combine SAMGA and DRL Decisions: Use SAMGA for 

periodic optimization of appliance settings based on historical 

data. Apply DRL for real-time adjustments based on 

immediate observations and rewards. 

Final Decision Output: The final operational level 𝐴𝑂𝐿final 
for each appliance is determined as: 

 

𝐴𝑂𝐿final = 

𝑆𝐴𝑀𝐺𝐴 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝐷𝑅𝐿 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 
(23) 

 

Execute Optimal Action: Implement the operational levels 

for each appliance in the smart home. 

Step 6: Continuous Learning and Adaptation 

Retrain DRL and SAMGA periodically based on new 

energy usage data and appliance patterns. 

Adjust Fuzzy Rules as user preferences and renewable 

availability evolve. 

This hybrid algorithm combines the benefits of fuzzy logic 

for initial decision-making, SAMGA for exploring optimal 

solutions, and DRL for real-time adjustments. Together, it 

create a robust system for managing energy in smart homes, 

maximizing efficiency, and adapting to user behavior and 

renewable energy availability. 
 

3.7 Experimental setup 
 

To prove the efficacy of the proposed approach was 

successfully accomplished using information that was 

simulated. The outcomes of this simulation for ADL 

identification are really encouraging. Outcomes for a stream 

of simulated information are displayed in Figure 9.  

The proposed system by considering the rules utilized in this 

system for fuzzy inference was the focus of this first research. 

To acquire the missing detection, the used technique involved 

running many tests with various combination rules. Based on 

the findings, one rule was added to the chosen set of rules. This 

approach yields good ADL output (about 97% of successful 

ADL detection). Although this simulation is still in its early 

stages, it shows how commonplace, low-tech sensor devices 

may be utilized to identify everyday activities in actual houses. 

Retrofitting the system into an existing home setting is simple 

and requires no significant damage or alterations. 

 

 
 

Figure 9. ADL recognition experiment for a simulated stream data 

 

 

4. RESULTS AND DISCUSSIONS 

 

For the experimental investigation, a smart house with three 

distinct sets of domestic power loads: Load 1, Load 2, and 

Load 3 are selected. Each of the two methods undergoes many 

runs of the modeling process. It is evident from Figures 10 and 

11 that the Intelligent Fuzzy SAM-GA DRL method offers a 

quicker convergence for the problem's multiple objective 

reduction. 

 

 

 
a) Fitness evolution graphs for cost minimization under load1 
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b) Fitness evolution graphs for cost minimization under load2 c) Fitness evolution graphs for cost minimization under load3 

 

Figure 10. Fitness evolution graphs for cost minimization 

 

 
a) Fitness evolution graphs for PAR reduction under load1 

 

 
b) Fitness evolution graphs for PAR reduction under load2 

 

 
c) Fitness evolution graphs for PAR reduction under load3 

 

Figure 11. Fitness evolution graphs for peak-to-average 

ration reduction 
 

A palette with various components to replicate indoor 

spaces (such as barriers, furnishings, and entrances) that are 

furnished with both people (such as elderly people, caregivers, 

office building employees, etc.) and ubiquitous computing 

devices (such as actuators and sensor systems shown in 

Figures 12 and 13. Each room in this scenario has an AP, 

however the passageway is devoid of any AP. Thus, in this 

initial case, there are four APs. The second simulated situation 

is displayed in two and three dimensions in Figure 13 (a) and 

(b) correspondingly.  

The proposed structure was examined during the 600-

second simulation period in the smart home scenario. The CO2 

and temperature concentrations in the smart house were 

recorded, and the results were represented in the data shown 

in Figure 14. The aforementioned figures plot the outcomes of 

measuring the electricity produced and utilized by the specific 

residence. The findings demonstrated the highest level of 

precision and efficiency of the proposed framework for smart 

HEM systems. 

The proposed hybrid model demonstrates superior 

performance across all metrics, with the highest values in 

accuracy, precision, recall, and F1 score, indicating its 

effectiveness in handling complex and dynamic energy 

management requirements. Table 3 underlines that the 

proposed hybrid approach achieves a balanced and robust 

performance, outmatching traditional systems in handling 

energy management in dynamic and complex environments. 

The proposed hybrid model achieves the lowest error rates 

across all metrics (MAE, MSE, and RMSE), indicating highly 

accurate predictions and effective energy management. The 

Rule-Based EMS has the highest error values, reflecting its 

limited adaptability to dynamic energy changes and lack of 

optimization in real-time conditions. Optimization-Based 

EMS reduces error to some extent but due to its static 

optimization process still results in higher MAE, MSE, and 

RMSE values compared to the proposed model. Model 

Predictive Control (MPC) achieves lower error values than the 

rule-based and optimization-based systems to its predictive 

capabilities. Table 4 highlights that the proposed hybrid model 

outperforms traditional systems by minimizing prediction 

errors, enhancing energy management, and proving effective 

in dynamic environments. 

 

 
(a)                                            (b) 

 

Figure 12. (a) 2D floor home (b) 3D floor home 
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(a) (b) 

Figure 13. (a) 2D building (b) 3D building 

 

 
 

Figure 14. Analysis of power generation for HEM using proposed system 

 

Table 3. Performance measures 

 
Performance 

Measure 

Proposed Hybrid 

Model  

Rule-based 

EMS 

Optimization Based 

EMS 

FL based 

MAS 

Reinforcement Learnoing –

Based EMS 

Accuracy (%) 96.7 86.3 89.5 91.2 93.1 

Precision (%) 96.2 84.4 88.1 90.5 92.3 

Recall (%) 98.1 85.6 88.7 91.3 92.8 

F1 Score (%) 97.1 85.0 88.4 90.9 92.6 

 

Table 4. Performance of error measures 

 
Performance Measure Proposed Hybrid 

Model 

Rule-based 

EMS 

Optimization 

Based EMS 

FL based 

MAS 

Reinforcement 

Learning –Based EMS 

Mean Absolute Error (MAE) 2.5 7.8 6.3 5.7 4.4 

Mean Squard Error (MSE) 8.0 21.4 16.6 13.8 11.3 

Root Mean Squard Error (RMSE) 2.83 5.51 4.95 4.57 4.21 

 

Table 5. Comparison of training and validation accuracy 

 

Performance Measure 
Proposed Hybrid 

Model 

Rule-based 

EMS 

Optimization 

Based EMS 

FL based 

MAS 

Reinforcement 

Learning –Based EMS 

Training Accuracy (%) 98.5 83.0 88.3 90.0 93.5 

Validation Accuracy (%) 95.0 81.5 86.1 88.8 92.2 

 

Table 6. Comparison of training and validation loss 

 
Performance 

Measure 
Proposed Hybrid Model Rule-based EMS 

Optimization 

Based EMS 

FL based 

MAS 

Reinforcement 

Learning –Based EMS 

Training Loss 0.09 0.46 0.31 0.24 0.16 

Validation Loss 0.13 0.51 0.37 0.28 0.19 
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Table 7. Comparison of mutation rate adaptation curves proposed hybrid model rule-based EMS optimization based EMS 

 

EMS Approach Mutation Rate Adaptation Convergence 

Speed 

Adaptability Stability Over 

Time 

Learning/Optimization Dynamics 

Proposed Hybrid 

Model (Fuzzy + SAM-

GA + DRL) 

Self-adaptive mutation rate, 

adjusted dynamically based 

on learning feedback 

Fast (≈ 55 

generations) 

High (adjusts to 

demand patterns) 

High (stable 

across scenarios) 

Combines learning from DRL with 

dynamic optimization from SAM-

GA 

Rule-Based EMS No adaptation (fixed logic) Slow Low (depends on 

predefined rules) 

Moderate (rule-

dependent) 

Static; lacks real-time learning 

capability 

Optimization-Based 

EMS (e.g., GA/PSO) 

Fixed or linearly decaying 

mutation rate 

Medium (≈ 90 

generations) 

Moderate Varies (sensitive 

to parameters) 

Relies on fixed mutation/heuristics 

for exploration 

FL  based MAS Not applicable Medium Medium (uses 

model predictions) 

High (model 

accuracy-

dependent) 

Optimizes over a finite horizon 

using pre-built models 

Einforcement 

Learning-Based EMS 

Implicit adaptation via 

policy updates 

Fast (≈ 60-70 

episodes) 

High (policy 

evolves) 

High Learns from reward signals; no 

explicit mutation mechanism 

 

Table 8. Performance analysis 

 

Model Type 
Inference Time 

(ms) 

Memory 

Footprint (MB) 

Avg. Running 

Time per Cycle (s) 

Suitable for 

Edge? 

Real-Time 

Feasibility 

Proposed Hybrid (Fuzzy + SAM-

GA + DRL) 
~320 ms ~180 MB ~2.8 s 

 Partially (requires 

optimization) 

Moderate (with 

simplification) 

Rule-Based EMS ~50 ms ~10 MB ~0.3 s √ Yes √ High 

Optimization-Based EMS (e.g., 

GA, PSO) 
~200 ms ~90 MB ~1.9 s 

 Limited (offline 

preferred) 
 Medium 

Model Predictive Control (MPC) ~120 ms ~60 MB ~1.1 s √ Yes √ High 

Reinforcement Learning-Based 

EMS (DQN) 
~250 ms ~140 MB ~2.3 s Moderate  Medium 

 

The proposed hybrid model shows the highest training and 

validation accuracy, indicating a strong ability to learn 

complex patterns and generalize effectively to new data. This 

suggests that the model performs reliably in both training and 

real-world settings. Table 5 illustrates that the proposed hybrid 

approach outperforms traditional models by achieving both 

high training and validation accuracy, ensuring robust 

performance for home energy management in real-world 

applications as shown in Table 6. 

This adaptive strategy was monitored across generations, 

and mutation rate adaptation curves showed a smooth decline 

in variability as convergence was approached. A comparative 

study of convergence speed revealed that SAM-GA achieved 

optimal energy allocation solutions within an average of 55 

generations, outperforming standard GA (90 generations) and 

linearly adaptive GA (70 generations). To assess robustness, 

the genetic diversity index was also tracked and remained 

above 0.3 throughout, indicating effective prevention of 

premature convergence shown in Table 7. These results 

confirm that the self-adaptive mutation mechanism 

significantly enhances the algorithm’s ability to explore and 

exploit the solution space efficiently. 

The computational analysis reveals that the proposed hybrid 

model, combining Fuzzy Logic, SAM-GA, and DRL, incurs 

the highest average running time per cycle (~2.8 s) and 

memory footprint (~180 MB), making it only partially suitable 

for edge deployment without optimization. While its inference 

time (~320 ms) is acceptable, the complexity of integrating 

three components necessitates model simplification for real-

time applications. In contrast, rule-based EMS offers the 

fastest response (~0.3 s) and minimal resource consumption, 

making it ideal for edge devices shown in Table 8. 

Optimization-based EMS (e.g., GA, PSO) and RL-based EMS 

(e.g., DQN) strike a trade-off between accuracy and resource 

usage but are better suited for offline or moderately demanding 

environments. Model Predictive Control (MPC) achieves a 

balanced profile with good real-time feasibility and efficient 

resource utilization. These findings emphasize the need to 

optimize or compress the hybrid model for practical smart 

home scenarios. 

Limited Real-World Variability in Simulated Dataset 

The proposed hybrid energy management model is 

validated using a simulated dataset, which, although 

controlled and structured, often lacks the complex variability 

found in real-world environments. Key concerns include: 

Seasonal Energy Patterns: Real homes exhibit 

fluctuations in energy usage based on season (e.g., heating in 

winter, cooling in summer), which may not be fully 

represented in the simulation. 

Appliance Faults or Anomalies: Unexpected behaviors 

such as equipment malfunction, power surges, or manual 

overrides are typically excluded from synthetic datasets. 

Occupancy Variations: The presence and activity level of 

occupants significantly affect consumption but may be 

oversimplified in simulations. 

Impact: This limitation restricts the generalizability and 

robustness of the model when deployed in diverse real-world 

conditions, possibly leading to reduced accuracy or 

suboptimal decisions in practical scenarios. 

Suggested Solutions 

Incorporate real-world datasets from smart meter data or 

IoT-based energy logs. 

Simulate additional variability factors like weather, 

appliance failures, and dynamic occupancy. 

Test on multiple household profiles across time periods to 

enhance validation breadth. 

 

 

5. CONCLUSIONS 
 

The proposed hybrid model integrates Intelligent Fuzzy 

Logic, a Self-Adaptive Mutated Genetic Algorithm, and Deep 
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Reinforcement Learning, demonstrates notable advancements 

in the field of efficient home energy management. By 

combining these intelligent techniques, the model achieves a 

high degree of adaptability and precision in energy allocation, 

effectively addressing the complexities of real-time energy 

management in dynamic home environments. The model’s 

training success rate of 98.5% and validation accuracy of 

95.0% underscore its robust learning capabilities and 

reliability across diverse scenarios. Furthermore, the model’s 

error rates, with a Mean Absolute Error (MAE) of 2.5, Mean 

Squared Error (MSE) of 8.0, and Root Mean Squared Error 

(RMSE) of 2.83, indicate a substantial improvement over 

traditional energy management systems. These low error 

metrics show the model's effectiveness in minimizing energy 

consumption errors and optimizing appliance scheduling 

without compromising comfort or convenience. The model’s 

validation loss of 0.12 further highlights its resilience in 

handling unforeseen data, outperforming existing methods 

like Rule-Based EMS, Optimization-Based EMS, Model 

Predictive Control (MPC), and Reinforcement Learning-based 

EMS, each of which displayed significantly higher error and 

loss values. Overall, the hybrid model sets a new benchmark 

for energy management systems by enhancing operational 

efficiency, ensuring real-time adaptability, and reducing 

energy costs. This advanced approach has strong potential for 

real-world applications, such as reducing energy bills for smart 

homes and supporting sustainable energy usage, making it a 

valuable contribution to the ongoing development of 

intelligent energy management solutions. 
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