
A Hybrid Dehazing and Illumination Based Approach for Preprocessing, Enhancement and 

Segmentation of Lung Images Using Deep Learning 

Shashank Yadav1,2 , Upendra Kumar3*

1 Department of Computer Science and Engineering, Institute of Engineering & Technology, Dr. A. P. J. Abdul Kalam 

Technical University, Lucknow 226031, India 
2 Department of Information Technology, KIET Group of Institutions, Ghaziabad 201206, India 
3 Department of Computer Science and Engineering, Institute of Engineering & Technology, Lucknow 226021, India  

Corresponding Author Email: ukumar@ietlucknow.ac.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420246 ABSTRACT 

Received: 23 May 2024 

Revised: 19 September 2024 

Accepted: 14 January 2025 

Available online: 30 April 2025 

Medical images are affected by various complications such as noise and deficient contrast. 

To increase the quality of an image, it is highly important to increase the contrast and 

eliminate noise. In the field of image processing, image enhancement is one of the essential 

methods for recovering the visual aspects of an image. However, segmentation of the 

medical images such as brain magnetic resonance imaging (MRI) and lungs computed 

tomography (CT) scans properly is a difficult task. In this article, a novel hybrid method is 

proposed for the enhancement and segmentation of lung images. The suggested article 

includes two steps. In the 1st step, lung images were enhanced. During enhancement, images 

were gone through many steps such as de-hazing, complementing, channel stretching, 

course illumination, and image fusion by principal component analysis (PCA). In the second 

step, the modified U-Net model was applied to segment the images. We evaluated the 

entropy of input and output images, peak signal-to-noise ratio (PSNR), gradient magnitude 

similarity deviation (GMSD), and multi-scale contrast similarity deviation (MCSD) after the 

enhancement process and compare results with existing adaptive gamma correction with 

weighted distribution correction (AGCWD) method. During segmentation, we used both 

original and enhanced images and calculated the Dice-coefficient. We found that the Dice-

coefficient was 0.9695 for the original images and 0.9797 for the enhanced images.   
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1. INTRODUCTION

To illuminate Magnetic Resonance Imaging (MRI) and 

Computed Tomography (CT) medical images, large-scale 

training and talents are needed. The reason is that 

segmentation of body parts and lesions is implemented layer 

by layer [1]. If doctors perform segmentation manually, this 

process will be hectic and time-consuming. Moreover, 

different doctors’ subjective judgments can create 

discrimination. However, automatically segmenting images is 

also difficult; for most medical applications, automatic 

segmentation is an undetermined difficulty because of the 

broad range associated with image modalities, encoding 

parameters, and organic volatility.  

Before segmentation, images should be of high visual 

quality otherwise images may be misdiagnosed. Generally, CT 

and MRI images have poor contrast; therefore, enhancement 

techniques are applied to improve the contrast. There are many 

methods for enhancing the images to achieve better visual 

clarification, perception, and investigation. The first category 

of image enhancing algorithms is based on histograms. In 

histogram-based algorithms; there may be equalization 

processes for histogram, adaptive histograms, BI-histograms, 

and contrast limited adaptive histograms as well as other 

operations, such as gray level grouping [2]. For upgrading the 

contrast and brightness in images, the histogram equalization 

method can be applied. This approach expands the intensity 

range of the image. However, in all situations, histogram 

equalization does not work properly. This approach may add 

noise to the output images. Adaptive histogram equalization 

works differently from normal histogram equalization. Many 

histograms are computed for different separate sections of the 

image and the intensity range is distributed according to the 

distinct section. To enhance the local contrast, adaptive 

histogram equalization is very effective. It enhances the 

intensity of edges in every section of an image. A bi-histogram 

is a brightness preserving bi-histogram method in which the 

input image is disjointed into two parts by calculating the 

mean [3]. By doing these two disjointed ranges of the 

histogram are achieved. After obtaining two subhistograms, 

equalization process is applied. By using this method, original 

brightness of the image may be maintained to a definite degree. 

The next method of histogram equalization is contrast-limited 

adaptive histogram equalization. This method first converts an 

image from RGB (red, green, or blue) to HSV (hue, saturation, 

or value) color channel. After that, the value component was 

computed without disturbing the hue or saturation. In this 

method, cropped pixels that are cropped from the original 
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histogram are dispersed to each gray-range. By this process, 

every pixel value is decreased to prescribed maxima. In the 

final step, the altered image in the HSV color channel is 

transformed into the RGB color channel.  

Image enhancement can be performed by increasing 

contrast but in this technique, there are many side-effects. To 

overcome this, histogram equalization can be applied, but it 

does not conserve the initial brightness of the image. 

Chenigaram et al. [4] suggested a method for increasing the 

dimmed image brightness via adaptive gamma correction 

weighted distribution correction technique (AGCWD). This 

technique generally changes the histograms and is used for 

histogram equalization. After enhancing the images 

segmentation was applied, that is recognized as the Online 

Region-based Active Contour Model (ORACM). They 

applied their model for brain image segmentation and 

calculated mean square error (MSE) and peak signal to noise 

ratio (PSNR). 

A new method for segmenting the lung region was 

suggested by Abdullah et al. [5]. They used a thresholding-

based technique for enhancing and segmenting the lung 

images. They compared their proposed technique with the 

modified watershed segmentation technique and achieved an 

improvement in accuracy of 0.02% to 3.5% in quantitative 

study. 

Gupta et al. [6] suggested a novel hybrid model for refining 

segmentation effectiveness in brain MR images. They used an 

adaptive filter for eliminating the noise in the input images. 

After that, they combined extended K-means clustering with 

Fuzzy C-means clustering to generate a hybrid segmentation 

model. They applied this model to single-channel T1 MR 

images to identify malignant tumors and multiform benign 

lesions. They also eliminated the constraint of prefixed cluster 

size. They also performed non-linear operations to eliminate 

non-tumor tissues. Many statistical parameters such as entropy, 

smoothness, mean, and standard deviation were evaluated. 

The authors achieved 98% segmentation effectiveness in their 

work.  

Many authors suggested models based on U-Net 

architecture. U-Net is frequently utilized for image 

segmentation. Yin et al. [1] proposed an improved U-Net 

architecture to solve many issues that generally occur during 

the segmentation of medical images. The author identified U-

Net network dimensions, an enhanced model and variables 

along with kernel size. In this research, the authors presented 

the loss functions, assessment parameters, and modules 

generally used for medical image segmentation. Skourt et al. 

[7] suggested obtaining lung CT images by using the U-Net 

architecture. By using U-Net it is not compulsory to provide 

unnecessary data in lung CT images and correct segmentation 

can be attained with a 0.9502 Dice-coefficient index. Shamim 

et al. [8] proposed a segmentation technique to determine 

ground glass haziness or regions of interest (ROIs) in CT 

images created by the novel coronavirus. They used modified 

U-Net method to categorize the ROI at pixel level. The authors 

obtained results in terms of accuracy (93.29%), precision 

(93.67%), F1-score (93.34%), etc., and achieved an increase 

in each parameter compared to other U-Net models. Lee et al. 

[9] suggested a patchwise U-Net model for brain image 

segmentation. They used this model to eliminate the 

shortcoming of the standard U-Net model. In this model, the 

parts from an MRI scan were split into patches (nonoverlapped) 

and input into the U-Net model along with the related patches 

of true information to train the model. They achieved a Dice 

similarity coefficient of 0.93 and performed 3% and 10% 

better than did the traditional U-Net and the Seg-Net-based 

models respectively. The authors used two databases the 

Internet Brain Segmentation Repository (IBSR) and the Open 

Access Series of Imaging Studies (OASIS) in their models. 

Saood and Hatem [10] utilized two models SegNet and U-Net 

for binary segmentation to distinguish between physically fit 

and rotten lung tissue, and multiclass segmentation to 

determine the kind of infection on the lung. They used 72 

images to train the model, 10 images for validation, and 18 

images for testing.   

Gite et al. [11] suggested U-Net++ for lung segmentation 

from X-ray images. If classification techniques work on 

segmented images of lungs in place of X-ray images, 

identifying tuberculosis (TB) is easier and more accurate. 

They achieved 98% accuracy by applying U-Net++. Nazir et 

al. [12] used lung images for cancer detection. They suggested 

a technique for image fusion that depends on the multi-

resolution rigid registration (MRR), discrete wavelet 

transform and principal component analysis (DWT-PCA) 

techniques. According to these authors, the MRR technique is 

highly precise compared to SRR. After applying the MRR, the 

images are enhanced via the DWT-PCA fusion method. They 

used ResNet-18 for image classification. They achieved 98.2% 

accuracy. Riaz et al. [13] suggested an upgraded hybrid neural 

network through the coalition of two models, MobileNetV2 

and U-Net. They applied this model for segmentation of 

malignant lung tumors from CT images of the lungs. The 

authors used the Medical Segmentation Decathlon (MSD) 

2018 challenge dataset and achieved 87.9 Dice score. Surono 

et al. [14] utilized U-Net architecture for segmentation of lung 

images. They worked on a database which has dissimilar 

resolutions for every image. They performed experiments for 

several training and testing data ratios and compared the 

effectiveness of the method on a single resolution database 

with that on a multi-resolution database. Mique and Malicdem 

[15] suggested a model based on the Res-Net architecture for 

semantic segmentation of lung images. They used dataset of 

562 chest X-ray images and lung mask images. The ratio of 

training to test data was 70:30. The authors achieved a Dice-

coefficient of 0.986. 

Abdullah et al. [16] performed a comparison-based study 

among 3 segmentation methods. They compared the 

segmentation results with the manual segmentation results 

from an oncologist who was applied for the detection of lung 

cancer. In this study, K-means clustering, thresholding via 

Otsu, and watershed segmentation were used to segment the 

lung images. Among these techniques, the watershed 

segmentation method achieved the best results, and the 

accuracy of this method was 99.85%. Khan et al. [17] also 

utilized K-means clustering for segmenting brain images and 

deep learning models for classifying the brain tumor.  

We propose a model in which images are enhanced first, 

after which the segmentation process is applied. For 

implementation the MATLAB platform is used. For image 

enhancement, images are gone through two phases. In the first 

phase, complement, dehazing, and complement operations are 

applied and in the second phase, illumination and reflectance 

are calculated from the images. These parameters are 

subsequently utilized for enhancing the images. Finally, both 

phase outputs are combined by utilizing the PCA based image 

fusion algorithm to generate the final enhanced images. After 

enhancing the images, a modified U-Net is applied for 

segmentation. We applied this model to both types of datasets 
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(the original image dataset and enhanced image dataset). For 

U-Net implementation we used Python language on the 

Jupyter notebook. 

 

Table 1. Preprocessing, enhancement, segmentation techniques, and performance parameters of different research papers 
 

Author Dataset 

Preprocessing/ 

Enhancement 

Technique 

Segmentation 

Technique 

Segmentation 

Accuracy 
Recall Precision F-score 

Others 

Parameters 

Chinegeram 

et al. [4] 
4 brain images 

Adaptive 

gamma 

correction via 

weighted 

distribution 

(AGCWD) 

Online 

Region based 

Active 

Contour 

Model 

(ORACM) 

N/A N/A N/A N/A 

Iterations, 

CPU time, 

Total Area 

Covered 

Abdullah et 

al. [5] 

Advanced Medical & 

Dental Institute 

(AMDI), Universiti 

Sains Malaysia 

(USM), Kepala 

Batas, Pulau Pinang. 

A total of 1,155 soft 

tissues density 

images from 5 

subjects 

N/A 

New 

Segmentation 

method based 

on 

thresholding, 

masking, and 

enhancement 

99.9% 99.8% 99.9% 99.74% N/A 

Skourt et al. 

[7] 

Lung Image 

Database Consortium 

image collection 

(LIDC-IDRI)  

N/A 
U-Net 

architecture  
N/A N/A N/A N/A 

Dice-

coefficient 

index 

(0.9502) 

Shamim et al. 

[8] 

COVID-19 CT 

image dataset 
N/A 

Modified U-

Net Model 
93.29% 93.01% 93.67% 93.34% 

Dice-

coefficient 

(92.46%) 

Lee et al. [9] 

Open Access Series 

of Imaging Studies 

(OASIS) and Internet 

Brain Segmentation 

Repository (IBSR) 

N/A 
Patch wise U-

Net Model 
N/A N/A N/A N/A 

Dice 

similarity 

coefficient 

(0.93) 

Saood and 

Hatem [10] 

Collection of 

the Italian Society of 

Medical and 

Interventional 

Radiology 

N/A 
SegNet and 

U-Net 

SegNet- 95% 

U-Net- 91% 

SegNet- 

95.6% 

U-Net- 

96.4% 

 

SegNet- 

0.861 

 

U-Net- 

0.856 

Dice score 

for SegNet- 

0.749 

Dice score 

for U-Net- 

0.733 

Gite et al. [11] 
Montgomery and 

Shenzhen datasets 

Image 

Normalization 
U-Net++ 98% 99.32% 96.85% N/A 

Dice score- 

0.9796 

Riaz et al. 

[13] 

Medical 

Segmentation 

Decathlon Challenge 

(MSD) 

Image 

Normalization 

MobileNetV2 

and U-Net 
N/A 86.02% 93% N/A 

Dice score- 

0.8793 

Surono et al. 

[14] 

NSCLC-Radiomics 

dataset 
N/A U-Net 94.47% N/A N/A N/A N/A 

Mique and 

Malicdem 

[15] 

National Institute of 

Health (NIH) 
N/A U-Net N/A N/A N/A N/A 

Dice score- 

0.9496 

Hua et al. [18] BrainWeb N/A 

Improved 

Multi-View 

Fuzzy C-

Means 

Clustering 

Algorithm 

80.32% N/A N/A N/A 

Dice-

coefficient- 

89.61% for 

0% noise 

Geetha Pavani 

et al. [19] 

 

Montgomery dataset 
Arithmetic 

Mean Filter 

Chan-Vese 

active contour 
95.5% 93.3% N/A N/A 

Area Under 

Curve 

Score- 95% 

Hofmanninger 

et al. [20] 

VISCERAL 

Anatomy3 (VISC-

36), LTRC (LTRC-

36), and (LCTSC-36) 

N/A 
U-Net 

Method 
N/A N/A N/A N/A 

Dice-

coefficient 

(0.97) 

Note: This table explains the different authors’ datasets, preprocessing/ enhancement, segmentation techniques and their performances in terms of different 

parameters. 
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1.1 Performance parameters and experimental results of 

various segmentation methods applied to variety of 

datasets 

 

Table 1 lists the different preprocessing, enhancement and 

segmentation techniques used in different research papers. U-

Net or its modified versions are commonly used in different 

research papers. Most of the related research papers show their 

results with respect to segmentation accuracy, F1-score, 

precision and recall. In some papers, other parameters such as 

Dice-coefficient, number of iterations, and CPU time are used. 

 

2. METHODOLOGY 

 

This section explains how lung images are preprocessed and 

enhanced. During this process, images are gone through many 

functions. In this methodology, our aim to extract illumination 

and reflectance of a low illumination image, further enhance 

illumination and reconstruct the final image. Once images are 

preprocessed and enhanced, the segmentation method is 

applied to the enhanced images.  The complete architecture is 

shown in Figure 1. 

 

2.1 Image preprocessing for enhancement 

 

In this model we used lung images for enhancement. Our 

proposed methodology contains two phases. In the first phase, 

images were passed through three steps (complement, 

dehazing, and complement) to enhance the quality of the 

images. In the 2nd phase, to preserve the naturalness we 

estimated illumination and reflectance of images; and finally 

enhanced the images by using these estimated values. The 

images are divided into three channels (RGBs) and these three 

channels are passed into modified Gaussian filters individually. 

After this we calculated the average of all the weights. This 

process improved the visual quality of the images. We 

multiplied the magnified illumination by the reflectance to 

obtain the next updated picture. Finally, the outputs of both 

parts were combined with PCA based image fusion. The 

suggested enhancement methodology is shown in Figure 2.  

 

2.1.1 Phase-1: Complement, dehazing, and complementing 

To enhance the quality of the images, we computed the 

complement of the image and then applied dehazing technique.  

The decreased visibility of images due to atmospheric 

circumstances can be improved by dehazing. The main 

purpose of dehazing is to repair the brightness of a scene from 

a hazy image. We utilized imreduce-haze algorithm which is 

based on two dissimilar de-hazing algorithms, Simple Dark 

Channel Prior (DCP) and Approx DCP. Simple DCP 

algorithm utilizes a per-pixel dark channel to evaluate haze 

and quad tree decomposition to evaluate the atmospheric light. 

Approx DCP method utilizes both per-pixel and spatial blocks 

while estimating the dark channel and does not utilize quad 

tree decomposition. After the dehazing process we again 

calculated the complement of the dehazed image. This is the 

first output image. 

 

2.1.2 Phase-2: Estimation of illumination by using maximum 

of RGB 
The aim of estimation of illumination is to find the intensity, 

direction, and/or color of the lighting in an image. To calculate 

the initial coarse illumination, we utilized the maximum Red, 

Green, Blue (RGB) method. This is a good method for 

determining true illumination. The formula for the maximum 

RGB method is as follows in Eq. (1): 
 

𝐼𝑐𝑖(𝑝, 𝑞) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝐼𝑐(𝑝, 𝑞)) 

𝑐∈{𝑅,𝐺,𝐵} (p,q)∈𝛺 
(1) 

 

where, Ici (p, q) is the coarse illumination, Ic (p, q) is the color 

channel of the image, and 𝛺 is a local patch centered at (p, q). 

We applied this formula for all three channels (R, G, B). After 

calculating the coarse illumination for all three-color channels, 

we used the maximum formula as per Eq. (2) for calculating 

the maximum channel from all three-color channels. 
 

𝐼𝑚(𝑝, 𝑞) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝐼𝑅  (𝑝, 𝑞) 𝐼𝐺  (𝑝, 𝑞)𝐼𝐵  (𝑝, 𝑞)) (2) 

 

 
 

Figure 1. Complete architecture of methodology 
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Figure 2. Suggested model for image enhancement 
 

where, Im(p, q) is maximum channel illumination. After 

calculating the illumination for all the R, G, B channels, we 

applied Gaussian filter as per Eq. (3). 

 

𝐺(𝑥, 𝑦) = 𝐴 𝑒
(−

𝑥2+𝑦2

2𝜎2 )
 (3) 

 

where, parameter 𝜎 represents the resemblances of the range 

or intensity and A is a constant that depends on the Gaussian 

function integration and satisfies the following Eq. (4). 
 

∬(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 = 1  (4) 
 

The final illumination is calculated as Eq. (5)  
 

𝐼𝑓(𝑝, 𝑦) =  𝐼𝑚(𝑝, 𝑞) × 𝐺(𝑝, 𝑞) (5) 
 

where, Im is the maximum channel illumination and If is the 

ultimate illumination of the input image. We applied a 

multiscale Gaussian method with varied scales to obtain the 

assessed lighting component scores and we applied weights to 

this method to retain the constant and original characteristics 

of the distinct illuminating components. There are 3 standard 

parameters for all color channels (R, G, B) for a particular 

image. By utilizing these parameters we calculated the 

ultimate estimated illumination of the image. The formula for 

calculating this final illumination is given below in Eq. (6). 

 

𝐼𝑓(𝑝, 𝑞) =  ∑ 𝛽𝑖(𝐼𝑚 𝑖
𝑗
𝑖=1 (𝑝, 𝑞) × 𝐺𝑖(𝑝, 𝑞))  (6) 

 

where, 𝛽𝑖 denotes the R, G, and B channel weight coefficients, 

which are generated by the Gaussian function, and j is the total 

number of image channels. After identifying all estimated 

illumination components taken out on the standard parameters, 

the value was adjusted to 1/3 for the three standard variables 

of the Gaussian function. 
 

2.1.3 Estimation of reflectance 

The aim to estimate the reflectance in any image is to find 

the surface intrinsic properties in the image, independent of 

lighting conditions. The reflectance is considered the ratio of 

the reflected light transferred by the surface to the incoming 

light. If we calculate reflectance, the values are in the range of 

0 to 1. We divided the input image by the illumination of that 

image (Eq. (7)) to calculate the reflectance.  

 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =

 
𝐼𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒

𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒⁄   
(7) 

 

2.1.4 Image reconstruction 

After calculating the illumination and reflectance we 

reconstructed the image by using the following formula (Eq. 

(8)). 

 

𝐼𝑚𝑎𝑔𝑒 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐹𝑖𝑛𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ×  𝑅𝑒𝑓𝑒𝑐𝑡𝑎𝑛𝑐𝑒  

(8) 

 

The image reconstruction is our output2. 

Now we combined both outputs (Phase 1 output and Phase 

2 output) using PCA based image fusion, and obtained the 

final image. We used PCA to calculate the weight coefficients 

(w1 and w2). These weights were used to find the weighted 

sum of the O1 and O2 output images obtained from phase 1 and 

phase 2 respectively. This method is used to reduce 

dimensionality. The formula for fusing the images is given 

below Eq. (9): 

 

IFus = w1O1 + w2O2 (9) 

 

where, IFus is the fused image, w1 and w2 (as per Eq. (10) and 

Eq. (11)) are weight coefficients. O1 is phase-1 output image 

and O2 is the phase-2 output image.  

 

w1 =
EV(1)

(EV(1) + EV(2))⁄   (10) 

 

w2 =
EV(2)

(EV(1) + EV(2))⁄   (11) 

 

where, EV is the eigen vector. 

Figure 3 is showing the different stages of enhancement 

process of one lung image. 

 

2.2 Image segmentation using the U-Net model 

 

We applied the U-Net model (modified) for segmentation 

on original images as well as on enhanced images. The 

suggested model is shown in Figure 4. The U-Net model has a 

U shape and is designed for semantic segmentation [21]. It is 

the combination of two paths (contracting path and expansive 

path). In the contracting path, distinctive CNN architecture is 

applied. There are multiple layers of two 3×3 convolution 

operations. Every convolution layer is trailed by a ReLU 

function and a max pooling process (for down-sampling) with 

stride 2. During the down-sampling process, the feature 

channels are twice. Up-sampling of the feature map is done 

during the expansive path; which is followed by 2×2 up-

convolution operations. 

We modified the U-Net model by using 19 convolution 

layers, 4 max pooling layers, 4 concatenate layers and took the 

image size 256×256. The parameters which are used in this 

model are described in Table 2. 
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Figure 3. Steps of image enhancement 

 

 
 

Figure 4. Modified U-Net model 

 

Table 2. Modified U-Net model parameters 

 
Name of Parameters Description 

Convolution Layer 19 

Max Pooling Layer 4 

Stride 2 

Convolution Transpose Layer 4 

Concatenation Layer 4 

Activation Function Relu 

Total Parameters 7,759,521 

Trainable Parameters 7,759,521 

Optimizer Adam 

Image Size 256×256 
Note: This table is showing the description of different parameters which are 
used in U-Net model. 

 
In this U-Net model, the input size is 256×256. During 

down-sampling, two convolutional layers are followed by 

max-pooling layer and during up-sampling convolution 

transpose layer and concatenate layer are used. Concatenate 

layer is used for connecting the output of convolution 

transpose layer and the output of corresponding convolution 

layer of down-sampling phase. Every concatenate layer is 

followed by two convolution layers. 
 

 

3. DATASET 

 

We worked on lung images from the different datasets for 

enhancement. We selected lung images from the dataset which 

is available on Github [22]. The COVID-19 CT database 

contains 349 CT images which have clinical findings of 

COVID-19 extracted from 216 patients. We also selected 
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some images from the IQ-OTH/NCCD - lung cancer database 

[23]. This database includes 1190 images that show CT scan 

slices of 110 patients. We selected lung images from the 

dataset which is available on Kaggle [24] also. 

The Kaggle dataset is collection of 2-dimensional and 3-

dimensional lung images with respective segmented masks. 

We used only 2-dimensional lung images from the dataset for 

enhancement and segmentation. 

 

 

4. RESULTS AND DISCUSSION 

 

We applied our enhancement techniques to lung images 

from different datasets to enhance the quality of the images. 

After applying the model, we calculated the discrete entropy 

of the input and enhanced images, peak signal to noise ratio 

(PSNR), gradient magnitude symmetry deviation (GMSD), 

and multi-scale contrast similarity deviation (MCSD).  

 

4.1 PSNR 

 

The PSNR is the peak signal-to-noise ratio calculated for 

two images. It is computed in decibels. This parameter reflects 

the difference in quality between the original and 

reconstructed images [25]. The formula is shown in Eq. (12).  

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑅2

𝑀𝑆𝐸
)  (12) 

 

where, R denotes the input image maximal variation and MSE 

is mean squared error.  

 

4.2 GMSD 

 

In gradient magnitude similarity deviation (GMSD) the 

pixel-wise gradient magnitude similarity is calculated to 

determine the image local quality [26]. The quality index was 

used as the final image quality index after calculating the 

standard deviation of the complete GMS map. It is better in 

terms of both efficiency and accuracy.  

The GMSD formula is given in Eq. (13): 

 

GMSD =  √
1

M
∑ (GMSi − μGMS)2M

i=1   (13) 

 

where, M denotes the total number of pixels in the image. 

GMSI is the Gradient Magnitude Similarity (GMS) at pixel i, 

measures the similarity between the gradient magnitude of the 

reference and distorted images at that pixel. μGMS is the mean 

value of the gradient magnitude similarity across all pixels.  

The term inside the square root is the variance or deviation of 

the GMS values across the image, which captures local quality 

variations. 

 

4.3 MCSD 

 

The MCSD searches for contrast features by taking recourse 

to the multi-scale representation [27]. The purpose behind this 

is that a multi-scale method integrates image particulars at 

dissimilar resolutions and contrast is related to the viewing 

distance. 

The MCSD formula is given in Eq. (14): 

 

MCSD =  √
1

M
∑ (CSi − μCS)2M

i=1   (14) 

 

where, M denotes the total number of pixels in the image. CSi 

is the Contrast Similarity at pixel i, which compares the 

contrast between the reference and distorted images at each 

pixel. μCS is the mean contrast similarity across all pixels. The 

term inside the square root calculates the variance or deviation 

of contrast similarity across the image. 

 

4.4 AGCWD 

 

The existing model Adaptive Gamma Correction with 

Weighted Distribution (AGCWD) is an image enhancement 

technique commonly applied for enhancing the contrast of 

biomedical images. AGCWD adjusts the gamma correction in 

dynamic way; that is based on the weighted distribution of 

pixel intensities, which helps in handling various illumination 

conditions. During this process, a histogram of pixel 

intensities is calculated and weighted to highlight specific 

ranges. The model computes a gamma value which is applied 

across the image according to the weighted histogram. The 

calculated gamma correction is then applied to each pixel, 

which results in an image with refined contrast and visibility. 

In Table 3, different dataset lung images’ intermediate and 

final enhanced forms are showing. In the Table 4. we are 

showing the comparison between the calculated discrete 

entropy of enhanced images, PSNR, GMSD, and MCSD score 

for our proposed method as well as for Adaptive Gamma 

Correction with Weighting Distribution Method (AGCWD). 

In our proposed enhancement method, Entropy and GMSD 

score is always better than AGCWD method. High entropy is 

often desirable for images with complex textures and a lower 

value of GMSD indicates the improved quality of an image. 

 

4.5 Dice-coefficient 

 

For segmentation accuracy, we calculated Dice-coefficient 

as per Eq. (15). It is a type of similarity metric which is 

generally measured in biomedical image segmentation, to 

estimate the accuracy of segmentation algorithms by 

comparing the overlap between the predicted and the ground 

truth segmentation. Overall, it shows the similarity between 

two sets of images. The value ranges of this coefficient are 

from 0 to 1.  

 

Dice coefficient =  2 ×
A ⋂ P

A + P
  (15) 

 

where, A is actual value and P is predicted value. 

 

4.6 Modified U-Net model 

 

After enhancing the images, we applied modified U-Net to 

the input and enhanced the images for segmentation. Before 

applying U-Net model, all images are resized in 256×256. A 

comparison of both types of images (input and enhanced) 

revealed that the segmentation accuracy was better for the 

enhanced images. 
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Table 3. Enhancement using dehazing and estimation of illumination for lung images of different datasets 

 
 Input Image Output 1 Output 2 Final Enhanced Image 

Lungs-1 

    

Lungs-2 

    

Lungs-3 

    

Lungs-4 

    
Note: This table is showing some lung images intermediate and final enhanced forms.  

 

Table 4. Evaluation of discrete entropy, PSNR, GMSD, and MCSD after enhancing the lung images and comparison with 

AGCWD method 

 

   
Adaptive Gamma Correction with 

Weighting Distribution (AGCWD) Method 
Our Proposed Method 

S.N. 
Original 

Images 

Original 

Image 

Discrete 

Entropy 

Enhanced 

Image 

Discrete 

Entropy 

PSNR GMSD MCSD 

Enhanced 

Image 

Discrete 

Entropy 

PSNR GMSD MCSD 

Lung-1 
 

 

6.2561 
5.5019 21.56 0.9298 0.0681 6.433 14.0999 0.8493 0.1217 

Lungs-2 
 

6.0206 5.96 13.3257 0.9423 0.0613 6.8206 15.019 0.8579 0.0645 

Lungs-3 
 

5.8734 5.8101 13.6510 0.9351 0.0626 6.7059 14.9504 0.8749 0.0564 

Lungs-4 
 

5.8492 5.7872 14.2557 0.9520 0.0577 6.5474 16.2763 0.8902 0.0605 

Lungs-5 

 

5.774 5.7433 13.2609 0.9412 0.0679 6.6642 14.3944 0.8521 0.0643 

Lungs-6 

 

2.1947 2.0573 47.6525 0.9929 0.0021 3.2907 19.1305 0.9084 0.128 

Lungs-7 

 

2.4178 2.0583 41.39 0.9901 0.0016 2.8421 15.0056 0.8701 0.1509 

Lungs-8 

 

2.1608 1.5544 43.35 0.9875 0.0037 3.0391 20.6371 0.9044 0.0814 

Lungs-9 

 

2.7352 2.2333 42.3278 0.9926 0.0015 3.4020 14.0282 0.8269 0.2040 

Lungs-10 

 

2.8059 2.32 42.0025 0.99 0.0023 3.587 14.4643 0.8261 0.1603 

Note: This table is showing comparison between AGCWD and our proposed model in terms of discrete entropy, PSNR, GMSD, MCSD. 
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Table 5. Segmentation result for original lung images 

 

Data Set 

Training 

Testing 

Data Ratio 

Epochs Dice-Coefficient 

 

Kaggle 2D 

Lung Images 

80:20 
 

30 

0.9706 

75:25 0.9723 

70:30 0.9658 

Average 0.9695 
Note: This table is showing our model performance in terms of Dice-

coefficient if we apply it on original lung images of Kaggle dataset. 

 

The diagrams in Figure 5 and Figure 6 show the relationship 

between (epochs and entropy) and between (epochs and the 

Dicecc-coefficient) for the original and enhanced images in 

the training and test data of the ratio 80:20. The diagrams in 

Figure 7 and Figure 8 show the relationship between (epochs 

and entropy) and between (epochs and the Dice-coefficient) 

for the original and enhanced images in the training and test 

data of the ratio 75:25. The diagrams in Figure 9 and Figure 

10 show the relationships between (epochs and entropy) and 

between (epochs and the Dice-coefficient) for the original and 

enhanced images in the training and test data of the ratio 70:30.  

The U-Net model was applied with input of lung images 

with their masks; which are available in Kaggle dataset. After 

that, model was applied on subsequent enhanced images.  We 

applied the training and test data in different ratios such as 

80:20, 75:25, and 70:30. After calculating the Dice-coefficient 

for different ratio of data (training and testing), we took the 

average of all values. We took 30 epochs for training the model. 

When the model was applied to the original dataset, the 

average Dice-coefficient was 0.9695 (Table 5); however, 

when the model was applied to the enhanced dataset, the Dice-

coefficient was 0.9797 (Table 6). We also compare our results 

with results of different authors’ models. The comparison is 

shown in Table 7. 
 

Table 6. Segmentation result for enhanced lung images 

 

Data Set 

Training 

Testing 

Data Ratio 

Epochs Dice-Coefficient 

Kaggle 2D 

Lung Images 

80:20 

30 

0.9783 

75:25 0.9883 

70:30 0.9726 

Average 0.9797 
Note: This table is showing our model performance in terms of Dice-

coefficient if we apply it on enhanced lung images of Kaggle dataset. 
 

 
 

Figure 5. Loss and Dice-coefficient diagrams for the original images (80:20) 
 

 
 

Figure 6. Loss and Dice-coefficient diagrams for the enhanced images (80:20) 
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Figure 7. Loss and Dice-coefficient diagrams for the original images (75:25) 

 

 
 

Figure 8. Loss and Dice-coefficient diagrams for the enhanced images (75:25) 
 

 
 

Figure 9. Loss and Dice-coefficient diagrams for the original images (70:30) 
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Figure 10. Loss and Dice-coefficient diagrams for the enhanced images (70:30) 

 

Table 7. Result comparison with other works 

 

Author Name Data Set Model Test Size Dice-Coefficient Index 

Skourt et al. [7] 
Lung Image Database Consortium image 

collection (LIDC-IDRI) 
U-Net N/A 0.9502 

Shamim et al. [8] COVID-19 CT image dataset 
Modified U-

Net 
20 0.9246 

Saood et al. [10] 
Collection of the Italian Society of Medical and 

Interventional Radiology 
U-Net 18 0.733 

Gite et al. [11] Montgomery and Shenzhen datasets U-Net++ 20 0.9796 

Riaz et al. [13] 
Medical Segmentation Decathlon Challenge 

(MSD) 

MobileNetV2 

and U-Net 
25 0.8793 

Mique and Malicdem 

[15] 
National Institute of Health Dataset U-Net   0.9496 

Hofmanninger et al. 

[20] 

VISCERAL Anatomy3 (VISC-36), LTRC (LTRC-

36), and (LCTSC-36) 
U-Net 20 0.97 

Our Method Kaggle Dataset U-Net 25 
0.9883 (for Enhanced Images in 

75:25 ratio) 
Note: This table is showing the comparison of performance analysis of different researches as well as our proposed method in terms of Dice-coefficient. 

 

 

5. CONCLUSION 

 

This paper reveals that if proper preprocessing and 

enhancement techniques are applied before segmentation, the 

segmentation results improve. We proposed model for 

enhancing images in which complement, dehazing, estimation 

of illumination by the maximum RGB; and image reflectance 

were calculated; finally, image fusion by PCA, was applied. 

We calculated discrete entropy, PSNR, GMSD, MCSD of 

enhanced images and compare these parameters with existing 

AGCWD model; we found that our model performs better than 

AGCWD model especially in entropy and GMSD parameters. 

Greater entropy is generally preferred as it signifies richer 

information content and GMSD assesses image quality with 

high accuracy by evaluating the perceptual quality of a 

distorted image in relation to a reference image. After 

enhancement we applied modified U-Net for segmentation on 

original images and enhanced images of Kaggle Dataset and 

found that the enhanced images outperform the original 

images with respect to Dice-coefficient. 

As a conclusion, we can say that in this work, some newly 

developed image preprocessing methods and segmentation 

methods have been used on particular standard dataset of lung 

cancer available publicly. The proposed methodology is also 

need to be tested and validated on new dataset especially 

Indian geographical location. Though our proposed model is 

out performing the existing deep learning models for CT scan 

image based lung cancer classification, still there is a scope to 

explore some more new image preprocessing methods and 

segmentation methods to strengthen our proposed model. 

Another future scope work is this model can also be applied or 

developed for other kind of medical applications like brain 

tumor detection, anemia detection, and bone fracture detection 

etc. 
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