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Sleep monitoring devices that use contact sensors or camera technology often compromise 

sleep quality and pose significant privacy risks. This paper investigates a novel sleep status 

recognition method employing 2D LiDAR technology, which enables low-cost, real-time 

monitoring of sleep quality while reducing privacy risks. The study systematically explores 

the behavior recognition normal framework based on 2D LiDAR, with a focus on point 

cloud data processing procedures and techniques. A comprehensive sleep status recognition 

framework is proposed, utilizing a single 2D LiDAR, encompassing three critical aspects: 

detecting target definition using DBSCAN clustering and quantitative calculation, 

identification of the same target object, and changes in the status of the same target object. 

Additionally, an experimental environment was developed for testing on subjects during 

afternoon naps. The results of ten experimental trials demonstrate that the proposed method 

is capable of effectively detecting changes in sleep states. Additionally, during object 

recognition, three distinct target objects were consistently identified, corresponding to the 

positions of the human head, waist, and legs. Further analysis of the data reveals that each 

experimental trial recorded 5 to 10 state changes, a frequency consistent with current public 

findings on sleep quality assessment. A detailed examination of the first group's data 

indicates minimal movement in the head (average displacement of 12.2 cm), substantial 

movement in the legs (average displacement of 50.6 cm), and moderate movement in the 

waist (average displacement of 18.2 cm). These variations in distance are not attributable to 

differences in LiDAR angles but align with commonly observed patterns of turning during 

human sleep. These findings provide valuable support for the advancement of low-cost sleep 

care solutions and related business opportunities. 
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1. INTRODUCTION

Driven by the rapid advancement of science and technology, 

human action recognition has found extensive applications in 

diverse fields such as video surveillance, human-computer 

interaction, virtual reality, health monitoring, and sports 

analysis [1-3]. In the field of sleep quality monitoring and 

intervention, traditional sleep monitoring devices such as 

Polysomnography (PSG) can provide detailed sleep data but 

require multiple sensors to be attached to the human body, 

potentially affecting sleep quality. Furthermore, the high cost, 

complexity, and reliance on specialized personnel limit the 

widespread adoption of PSG [4]. Although camera-based 

monitoring systems offer a non-contact solution, which has 

proven to be immensely successful and widely utilized, but 

they pose significant risks to personal privacy [5]. 

Consequently, developing a non-invasive sleep behavior 

recognition technology that safeguards personal privacy holds 

substantial practical significance and can be widely applied in 

areas such as home health monitoring, elderly care, and sleep 

disorder diagnosis [6, 7]. 

Presently, methods for acquiring human behavior 

information can be categorized into two primary types. The 

first type involves contact-based sensors, exemplified by 

wearable electronic devices like inertial measurement units [8-

11]. The second type encompasses non-contact sensors, which 

can be further subdivided into video-based approaches [12-14] 

and wireless sensing technologies utilizing radar [15-17] and 

WIFI [18, 19] to capture human body information, as 

illustrated in Figure 1. 

It is inevitable that video camera-based object detection, 

person tracking, or property estimation mechanisms are more 

effective and suitable. But it is easily affected by some natural 

calamities, lighting limitations, processing deficiencies, and 

environmental issues [20, 21]. On the other hand, people are 

claiming their privacy and secrecy in a video-based 

surveillance system [22, 23]. That's why modern research 

focuses on an alternative approach that will not compromise 

privacy but ensures security.  

LiDAR-based surveillance is rapport, real-time computable, 

and has a wide range covering applications which could be a 

new era of research. People introduced parallel sensors set up 

with the camera to solve these constraints, even individual 

acquisition techniques rather than cameras [24]. The LiDAR-
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based estimations can be sub-divided into two classes: 3-

dimensional (3D) LiDAR-based and another one is 2-

dimensional (2D) LiDAR-based approaches. 

Figure 1. Human identification and property estimation 

research hierarchy 

3D LiDAR technology has been widely applied in 

autonomous driving [25], behavior recognition, and other 

domains [26]. To construct accurate 3D maps, laser radar 

sensors, visual cameras, and depth sensors are commonly 

employed to achieve high-precision trajectory detection and 

tracking. Generally speaking, the advantages of high-cost and 

high-precision technologies can be justified and further 

developed. However, 3D LiDAR captures not only the 3D 

shape of the target object but also additional viewpoint 

information, raising concerns about potential privacy 

disclosure [15, 27]. In contrast, 2D LiDAR sensors only 

measure distance values within a 2D plane, providing no 

identifiable personal details and thus eliminating the risk of 

privacy leakage. 

Compared to 3D technology [28], the 2D LiDAR-based 

system is faster, easier to implement, and more 

computationally rigorous under challenging conditions, with 

relatively low cost [29, 30]. Therefore, it can be inferred that 

there is significant potential for LiDAR-based applications in 

the coming years. These applications may range from short-

term to long-term tracking and can involve single-sensor or 

multi-sensor configurations. Additionally, some systems are 

capable of tracking only a single object, while others can track 

multiple objects simultaneously. 

In this study, we conduct research on innovative 

applications of 2D LiDAR technology in elderly health 

monitoring. With the intensification of global aging trends, 

sleep quality and safety concerns among the elderly have 

become a focal point of societal attention. According to 

statistical data, sleep quality issues are closely associated with 

various chronic diseases, such as cardiovascular diseases, 

diabetes, and others [31-33]. The research findings presented 

in this paper are anticipated to provide valuable support to 

professionals in the field, offering innovative technical 

solutions and cost-effective approaches. 

Our specific contributions to the field of non-contact 

behavior recognition research are as follows: (1) By utilizing 

a single 2D LiDAR sensor, we developed a low-cost and high-

quality method for acquiring and quantifying sleep-related 

behaviors. (2) In the process of object description based on 

DBSCAN clustering results, we identified three distinct target 

clusters corresponding to the positions of the human head, 

waist, and legs. (3) The findings of this study can be extended 

to demonstrate that during sleep state transitions, the head, 

waist, and legs exhibit varying degrees of movement, with the 

head showing the smallest amplitude of change and the legs 

exhibiting the largest amplitude. The remainder of this paper 

is structured as follows: Section 2 provides a comprehensive 

academic review, outlining the general methodology for 

behavior analysis based on 2D point cloud data processing and 

computation. Section 3 elaborates on the innovative methods 

proposed in this study, including formal representations and 

quantitative approaches for object modeling, identification of 

the same target object, and perception of dynamic changes. 

Section 4 details the experimental design for practical testing, 

covering experiment preparation, procedures, and data 

analysis. Finally, the paper concludes with a discussion, 

summary, and acknowledgments. 

2. LITERATURE REVIEW

2.1 Normal mode of behavior recognition using 2D LiDAR 

Based on the deployment angle, 2D LiDAR is capable of 

performing 360° two-dimensional shape scanning at any 

orientation through the emission and reception of laser beams. 

It can conduct angle measurement, distance calculation, and 

other relevant computations on the two-dimensional plane, 

enabling precise characterization of the local features or 

current layer of the target object, as well as effective detection 

of dynamic changes. The schematic representation of the 

scanning results is depicted in Figure 2, which provides an 

intuitive and clear illustration of the structural characteristics 

of the target spatial object within the current plane.  

Figure 2. Diagram of scanning space of 2D LiDAR 

Figure 3. Human body scanning normal framework based on 

2D LiDAR 

Given that the information acquired via two-dimensional 

scanning is constrained to a single planar direction and the 

scanning range is limited (typically around 10 meters), it is 
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feasible to perceive the local or specific-layer dynamic 

changes of the scanned object within the two-dimensional 

plane. This implies that behavior perception based on a single 

radar is achievable. Nevertheless, for a more comprehensive 

understanding of the target object, multiple LiDAR 

collaboration modes can be established, as depicted in Figure 

3. In this configuration, one LiDAR unit is tasked with

distance perception of the legs, while another focuses on head

perception. By leveraging two-dimensional LiDAR sensors at

different layers, the actual contour of the target individual can

be reconstructed [34-36], thus enabling more extensive and

detailed body data compared to that obtained using a single 2D

radar.

2.2 Point cloud data and processing 

LiDAR technology acquires the spatial position and shape 

information of objects by emitting laser beams and capturing 

the reflected signals, thereby generating point cloud data. 

Common formats for storing this point cloud data include OFF 

(Object File Format), PLY (Polygon File Format, also known 

as the Stanford Triangle Format), and RTX (a format 

specifically designed for laser scan data). Notably, the PTS 

format, an ASCII-based interchange format for point cloud 

data, is recognized for its simplicity and ease of use due to its 

straightforward structure, as illustrated in Table 1 [37, 38]. 

Table 1. PTS data format of point cloud 

Total Point 1 ... Point n 

Number Coordinate Strength Color ... Coordinate Strength Color 

Figure 4. Point cloud data and segmentation based on 2D 

LiDAR 

The first line specifies the total number of points. Each 

subsequent line contains seven values: the first three represent 

the (x, y, z) coordinates of a point, the fourth value denotes the 

intensity, and the last three values correspond to the (r, g, b) 

color estimates. The (r, g, b) components range from 0 to 255, 

represented as single unsigned bytes. The intensity value 

provides an estimate of the proportion of incident radiation 

reflected by the surface, where 0 indicates minimal reflectivity 

and 255 indicates maximal reflectivity. As illustrated in Figure 

4, the point cloud is segmented into several clusters and 

visualized using different colors. 

Lidar-based behavior recognition data processing involves 

several critical steps, including point cloud preprocessing, 

segmentation, and object recognition. Point cloud 

preprocessing forms the foundation for subsequent analysis, 

encompassing essential operations such as noise removal, 

filtering, registration, and down-sampling [39]. Point cloud 

segmentation aims to partition the data into subsets with 

homogeneous attributes, such as ground, buildings, and 

vehicles. Traditional segmentation methods primarily rely on 

clustering algorithms like K-means and DBSCAN [40]. In 

recent years, deep learning-based approaches, such as 

PointNet and PointNet++, have also been widely applied to 

point cloud segmentation tasks, achieving significant 

improvements in accuracy and efficiency [41]. Point cloud 

recognition focuses on identifying specific objects within the 

data, such as pedestrians and vehicles. Deep learning models, 

including VoxelNet and SECOND [42], have achieved state-

of-the-art performance in point cloud recognition tasks [43]. 

2.3 Point cloud data segmentation and representation 

Point cloud segmentation aims to enhance the 

representation of scanned objects by capturing their 

characteristics, such as area proportion and high reflectance 

intensity. In this paper, point cloud data segmentation is 

implemented using DBSCAN clustering technology, with 

each segmentation result being treated as a detected target 

object. Given that the number of clusters in DBSCAN 

clustering results is non-deterministic, the number of target 

objects for detection in this study cannot be predetermined [44, 

45]. As illustrated in Figure 5, the clustering test conducted in 

an office desk environment generated 12 clusters from the 

segmentation results. 

(a) Test environment

(b) Point cloud data and clustering segmentation r

Figure 5. Point cloud data and segmentation based on 2D 

LiDAR 
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The DBSCAN algorithm has two critical parameters: the 

radius ε, which constrains the maximum distance between two 

points, and the minimum number of points M in a segment, 

denoted as MinPts. Based on these parameters, the point cloud 

is classified into three categories [46, 47]:  

- Core points: Points that have at least MinPts neighboring

points within their ε-neighborhood. 

- Border points: Points that have fewer than MinPts

neighboring points within their ε-neighborhood but are located 

in the neighborhood of a core point.  

- Noise points: Points that are neither core points nor border

points. 

They are defined as follows: 

Definition of Core Point p: 

{
𝑁𝜀(𝑝) ≥ 𝑀𝑖𝑛𝑃𝑡𝑠       

𝑁𝜀(𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜀}
(1) 

Definition of Boundary Point b: 

{
b ∉ {p}

b ∈ Nε(p)
(2) 

Definition of Noise Point n: 

{
𝑛 ∉ {𝑝𝑖 , 𝑖 = 1,2,3}    

𝑛 ∉ 𝑁𝜀(𝑝𝑖 , 𝑖 = 1,2,3)
(3) 

where, i is utilized to denote multiple clusters, meaning that 

the clustering process generates multiple object outcomes. 

3. INNOVATIVE FUNCTIONING METHOD

3.1 Formal definition and representation of target objects 

This paper represents the detected target objects based on 

the clustering results, where the number of clustering clusters 

corresponds to the number of target objects. Each clustering 

cluster is treated as a single target object and is characterized 

by its center point coordinates, distance, and width. If T 

denotes a target object, then T is defined as (p, d, w), as 

presented in Definition 4.  

T = (p, d, w) (4) 

Here, p denotes the core point of the detection object 

derived from the center point of the clustering cluster; d 

signifies the distance between the core point of the detection 

object and the origin of the LiDAR (denoted as X); w indicates 

the maximum width of the detection object. 

To more accurately characterize and compute the distance 

between point clouds, this paper proposes the following 

formula for calculating the inter-point-cloud distance. 

𝑑𝑖𝑗 = 𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗) (5) 

where, pi, pj are used to express arbitrary point cloud point 

coordinates.  

In Definition 4, d is defined as follows. 

𝑑 = dist(𝑝, 𝑋) (6) 

In Definition 4, w can be calculated by algorithm 1. 

Definition of algorithm 1: 

(1) 𝑏𝑖 , 𝑏𝑗 ∈ 𝑁𝜀(𝑝), 𝑖, 𝑗 = 1,2,3 …

(2) 𝑑𝑖 = 𝑑𝑖𝑠𝑡(𝑏𝑖 , 𝑏𝑗)

(3) 𝑤 = 𝑚𝑎𝑥 {𝑑𝑖 , 𝑖 = 1,2,3 … }
For any boundary points bi and bj within the same cluster,

the distance between bi and bj is calculated, and the maximum 

distance obtained is denoted as w. 

Figure 6. The diagram of target object representation 

The overall representation of the target object is illustrated 

in Figure 6, where X denotes the coordinate origin of the radar, 

p represents the core point of the current clustering object, the 

width is 0.338m(w = 0.338), and the distance from the radar 

origin to the core point is 0.164m(d = 0.164). 

3.2 Verification of identity for the same target 

Due to the inability to preset and control the number of 

segments generated by DBSCAN clustering, multiple 

detection targets may exist. However, behavior state 

recognition focuses on a single target object; thus, the 

verification and identification of the same target serve as the 

foundation for behavior state recognition. This study 

determines whether two target objects are identical by 

calculating the distance between their center points. 

Specifically, two target objects are considered the same only 

if the distance between them is less than the width of either 

target object. The algorithm for determining identical 

detection targets is presented in algorithm 2. 

Definition of algorithm 2: 

(4) Let T1= (p1, d1, w1), T2= (p2, d2, w2)

(5) 𝑑12 = 𝑑𝑖𝑠𝑡(𝑝1, 𝑝2)

(6) 𝑖𝑓 𝑑12 <
𝑤1

2
⋁𝑑12 <

𝑤2

2

(7) 𝑡ℎ𝑒𝑛  𝑇1 = 𝑇2
(8) Else 𝑇1 ≠ 𝑇2
Let the core points of the two objects be p1 and p2. If the

distance between p1 and p2 is less than w1/2 and w2/2, where 

w1 and w2 are the widths of the two objects, respectively, then 

the two objects are considered to be the same. 

3.3 Quantification of status transition 

For the target objects T1 and T2, based on algorithm 2, if T1 

and T2 are identified as the same perceived object, the change 

in distance from the laser radar origin to the object's position 

can be computed. This change is reflected by variations in d1 

and d2. Specifically, the difference between d1 and d2 is 

utilized to quantify the distance variation of the detected object 

relative to the coordinate system origin, as shown in Definition 
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7. The algorithm for determining state changes is presented in

algorithm 3.

∆𝑑 = |𝑑1 − 𝑑2|, 𝑤ℎ𝑒𝑛 𝑇1 = 𝑇2 (7) 

Definition of algorithm 3: 

(1) Let T1= (p1, d1, w1), T2= (p2, d2, w2)

(2) If T1=T2

(3) 𝑡𝑒𝑚𝑝 = |𝑑1 − 𝑑2|
(4) If temp≥ 𝜀
(5) ∆𝑑 = 𝑡𝑒𝑚𝑝
Here, 𝜀  denotes the predefined clustering radius with a

value of 1. By setting 𝜀 as the threshold, it not only minimizes 

the impact of computational errors but also implies that two 

points within the same cluster may theoretically belong to 

different targets. However, such a scenario is practically 

infeasible. 

3.4 The framework and associated algorithm 

The object state detection framework based on DBSCAN 

clustering, as illustrated in Figure 7, is proposed in this paper. 

In the figure, the X-axis denotes time, and the scale of the time 

coordinate axis corresponds to the scanning period of the 

LiDAR. The value c signifies the clustering calculation period 

in this study, which can generally encompass one or more 

radar scanning periods. Following each clustering 

computation, multiple scanning objects are generated. 

According to algorithm 2, these objects are evaluated to 

determine whether they represent the same entity. For identical 

objects, algorithm 3 is further employed to calculate the state 

changes before and after the specified time intervals. 

Figure 7. The diagram of target object representation 

The algorithm of this framework is formally described as 

follows: 

Definition of algorithm 4: 

(1) At the time i, the DBSCAN algorithm is executed for the

perceived point cloud data. According to the clustering

results (set to n), each result cluster is labeled with a

perceived object, which is respectively labeled Ti, i=1

to n

(2) At the j moment, the DBSCAN algorithm is executed for

the perceived point cloud data. According to the

clustering results (set to n), each result cluster is

marked with a perceived object, which is respectively

marked as Tj, j=1 to n

(3) According to algorithm 2, whether Ti and Tj are the

same target perception object

(4) If Ti and Tj are the same object, record the distance

change according to Formula 7 and algorithm 3

(5) If the same object does not exist in Ti, the record

changes seriously

(6) If Tj does not exist, it is considered that there is a

serious sleep problem (falling off the bed, etc.), and the

results are recorded.

4. EXPERIMENT AND DATA ANALYSIS

4.1 Experiment design 

The LD19 radar (as depicted in Figure 10) was employed 

for this design. It features a minimum detection distance of 

0.02 meters and a maximum of 12 meters. Leveraging DTOF 

technology, it is capable of conducting 4500 range 

measurements per second. This experiment replicated the 

sleep environments of the test subjects in dormitory settings 

and during lunch breaks, as illustrated in Figures 8 and 9. 

Figure 8. The test environment and human body status 
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Figure 9. The test platform for 2D LiDAR dealing and 

visualization 

The experimental process is designed as follows: 

(1) Experiment preparation, including platform 

development and coordinate transformation. 

(2) Ten groups of volunteers were recruited to participate in

the state perception experiment, which was conducted during 

the lunch break and lasted for 2–3 hours.  

(3) For each volunteer, algorithm 4 (Set the clustering radius

to 10 cm and the number of clusters to 10, considering that the 

average length of an adult's neck is around 12 cm.) was 

executed.  

(4) The results were recorded, labeled, and analyzed.

4.2 Experiment prepare 

4.2.1 Point cloud coordinate transformation 

In this study, the LD19 2D LiDAR employs a left-handed 

coordinate system, with the origin positioned at the center of 

rotation. The zero-degree direction is designated as the 

forward direction, and the angular rotation follows a clockwise 

orientation, as depicted in Figure 10. The scanning range spans 

a planar region defined by a radius of d. Consequently, the 

initial step of the experiment involves transforming the left-

handed coordinate system into a two-dimensional Cartesian 

coordinate system. 

Figure 10. Block diagram of coordinate system and scanning 

direction 

The original coordinates of the point cloud are represented 

in terms of distance and angle. The coordinate conversion 

algorithm refers to the process of transforming point cloud 

data captured by the radar into two-dimensional Cartesian 

coordinates. This is achieved by taking an angular parameter, 

denoted as angle, and verifying whether the specified angle 

falls within the predefined angular range, as illustrated below: 

{
x = r ∗ cos(angle)
y = r ∗ sin(𝑎𝑛𝑔𝑙𝑒)

(8) 

4.2.2 DBSCAN upgrade 

Update the traditional DBSCAN algorithm for the test as 

follows: 

(1) Firstly, mark all objects in dataset D as unprocessed

state.

(2) For each object p in dataset D do

(3) If p has already been assigned to a cluster or marked

as noise then

(4) continue;

(5) else

(6) The Eps neighborhood 𝑁𝜀(𝑝) of the inspected object p

is examined

(7) If the number of objects contained in 𝑁𝜀(𝑝) is less than

MinPts, then

(8) Mark object p as a boundary point or a noise point

(9) Else

(10) Mark the object p as the core point and establish a new

cluster C. Then, incorporate all the points within the

neighborhood of p into cluster C

(11) For all the objects q in 𝑁𝜀(𝑝)  that have not been

processed yet, do the following

(12) Check the Eps neighborhood 𝑁𝜀(𝑝). If 𝑁𝜀(𝑝) contains

at least MinPts objects

(13) then incorporate all the objects in 𝑁𝜀(𝑝) that have not

been assigned to any cluster into cluster C

(14) Set cluster C as a new target object, noted T=(p,d,w)

(15) end for

(16) end if

(17) end if

(18) end for

(19) run step 1-16

(20) run algorithm 4 to find the same target

(21) run step 1-18

4.3 Experiment result 

During the 2-hour experimental period, all 10 groups of test 

results successfully captured the numerical values 

corresponding to state changes. The number of recorded state 

changes varied from 3 to 9 instances, as detailed in Table 2. 

Table 2. The overall status change times detected 

Test Group 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Status Change  5 6 3 4 4 7 9 6 5 5 

Table 3. The detail status detected of the 1st group 

1st 

Group 
init d 

1st 

Change 

2nd 

Change 

3rd 

Change 

4th 

Change 

5th 

Change 

Segment 

1 
2263mm 2151mm 2281mm 2145mm 2265mm 2153mm 

Segment 

2 
1457mm 1284mm 1466mm 1276mm 1461mm 1282mm 

Segment 

3 
1487mm 989mm 1496mm 977mm 1485mm 986mm 

Table 4. The detail status changes of the 1st group 

1st 

Group 
init d 

1st 

Change 

2nd 

Change 

3rd 

Change 

4th 

Change 

Segment 

1 
112mm 130mm 136mm 120mm 112mm 

Segment 

2 
173mm 182mm 190mm 185mm 179mm 

Segment 

3 
498mm 507mm 519mm 508mm 499mm 
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Based on the data from the first group of experimental 

subjects, three groups of the same object were generated 

during the experiment. Upon state changes, the amplitude of 

change in the first segment was the smallest, with an average 

value of 122 mm. The amplitude of change in the second 

segment was intermediate, averaging 182 mm. The amplitude 

of change in the third segment was the largest, averaging 506 

mm, as illustrated in Figures 11-13. 

(a) Initial status (b) The status after change

Figure 11. The status change of segment 1 by clustering 

(a) Initial status (b) The status after change

Figure 12. The status change of segment 2 by clustering 

(a) Initial status (b) The status after change

Figure 13. The status change of segment 3 by clustering 

Figures 11-13 illustrate the state changes of three identical 

target objects in the recognition results. The changes of each 

target object at adjacent moments are quantitatively 

characterized by angle, distance, and intensity values. For 

instance, in Figure 11a, the values 46.8°, 2263 mm, and 248 

correspond to the current target's angle, distance (d), and 

intensity value, respectively, suggesting a high level of data 

reliability. In the figure, the red origin denotes the coordinate 

origin of the 2D LiDAR system, while the green origin 

indicates the core point position of the target object. 

1155



According to Definition 4, each cluster corresponds to a 

target object. Consequently, the clustering results presented 

above represent three identical segments, which align with the 

definition of three identical target objects as outlined in this 

paper. Following coordinate transformation and quantitative 

calculation of the objects (where p and d are derived from 

Definition 1, and w is calculated using algorithm 1), the 

detailed characteristics of the objects are summarized in Table 

5. Based on the transformed planar coordinates, a more

intuitive visualization of these results is provided in Figure 14.

Table 5. The detail status change of the 1st group 

The Same 

Target 

Before Status Change After Status Change 

p 
d w 

p 
d w 

x y x y 

T1 1650 1550 2263 550 1764 1232 2151 480 

T2 406 1399 1457 630 725 1060 1284 640 

T3 404 1431 1487 610 280 948 989 620 

Figure 14. Representation of the detected object in plane 

coordinates 

During the experimental process of this study, the radar was 

configured such that its 0-degree orientation aligned with the 

center of the human body. Consequently, as illustrated in 

Figure 14, the objects T1, T2, and T3 can be respectively 

associated with the head, waist, and legs of an individual based 

on their spatial positions. Consequently, the data presented in 

Table 2-5 can be interpreted as reflecting the state changes of 

the individual's head, waist, and legs during the sleep process. 

4.4 Experiment analysis 

4.4.1 Validity analysis 

Based on the experimental data, the method proposed in this 

paper has shown a certain level of effectiveness in monitoring 

changes in sleep states. The minimum detectable state change 

is 11.2 centimeters, which exceeds the predefined clustering 

radius of 10 centimeters. Over the approximately two-hour 

experimental period, a total of 3 to 9 behavioral state 

transitions were identified. According to the data from the 

"Sleep Formula," humans exhibit an average of 40 to 50 body 

movements per night (approximately 5 movements per hour). 

Consequently, the method employed in this study 

demonstrates high accuracy and rationality. 

4.4.2 Change analysis 

Through graphical analysis, it can be inferred that the three 

distinct clusters identified in the results correspond to the head, 

waist, and legs of the human body. Consequently, the 

variations presented in Table 2-3 can also be interpreted as 

positional changes of the head, waist, and legs during sleep. 

Among these changes:  

(1) The minimum average displacement of the human head

is 122 mm, the maximum displacement of the human foot is 

506 mm, and the intermediate displacement of the waist is 182 

mm.  

(2) The range of displacement for the legs is 506 mm, which

is 2.8 times that of the waist and 4.1 times that of the head, 

indicating frequent leg movements that align with general 

cognitive understanding.  

(3) Further analysis reveals that based on the change

distances, these values represent the average displacement of 

the human body. Therefore, it is recommended that subsequent 

scanning focus primarily on the lumbar region. 

4.4.3 Pattern analysis 

According to the data analysis in Table 2, significant 

variations exist in the frequency of sleep state changes among 

different experimental subjects. Overall, no clear pattern is 

evident in these changes. However, by further examining the 

state change magnitudes for individual subjects using the data 

in Table 3, certain regularities can be identified. As illustrated 

in Figure 15, the change distance for T1 primarily fluctuates 

around 2200 mm as the central axis, T2 exhibits fluctuations 

centered around 1400 mm, and T3 demonstrates a 

concentration near 1200 mm. 

Figure 15. Sequence diagram depicting the status transition 

of detected objects 

Figure 16. Sequence diagram for quantifying the state 

changes of the detection object 

From Figure 15, it can be further observed that the variation 

in amplitude across different time points for each detection 
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object results in an irregular sinusoidal-like change pattern. 

This suggests that human movement during sleep is 

characterized by restlessness and frequent tossing and turning. 

Moreover, a deeper understanding of this feature can be 

achieved through the analysis of the magnitude of these 

changes, as illustrated in Figure 16. 

5. CONCLUSION

This paper investigates the general methodologies for

human behavior recognition based on 2D LiDAR technology, 

as well as the processing workflows and critical technologies 

associated with point cloud data. Building upon this 

foundation, a sleep behavior recognition method leveraging 

2D LiDAR technology is proposed. This method encompasses 

core technologies such as target object expression modeling, 

determination of matching for identical target objects, and 

computation of dynamic changes in target objects. 

Experimental validation and result analysis have been carried 

out.  

The experimental results demonstrate that the proposed 

method exhibits high effectiveness and perception accuracy. 

In a 2-hour experiment involving 10 test subjects, the number 

of detected behavioral state changes ranged from 3 to 9 

instances, aligning with publicly recognized sleep quality 

assessment standards.  

Quantitative analysis of the experimental data reveals that 

the perceived data changes are reasonable. During the state 

change process, the amplitude of head movement was the 

smallest (average 12 cm), the amplitude of leg movement was 

the largest (average 50 cm), and the amplitude of waist 

movement fell in between (average 18 cm).  

Comprehensive analysis indicates that the data obtained 

through this study effectively reflects the restless 

characteristics of behavioral changes during sleep, which is 

consistent with general understanding. 

Consequently, this paper proposes a sleep state monitoring 

method based on a single radar system. This approach not only 

offers the advantage of low cost but also demonstrates high 

precision, rationality, and effectiveness. Thus, it provides a 

novel technical solution for monitoring the sleep quality of 

elderly individuals, showcasing significant application value. 

Future research will concentrate on enhancing the real-time 

performance and accuracy of the model, as well as and 

exploring its applicability in more complex and diverse 

environments such as throughout the night and over longer 

continuous periods. 
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2D Two Dimensional 

LiDAR Light Laser Detection and Ranging 

3D Three Dimensional 

MinPts Minimum point cloud set 
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