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 In this paper, classification of infant cry signals based on Maximal Overlap Discrete Wavelet 

Transform (MODWT) based statistical distribution patterns and Global Average Pooling 

Convolutional Neural Networks (MSDP-GAPCNN) is presented. First, the raw audio infant 

cry signals are transformed into a set of coefficients using MODWT. The statistical features 

of the signals are derived by finding the statical features such as mean, median, variance, 

energy, entropy, skewness and kurtosis from the MODWT coefficients at various 

decomposition levels. Then statistical distribution patterns are obtained from all the 

statistical features. Each statistical pattern is found to be unique and different. These patterns 

are fed as input to the Global Average Pooling Convolutional Neural Network (GAPCNN) 

for classifying the infant cry signal into different types. The performance of the proposed 

methodology is estimated using donate-a-cry corpus and Neo-cry datasets. The experimental 

results obtained are compared with other state-of-art methods. The comparison results reveal 

that, the MSDP-GAPCNN using statistical distribution patterns outperformed better and 

produced improved performances in classifying infant cry signals compared to the other 

methods. 
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1. INTRODUCTION 

 

Infants communicate by means of crying and hence well 

experienced training is required for distinguishing infant cry 

types. Classification and interpretation of infant cries is one of 

the important challenging issues faced by many caregivers, 

parents, and pediatricians. Each type of cry comprises 

numerous auditory characteristics, and there is a pattern for 

each kind of infant cry signal [1]. The main research areas in 

infant cry involve infant cry signal processing, feature 

extraction, and classification. Signal preprocessing is vital to 

extract significant time-frequency domain features from the 

audio infant cry signals [2]. Mel-frequency cepstral 

coefficients (MFCC) and spectrograms are used for the 

analysis and obtaining features from the infant cry signals [3]. 

Discrete Wavelet Transform (DWT) and Wavelet Packet 

Transform (WPT) allows to maintain multiresolution signal 

decomposition in different types of coefficients and preserves 

key signal information [4]. In all these methods, the raw infant 

cry signals are converted into a set of coefficients and relevant 

features are extracted from the coefficients and they are fed to 

different classifiers, namely Support Vector Machine (SVM) 

and K-Nearest Neighborhood (KNN) classifiers. But such 

types of extracted features are usually in one-dimensional 

form, i.e., a set of fixed values. But it is very difficult to extract 

such 1D features from the  non-stationary time-varying signals 

[5]. That is, some of the features might be lost while applying 

feature extraction algorithms. More accurate information 

about the time and frequency of the signal can be attained if 

the extracted features are in two-dimensional form, i.e., in the 

form of images. Moreover, the SVM, K-NN, and other 

Artificial Neural Network classifiers require 1D features as the 

input. Also, it requires a large data size, which leads to 

overfitting problems in the network models. 

The research objectives of the proposed model are: 

•To develop statistical distribution patterns from infant cry 

signals: It is necessary to extract robust statistical distribution 

patterns from the time-varying infant cry signals. This is 

achieved by applying MODWT, which decomposes the cry 

signals into coefficients at various decomposition levels. From 

these coefficients, key statistical features such as mean, 

median, variance, energy, entropy, skewness, and kurtosis are 

derived. 

•To transform 1D statistical features into 2D representation 

for classification: To address the limitations of traditional 1D 

feature extraction techniques by transforming the statistical 

features into 2D patterns (i.e., images) to preserve both time 

and frequency information that is often lost in one-

dimensional representations. This 2D transformation enhances 

the classification process by capturing richer, more complex 

data patterns. 

•To employ GAPCNN for classification: Another key 

objective is to utilize GAPCNN for classifying the generated 

2D statistical patterns. GAPCNN has been chosen because it 

is well-suited for handling image-like data and reduces 

overfitting in infant cry classification. 
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•To compare the proposed methodology with existing 

techniques: The final objective is to evaluate the key 

performance metrics of the proposed MSDP-GAPCNN 

methodology on benchmark datasets, specifically the donate-

a-cry corpus and Neo-cry datasets, to demonstrate the superior 

classification performance. 

Existing methods, such as SVM and KNN, require manual 

feature extraction, which can result in overfitting, especially 

when the dataset is limited or noisy [6]. This issue is 

particularly relevant in the context of infant cry classification, 

where small dataset sizes are common [7]. As shown in several 

studies, overfitting occurs when a model learns to memorize 

the training data, reducing its capability to generalize to new, 

hidden data [8, 9]. In contrast, the proposed GAPCNN model 

reduces the risk of overfitting by utilizing global average 

pooling, which minimizes the amount of parameters and 

improves generalization, even with smaller datasets. 

Pre-trained networks, such as Convolutional Neural 

Networks (CNNs) that are commonly applied in image 

classification, may not be efficient when applied to infant cry 

signal classification due to the domain-specific nature of the 

data [10, 11]. These networks typically need large amounts of 

labeled data to fine-tune effectively, and they may not be 

optimized for the type of audio features in infant cries [12, 13]. 

As discussed, transferring a pre-trained model to an innovative 

task without adequate retraining can lead to inefficiencies and 

suboptimal performance [14, 15]. Our approach, which 

directly classifies the 2D statistical patterns extracted from 

infant cry signals using MODWT, avoids the need for pre-

trained networks and is optimized specifically for this task, 

resulting in a more efficient and specialized model. 

Research gaps and novel contributions of the proposed 

model: 

Existing methods commonly rely on 1D features such as 

MFCCs or statistical measures extracted directly from infant 

cry signals. While these methods provide useful information, 

they are inadequate for non-stationary, time-varying signals 

like infant cries. Such 1D representations often fail to capture 

the fine time-frequency variations of the signal, leading to the 

potential loss of important discriminative features. 

•Challenges in classifying non-stationary signals: Infant 

cries exhibit non-stationary characteristics with high 

variability across different cry types and individuals. 

Traditional feature extraction techniques like DWT or WPT 

often struggle to preserve critical time and frequency 

information simultaneously, resulting in suboptimal feature 

representations for classification. 

•Limitations of conventional classifiers: Classifiers such as 

SVM and KNN are commonly employed in infant cry 

classification. These methods require manually engineered 

features, which may not fully exploit the underlying patterns 

in complex data.  

•Overfitting challenges in neural network models: While 

Artificial Neural Networks have shown promise, traditional 

models often require large datasets to achieve generalization 

and avoid overfitting, which poses a challenge for training 

deep learning models effectively. This gap necessitates a novel 

approach that can handle datasets while maintaining robust 

classification performance. 

•Absence of a two-dimensional feature representation: Few 

studies explore transforming infant cry signals into two-

dimensional representations, such as images, which can better 

capture the time-frequency characteristics of the signal. This 

gap indicates an opportunity to improve classification 

accuracy by introducing advanced neural network 

architectures designed for 2D data, such as CNNs. 

•Lack of statistical pattern-based analysis in infant cry 

classification: Existing works have not explored the potential 

of statistical distribution patterns derived from wavelet 

coefficients for distinguishing between different cry types. 

These patterns could provide a richer and more discriminative 

feature set, enabling more accurate classification. 

The novel contributions of the proposed model are: 

•Introduced statistical patterns derived from MODWT 

coefficients, capturing key features such as mean, variance, 

entropy, and kurtosis, to represent infant cry signals 

comprehensively. 

•Transformed 1D statistical features into 2D distribution 

patterns, preserving critical time-frequency information for 

improved classification accuracy. 

•Utilized a GAPCNN to classify the 2D patterns, addressing 

overfitting challenges due to the presence of Global Average 

Pooling (GAP), which helps in the stabilization of validation 

accuracy [16] thus reducing the overall computation time of 

the CNN model. The incorporation of the GAP layer into the 

base CNN model calculates the average output of each feature 

map from the preceding layer, preparing the model for final 

classification. Unlike Max Pooling, the GAP layer has no 

trainable parameters, which helps reduce data complexity. 

This inclusion significantly improves the model's 

generalization ability and enhances overall computational 

efficiency. 

•Demonstrated the effectiveness of the methodology on the 

donate-a-cry corpus and neo-cry datasets, ensuring robustness 

across diverse cry types. 

•Achieved superior performance compared to traditional 

methods (e.g., SVM, KNN) and existing deep learning 

approaches, validating the innovation and effectiveness of the 

proposed approach. 

The innovation in statistical patterns observed in infant cry 

signals and the necessity of GAPCNN are given as follows: 

Unlike traditional feature extraction methods that rely on 

fixed-value, one-dimensional features like MFCC and 

spectrograms, this approach extracts statistical distribution 

patterns from MODWT coefficients. It preserves critical time-

frequency characteristics, offering a more comprehensive 

signal representation. The generated patterns provide a unique 

two-dimensional visualization of statistical properties like 

mean, variance, entropy, etc., making them more 

discriminative and suitable for classification. Traditional 

classifiers like SVM and KNN require manual feature 

selection and struggle to handle the complexity and variability 

of non-stationary infant cry signals effectively. GAPCNN, on 

the other hand, efficiently processes the 2D statistical patterns 

and addresses overfitting challenges by reducing the number 

of parameters through global average pooling, which is a 

common constraint in infant cry classification tasks. 

The proposed method in advancement over existing 

approaches is due to the following criteria, most existing 

methods focus on 1D features or require extensive pre-

processing steps, which may lead to the loss of important 

signal information. The proposed methodology directly 

addresses these gaps by introducing MODWT to create rich 

statistical patterns and using GAPCNN to analyse them. The 

combination of these techniques enables a significant 

improvement in classification accuracy, as demonstrated 

through our comparative results on benchmark datasets. 
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2. RELATED WORKS 

 

Several signal processing techniques such as MFCCs, 

spectrograms [17, 18], DWT, and DWPT are employed for the 

extraction of important characteristics from the infant cry 

signals [5]. Different machine learning techniques, such as K-

NN, SVM, and CNN, are used for the classification of infant 

cry signals [6]. Recent studies show that the classification of 

infant cry signals using deep neural networks is utilized to 

retrieve spatial features in infant cry signal spectrograms [9]. 

Dewi et al. [3] employed MFCC and KNN for the 

classification of infant cry signals. Gujral et al. [12] used CNN 

with a transfer learning approach to classify raw infant cry 

signals and attained an accuracy of 79%. Franti et al. [9] 

employed a spectrogram and CNN for classifying five classes 

of infant cry signals and achieved an accuracy of 89%. Anders 

et al. [19] investigated the CNN model and Short Time Fourier 

Transform-based spectrogram images for recognizing an 

infant’s cry. Ji et al. [20] used MFCCs to detect changes in the 

baby’s cry signal. In recent years, different types of CNN 

models have been used for the classification of infant cry 

signals. Cohen et al. [21] and Ting et al. [14] suggested MFCC 

and CNN to classify different types of infant cry. Lahmiri et 

al. [15] employed deep feedforward neural networks (DFNN) 

and Long-short term Memory (LSTM) Networks for the 

discrimination of infant cries and attained an accuracy of 85%. 

Ozseven [11] adopted handcrafted features and 1D CNN 

model for the classification of infant cries. The authors 

investigated that the 1D CNN provided less performance. 

Mala and Darandale [22] derived statistical feature vectors 

from the infant cry signals and used 1D CNN for classification 

purposes.  

The pretrained networks are also used for classifying infant 

cries, but the authors investigated that less performance is 

attained for such types of networks because they are not 

optimized for specific applications, and also these networks 

require large size data [11]. These problems can be overcome 

by designing a new network model based on Global Average 

Pooling CNN (GAPCNN) algorithms, which is proposed in 

this paper. The input to the proposed CNN model is the 

statistical distribution patterns, which are derived by applying 

MODWT to the infant cry signals.  

Traditional techniques such as WT and WPT have been 

widely used for time-frequency analysis due to their ability to 

capture non-stationary characteristics of signals [12]. 

However, their fixed resolution and limited adaptability make 

them less effective in distinguishing subtle acoustic variations 

present in different cry types. Short-Time Fourier Transform 

(STFT) and spectrogram-based approaches have also gained 

prominence for visualizing time-frequency information. While 

these methods offer improved temporal and frequency 

localization, their fixed window sizes can result in suboptimal 

feature extraction for varying temporal patterns. Mel-

spectrograms have emerged as a preferred feature 

representation in acoustic analysis, as they mimic the human 

auditory system by focusing on perceptual frequency bands. 

Despite their effectiveness, Mel-spectrograms rely heavily on 

the capability of downstream models to extract meaningful 

features [6]. 

For instance, pre-trained networks like AlexNet and VGG-

16 have been explored in cry classification tasks due to their 

success in general image recognition problems [19]. However, 

their inherent architectures, designed for visual features, may 

not efficiently capture the intricate temporal and frequency 

patterns of infant cries, resulting in suboptimal performance 

when applied directly [23]. Ozseven [11] employed pre-

trained networks for evaluation and attained ~92% 

classification performance. Mala and Darandale [22] also 

investigated and attained ~95%. To address these limitations, 

approaches utilizing wavelet-based methods, such as the 

MODWT, have demonstrated promise due to their ability to 

preserve temporal resolution across decomposition levels [24]. 

By coupling MODWT with advanced deep learning 

frameworks, such as GAPCNN, as proposed in this study, it is 

possible to extract unique statistical distribution patterns that 

better capture the variability in infant cry signals. This 

combination not only overcomes the limitations of traditional 

methods but also provides a more robust representation for 

accurate classification, outperforming state-of-the-art 

techniques as demonstrated through extensive experiments on 

datasets like the donate-a-cry corpus and Neo-cry. 

 

 

3. PROPOSED METHODOLOGY 

 

In the proposed infant cry classification system, first, the 

audio infant cry signals are applied with MODWT, which 

produces a set of coefficients called approximations and 

details. Then, statistical features and statistical distribution 

patterns are derived from the detailed coefficients and they are 

given as input to the GAPCNN, which classifies the infant cry 

signals into different types. The flow diagram of the proposed 

infant cry classification system is shown in Figure 1. 

 

 
 

Figure 1. Proposed framework for infant cry signal 

classification system
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3.1 MODWT coefficients 
 

The Maximal Overlap Discrete Wavelet Transform 

(MODWT) is an undecimated Discrete Wavelet Transform 

(DWT) that is mainly used for analysing infant cry signals at 

different scales [25]. The MODWT offers significant 

advantages over DWT and WPT, particularly in the infant cry 

signal analysis. Its ability to decompose signals into multiple 

frequency sub-bands without down-sampling ensures that 

critical time-domain resolution is preserved, retaining 

transient features in infant cry signals that might otherwise be 

lost during decomposition. Infant cry signals often involve 

large-sized recorded audio, which can be challenging to 

process directly. The MODWT-based approach effectively 

addresses this issue by transforming large recorded signals 

into significantly reduced feature vectors. Unlike DWT and 

WPT, which require signal lengths to be integral multiples of 

two, MODWT can handle signals with variable lengths. 

Moreover, MODWT facilitates frequency-specific feature 

extraction by capturing both low- and high-frequency 

components with greater precision compared to conventional 

methods like MFCC, DWT, and WPT, which lack such 

detailed frequency-specific resolution. 

Additionally, the wavelet and scaling coefficients in 

MODWT-based Multi-Resolution Analysis (MRA) are 

associated with zero-phase filters. This property results in 

more accurate and efficient wavelet estimators compared to 

DWT and WPT. Finally, MODWT decomposition ensures 

that the length of the coefficients remains consistent across all 

decomposition levels due to the absence of decimation 

operations. This consistency preserves more information at all 

levels, enhancing the overall analysis and classification of 

infant cry signals. Compared to DWT, MODWT is shift-

invariant and redundant, making it more robust for time-

frequency analysis, especially when analyzing the non-

stationary infant cry signals. Moreover, MODWT does not 

downsample the signal during decomposition, thus preserving 

the temporal resolution across scales. This characteristic is 

crucial for identifying subtle features in the cry signals that 

might otherwise be lost during downsampling. Similarly, 

while WPT offers full decomposition of both approximation 

and detail coefficients, it tends to increase computational 

complexity significantly. MODWT achieves this by providing 

a redundant representation without the computational burden 

of WPT [26]. 

In MODWT, the input signal is decomposed into low and 

high frequency components, producing a set of coefficients 

called approximations and details, which are represented 

mathematically as follows: 

 

𝐴𝑗,𝑛 = ∑ ℎ𝑙,𝑛

𝐿−1

𝑙=0

𝑋𝑛−𝑙𝑚𝑜𝑑 𝑀 (1) 

 

𝐷𝑗,𝑛 = ∑ 𝑔𝑙,𝑛

𝐿−1

𝑙=0

𝑋𝑛−𝑙𝑚𝑜𝑑 𝑀 (2) 

 

where 𝐴𝑖 , 𝑖 → approximation coefficients, 𝐷𝑖 , 𝑖  → detailed 

coefficients, ℎ𝑙,𝑛  → low pass filter, 𝑔𝑙,𝑛  → high pass filter, 

𝑋𝑛−𝑙  𝑛 = 0,1,2, 𝑀 − 1 , 𝑀 →  signal length, 𝑚𝑜𝑑 𝑀  → 

circular filtering. If the input signal is decomposed into 15 – 

levels, the coefficients obtained are given in Eqs. (3)-(6). 
 

𝐹𝑖𝑟𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, [
𝐴1

𝐷1
] = [

𝐴(1,𝑛)

𝐷(1,𝑛)
] (3) 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, [
𝐴2

𝐷2
] = [

𝐴(2,𝑛)

𝐷(2,𝑛)
] (4) 

 

𝑇ℎ𝑖𝑟𝑑 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, [
𝐴2

𝐷2
] = [

𝐴(2,𝑛)

𝐷(2,𝑛)
] (5) 

 

𝐹𝑖𝑓𝑡𝑒𝑒𝑛𝑡ℎ 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, [
𝐴15

𝐷15
] = [

𝐴(15,𝑛)

𝐷(15,𝑛)
] (6) 

 

3.2 Statistical distribution patterns 

 

The statistical distribution patterns like 1) Mean 2) Median 

3) Variance 4) Energy 5) Entropy 6) Skewness 7) Kurtosis 

distribution patterns are derived from the MODWT detailed 

coefficients of the infant cry signals using Eqs. (7)-(13). These 

patterns are obtained by first finding the statistical features for 

the detailed coefficients, [𝐷1, 𝐷2, … … … , 𝐷15]. 
 

Mean= 𝑀𝑒𝑎𝑛 [𝐷1, 𝐷2, … … … , 𝐷15] (7) 

 

Median=𝑀𝑒𝑑[𝐷1, 𝐷2, … … … , 𝐷15] (8) 

 

Variance=𝑉𝑎𝑟[𝐷1, 𝐷2, … … … , 𝐷15] (9) 

 

Energy=𝐸𝑛𝑒𝑟𝑔𝑦[𝐷1, 𝐷2, … … … , 𝐷15] (10) 

 

Entropy=𝐸𝑛[𝐷1, 𝐷2, … … … , 𝐷15] (11) 

 

Skewness=𝑠𝑘𝑒𝑤[𝐷1, 𝐷2, … … … , 𝐷15] (12) 
 

Kurtosis=𝐾𝑢𝑟[𝐷1, 𝐷2, … … … , 𝐷15] (13) 
 

The selection of 15 decomposition levels was based on the 

signal characteristics and extensive experimental analysis. 

Infant cry signals exhibit complex time-frequency structures 

that require a sufficient number of levels to decompose both 

high-frequency transients and low-frequency patterns 

effectively. MODWT allows for deeper decomposition 

without losing temporal resolution. Experimental trials were 

conducted by varying the decomposition levels, and the 

classification accuracy was analysed for each configuration. 

The results demonstrated that performance improved 

progressively with increasing levels, stabilizing at 15 levels. 

Beyond this point, no significant gains in accuracy were 

observed, and computational complexity increased. Therefore, 

15 levels were chosen as the optimal balance between 

preserving signal information and ensuring efficient 

processing. The statistical features were selected for their 

ability to effectively capture the distribution patterns in infant 

cry signals was validated through experiments, resulting in 

improved classification performance. 

The significance of the statistical features in enhancing the 

infant cry classification systems performance are, the mean 

provides information about the general amplitude of the signal. 

It is useful for distinguishing between relatively stable and 

more fluctuating cry types. For example, hunger cries tend to 

have lower mean values, while distress cries, such as pain, 

show higher mean values [27]. As a robust measure of central 

tendency, the median reduces the influence of outliers and is 

especially effective for noisy or non-stationary signals 

particularly for cries with irregular characteristics, such as 

discomfort. Variance measures the spread of the signal, with 

higher variance indicating more dynamic and unpredictable 

cries. Lower variance, in contrast, corresponds to more stable 

cries like hunger, making variance crucial for differentiating 
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these types. Energy quantifies the total magnitude of the 

signal, differentiating between intense cries and less intense 

ones. This feature is pivotal for classifying cries based on 

urgency and intensity. 

 

 
 

Figure 2. Schematic flow diagram representing MODWT 

decomposition, pattern generation and classification 

 

Entropy captures the unpredictability of the signal. High 

entropy corresponds to chaotic, urgent cries, while low 

entropy reflects more structured, predictable cries. Skewness 

measures the asymmetry of the cry signal’s distribution. Cries 

such as discomfort or pain exhibit higher skewness due to 

sudden onset, while hunger cries tend to be more symmetric, 

aiding in their distinction. Kurtosis reflects the peak of the 

signal distribution. Higher kurtosis indicates more abrupt and 

sharp cry patterns, typically seen in pain-related cries, whereas 

lower kurtosis indicates smoother, less intense cries, such as 

those associated with hunger. The schematic flow diagram for 

MODWT decomposition, pattern generation, and 

classification are shown in Figure 2. All the statistical patterns 

generated are in the form of images, which are given as input 

to the GAPCNN for feature extraction/classification. 

 

3.3 GAPCNN architecture 

 

The proposed GAPCNN architecture consists of five 

convolutional layers (CL1 to CL5). Rectilinear (ReLu) 

activation layers (RL1 to RL5) and max pooling layers (PL1 

to PL5) are placed after each convolution layer [27]. Batch 

normalization layers (BL1 to BL5) are placed after each max 

pooling layer [28] as shown in Figure 3. Additionally, the 

Global Average Pooling layer (GAPL) is placed after the last 

batch normalization layer. This layer is followed by a fully 

connected layer (FL1), which is connected in series with the 

flatten layer (FL). Finally, softmax layer (SL) and 

classification layers are connected as the terminal layers. 

Several convolutional layers with the rectified linear unit 

(ReLU)) activation function in one row creates different 

models for extracting different features. 

 

 
 

Figure 3. Architecture of GAPCNN 

 

The fully connected layers with ReLU activation function 

and dropout are located alternatively, which is used for 

estimating the class of each data using Softmax activation 

function [29]. 

The details of each layer, filter size, and activation are given 

in Table 1. The pseudocode for the feature extraction and 

classification module is given elaborately. 

 

Table 1. Details of the layers, filter size, activations and learnable parameters [30] used for the design of the proposed 

GAPCNN 

 
Names Filter Details Activations Learnable Parameters 

Input layer (IL) 128 × 128 × 3 128 × 128 × 3 Learnable parameters not used 

Convolution layer (CL1) 32 filters, 3× 3 128 × 128 × 32 w, (3 × 3 × 3 × 32), 𝑏𝑖𝑎𝑠 (1 × 1 × 32) 

ReLU activation layer (RL1) No filter used 64 × 64 × 32 learnable parameters not used 

Max pooling layer (PL1) Max, 2× 2 64 × 64 × 32 64 × 64 × 8 

Batch normalization layer (BL1) No filter used 32 × 32 × 16 offset 1 × 1 × 32, scale 1 × 1 × 32 

Convolution layer (CL2) 64 filters, 3× 3 64 × 64 × 64 w, (3×3×3×64), bias 1×1×64 

ReLU activation layer (RL2) No filter used 32 × 32 × 64 Learnable parameters not used 

Max pooling layer (PL2) Max, 2× 2, 2 32 × 32 × 64 Learnable parameters not used 

Batch normalization layer (BL2) No filter used 32 × 32 × 64 offset 1 × 1 × 64, scale 1 × 1 × 64 

Convolutional layer (CL3) 128 filters, 3× 3 32 × 32 × 128 w, (3 × 3 × 3 × 128), bias 1 × 1 × 128 

ReLU activation layer (RL3) No filter used 16 × 16 × 128 Learnable parameters not used 

Max pooling layer (PL3) Max, 2× 2, 2 16 × 16 × 128 Learnable parameters not used 

Batch normalization layer (BL3) No filter used 16 × 16 × 128 offset 1 × 1 × 128, scale 1 × 1 × 128 

Convolutional layer (CL4) 256 filters, 3× 3 16 × 16 × 256 w, (3 × 3 × 3 × 256), bias 1 × 1 × 256 

ReLU activation layer (RL4) No filter used 8 × 8 × 256 Learnable parameters not used 

Max pooling layer (PL4) Max, 2× 2, 2 8 × 8 × 256 Learnable parameters not used 

Batch normalization layer (BL4) No filter used 8 × 8 × 256 offset 1 × 1 × 128, scale 1 × 1 × 128 
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Convolutional layer (CL5) 256 filters, 3× 3 8 × 8 × 512 w, (3 × 3 × 3 × 512), bias 1 × 1 × 512 

ReLU activation layer (RL5) No filter used 8 × 8 × 512 Learnable parameters not used 

Max pooling layer (PL5) Max, 2× 2, 2 4 × 4 × 512 Learnable parameters not used 

Batch normalization layer (BL5) No filter used 4 × 4 × 512 offset 1 × 1 × 64, scale 1 × 1 × 64 

Global average pooling layer (GAPL) - 1 × 1 × 10 Learnable parameters not used 

Fully connected layer (FCL1) No filter used 1 × 1 × 32 w, (10 × 2048) 𝑏ias, 10 × 1 

Flatten layer (FL) - 524288 Learnable parameters not used 

Fully connected layer (FCL2) No filter used 1 × 1 × 5 w, (10 × 2048) 𝑏ias, 5× 1 

Softmax layer (SL) No filter used 1 × 1 × 5 Learnable parameters not used 

Classification layer (CL) 5 outputs - Learnable parameters not used 

 

a. Pseudocode for Feature Extraction Module 

1. Input: Input the training images of mean, median, 

variance, energy, entropy, skewness, and kurtosis 

distribution pattern 

   Fix filter size, (ℎ𝑤
𝑗1

∗ ℎℎ
𝑗1

), (ℎ𝑎𝑤
𝑗1

∗ ℎ𝑎ℎ
𝑗1

) , set, number 

of filters,  𝑀𝑗1, strides, 𝑀𝑗1 at 𝑗𝑡ℎ  stage of 1𝑠𝑡𝑙𝑎𝑦𝑒𝑟 

and max. pool layer 

2. Output: Extract features from statistical distribution 

pattern images of infant cry signals. 

3. Training: Train input images at input and feature 

extraction layer 

  

4. 

For each iteration, 𝑗 ranges from (1, 𝑅𝑡),  

At convolution layer, perform convolution operation  

       𝐶𝑓𝑗𝑛 =  [𝐶𝑓1
𝑗1

, 𝐶𝑓2
𝑗1

, 𝐶𝑓3
𝑗1

, 𝐶𝑓4
𝑗1

, . . . . . . . . . 𝐶𝑓𝑁
𝑗𝑙

] 
5.  At Max pooling layer 

Max pooling on 𝐶𝑓𝑗𝑛,generated feature maps 

 𝑃𝑀𝑗1 =  [𝑃𝑀1
𝑗1

, 𝑃𝑀2
𝑗1

, 𝑃𝑀3
𝑗1

, 𝑃𝑀4
𝑗1

, . . . . . . . . . 𝑃𝑀𝑁
𝑗1

] 
6. Batch Normalization Layer 

  Perform batch normalization on feature maps 𝑃𝑀𝑚𝑎
𝑖1  , 

        𝑁𝑗1 =  [𝑁1(𝑛𝑜𝑟𝑚)
𝑗1

, 𝑁2(𝑛𝑜𝑟𝑚)
𝑗1

, . . . . . . . . . 𝑁𝑁(𝑛𝑜𝑟𝑚)
𝑗1

] 

7. At ReLU layer, perform normalization on feature maps 

B𝑁𝑚𝑎(𝑛𝑜𝑟𝑚)
𝑖1  using 

𝑓(𝑥)𝑗1
= [𝑓(𝑥)1

𝑗1 , 𝑓(𝑥)2
𝑗1 , . . . . . . . . . . . . . . . . . . . 𝑓(𝑥)𝑁

𝑗1] 
8. Assign 𝑓(𝑧)𝑗1

=  𝐼(𝑗+1)1, j=j+1 

               end for; Return 𝑓(𝑥)𝑗1
;    end        

b.           Classification module 

1. Input: N training samples with 𝑓(𝑥)𝑗1
feature maps of 

on mean, median, variance, energy, entropy, 

skewness, and kurtosis distribution pattern images 

2. Output: classes 

3. Train N samples with feature maps 𝑓(𝑥)𝑗1
 

4. In fully connected layer net compute input using 𝑧 =

𝑊𝑇 . 𝑓(𝑥)𝑗1
+ 𝐵 

 

 

4. RESULTS AND DISCUSSIONS 

 

The proposed methodology is experimented using 

MATLAB 2021b software. The performance is evaluated by 

calculating metrics such as Accuracy (ACC), Precision (PRE), 

Recall (REC), and F-Score (FSC) [31].  

 

4.1 Datasets and MODWT coefficients 

 

We have used two datasets such the donate-a-cry corpus 

dataset (DS1) and the neo-cry dataset (DS2), for the evaluation 

of the network model. The donate-a-cry corpus dataset (DS1) 

consists of audio files containing 2500 infant cry signal 

samples, including normal, discomfort, hunger, tired, belly 

pain, and burp. The neo-cry dataset (DS2) is our own recorded 

dataset containing 2500 samples [32]. This real-time infant cry 

dataset is created by recording audio signals from the infants 

born in the Government hospital, Tiruchendur, which is in the 

Southern part of Tamil Nadu state in India. The audio signals 

are recorded using an ICD-PX470 voice recorder and then 

stored in the form of wave files. The signals were sampled at 

the rate of 8000 Hz with the 16-bit sample resolution. Figure 

4 shows six different types of infant cry signals [22].   

 

 
 

Figure 4. Different types of infant cry signals 
Normal (N), Hunger (H), Tired (T), Discomfort (D),  

Burping and Belly pain (BP) 

 

 
 

Figure 5. Infant cry signal and its corresponding detailed 

coefficients 
 

Experiments were conducted in order to obtain the 

statistical distribution patterns for all the infant cry signals by 

considering 15 levels of MODWT decomposition. The 

MODWT-based detailed coefficients for all 15 levels of a 

particular infant cry signal are shown in Figure 5. Similarly, 

the results of the distribution patterns showing 15 levels are 
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shown in Figures 6-13. It is observed that the precise 

characteristics of the infant cry signals, ranging from lower to 

higher frequency levels, can be retrieved for better time 

localization and a wide range of frequency band analysis [33]. 

 

4.2 Statistical distribution patterns 

 

The statistical features such as mean, median, variance, 

energy, entropy, kurtosis, and skewness are computed for all 

the 15 MODWT detailed coefficients and plotted. This gives 

different statistical distribution patterns in the form of images. 

The details of the patterns generated are given in Table 2. The 

mean values of the MODWT detailed coefficients for all the 

15 levels are calculated and then plotted, thus getting mean 

distribution pattern as shown in Figure 6. All the mean 

distribution patterns are different, as observed in Figure 6. 

Figure 7 shows the median distribution patterns for N, H, T, 

D, B, and BP. According to Figure 7, all the median 

distribution patterns, i.e., Med-N, Med-H, Med-T, Med-D, 

Med-B, and Med-BP, are different. The number of peaks in all 

the patterns is also different. The maximum and minimum 

values of each distribution pattern are also different [34]. The 

variance distribution patterns are unique and different and are 

shown in Figure 8. The maximum value of variance occurred 

at the 4th level, as illustrated in Figure 8. 

 

Table 2. Details of various statistical distribution patterns and their notations 

 
Infant Cry Signals Mean Median Variance Energy Entropy Skewness Kurtosis 

Normal (N) Mean-N Med-N Var-N Energy-N En-N skew-N kur-N 

Hungry Mean-H Med-H Var-H Energy-H En-H skew-H kur-H 

Tired Mean-T Med-T Var-T Energy-T En-T skew-T kur-T 

Discomfort Mean-D Med-D Var-D Energy-D En-D skew-D kur-D 

Burping Mean-B Med-B Var-B Energy-B En-B Var-B kur-B 

Belly pain Mean-BP Med-BP Var-BP Energy-P En-BP skew-BP kur-BP 

 

 
 

Figure 6. Mean distribution patterns (Mean-N, Mean-H, 

Mean-T, Mean-D, Mean-B, Mean-BP) 

 

 
 

Figure 7. Median distribution patterns (Med-N, Med-H, 

Med-T, Med-D, Med-B and Med-BP) 

 

 
 

Figure 8. Variance distribution patterns (Var-N, Var-H, Var-

T, Var-D, Var-B, Var-BP) 

It is also noticed that, after the 5th level, the variance is 

approximately zero, as illustrated in var-H, var-D, var-B, and 

var-BP distribution patterns. Figure 9 shows energy 

distribution patterns (Energy-N, Energy-H, Energy-T, Energy-

D, Energy-BP, Energy-B).  

 

 
 

Figure 9. Energy distribution patterns 

 

The energy distribution patterns provide very important 

information about signal energy and energy concentration of 

the signals at various levels. As shown in Figure 9, Energy-N 

provides the highest energy values.  

 

 
 

Figure 10. Entropy distribution pattern (En-N, En-H, En-T, 

En-D, En-B, En-BP) 
 

It is also observed that there exists only one peak in all the 
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energy distribution patterns, and energy is maximum at the 

fifth level in most of the cases. As shown in Figure 10, the 

entropy distribution pattern is different from all other patterns. 

The Kurtosis distribution pattern for all types of infant cry 

signals is shown in Figure 11. 

 

 
 

Figure 11. Kurtosis distribution patterns (Kurtosis-N, 

Kurtosis -H, Kurtosis -T, Kurtosis -D, Kurtosis -B, Kurtosis -

BP) 

 

It is observed that the kurtosis distribution pattern is 

different for each type of infant cry signal. According to Figure 

11, the maximum kurtosis value is 25, i.e., for the discomfort 

infant cry signal (D), and the minimum kurtosis value is 4, i.e., 

for the normal cry signal (N). It is also inferred that the kurtosis 

value is maximum approximately at the 10th level.   

The skewness distribution pattern shown in Figure 12 also 

varies for different infant cries. It is inferred that the number 

of peaks for each signal differs. The maximum peak value also 

differs in magnitude. The performance of the proposed 

methodology is evaluated for both DS1 and DS2 datasets. The 

network is trained and tested with 5-fold cross-validation. The 

performance measures such as Precision (PRE) [35], Recall 

(REC) [36], Accuracy (ACC) [37], Specificity (SP) [38] and 

F-Score (FS) [39] for all the distribution patterns (Mean, 

Median, Variance, Energy, Entropy) and the results are 

tabulated in Table 3. According to Table 3, the proposed 

GAPCNN produced high PRE, REC, ACC, SP, and FS for all 

the distribution types, i.e., in the range of 97 % to 99% for both 

the datasets. It is illustrated that, for all the distribution 

methods, the classification accuracy (ACC) obtained is more 

than 98%, and the highest accuracy obtained for DS1 is 99.96, 

i.e., for the entropy distribution pattern. The highest ACC for 

DS2 is 99.98%, i.e., for the kurtosis distribution pattern.  

 

 
 

Figure 12. Skewness distribution patterns 

 

Table 3. Performance results of GAPCNN using statistical distribution patterns (Mean, Median, Variance, Energy, Entropy) 

 

Distribution Pattern Type 
DS1 (Donat-a-Cry-Corpus Dataset) DS2 (Neo-Cry Dataset) 

PRE REC ACC SP FS PRE REC ACC SP FS 

Mean 98.15 98.76 98.95 97.20 97.85 98.35 97.40 98.17 98.34 98.11 

Median 98.35 98.75 99.75 98.20 97.22 98.85 98.90 99.20 98.02 98.20 

Variance 98.00 97.66 98.65 97.03 98.08 98.33 98.13 98.76 97.32 98.32 

Energy 99.55 99.45 99.85 99.07 98.59 99.34 98.31 99.22 98.43 98.40 

Entropy 99.65 98.54 99.96 99.34 98.21 99.09 98.87 99.11 98.20 98.32 

Kurtosis 99.95 98.85 99.97 98.93 99.52 98.20 98.28 99.98 99.11 99.09 

Skewness 98.55 98.46 99.22 99.10 99.09 99.70 99.75 99.85 98.90 98.89 

 

Moreover, it is also examined that the highest REC obtained 

for DS1 is 99.45%, i.e., for the energy distribution pattern. The 

highest REC for DS2 is 99.75%, i.e., for the skewness 

distribution pattern. Similarly, the highest SP obtained for DS1 

is 99.34%, i.e., for the entropy distribution pattern. The highest 

for DS2 is 99.11%, which is observed in the kurtosis 

distribution function. Similarly, the highest FS obtained for 

DS1 is 99.52%, i.e., for the kurtosis distribution pattern. The 

highest for DS2 is 99.09%, which is observed in the kurtosis 

distribution function. The experimental results reveal that, the 

proposed GAPCNN produced promising results for all the 

distribution pattern images for both the datasets. The 

GAPCNN is trained based on the stochastic gradient descent 

(SGD) method, and 5-fold cross-validation is performed to 

validate the performance of the model. Training and validation 

loss are measured after each epoch. The cross-entropy loss is 

the error function used for finding the network error. It is 

calculated by finding the sum of the average difference 

between the actual and the predicted probability distributions 

for predicting the output classes. Figure 13 shows the training 

accuracy, testing accuracy, training loss, and testing loss for 

GAPCNN using seven types of disturbance patterns 

(GAPCNN + Mean, GAPCNN + Median, GAPCNN + 

Variance, GAPCNN + Energy, GAPCNN + Entropy, 

GAPCNN + Skewness, GAPCNN + Kurtosis). Figure 13 

shows that the training and testing accuracies of the GAPCNN 

with all the distribution patterns produced high accuracy rates, 

above 97% with the maximum of 99.89 %. It is inferred that 

mean + GAPCNN produced the accuracy of 98.15% and loss 

of 2% for DS1 and with the accuracy of 98.17% and loss of 

1.83 % for DS2. Similarly, median+ GAPCNN produces the 

accuracy of 98.35% and loss of 1.65% for DS1 and with the 

accuracy of 99.20% and loss of 0.8% for DS2. It is also 

observed that, variance+ GAPCNN produced an accuracy of 

98.00% and loss of 2% for DS1 and with an accuracy of 

98.76% and loss of 1.24% for DS2. It is worth noting that 

energy+ GAPCNN produces the accuracy of 99.85% and a 

loss of 0.15% for DS1 and an accuracy of 99.22% and loss of 

0.78% for DS2. Notably, entropy+ GAPCNN produce the 

accuracy of 99.96% and loss of 0.15% for DS1 and with the 

accuracy of 99.22% and loss of 0.78% for DS2. Thus, it is 

illustrated that all the statistical patterns produced promising 

results with minimum loss. The plot also shows that the 

training process converged well. It is also inferred that the plot 
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for loss is smooth, which reciprocates the continuous nature of 

the error between the probability distributions. It is also 

illustrated that, in all the methods, the highest accuracy and 

minimum loss are produced at in the 40th epoch. The 

performance of the proposed GAPCNN with all the 

distribution pattern images are compared with other networks 

such as CNN without GAP and other pretrained networks [40] 

such as AlexNet [11], GoogLeNet [11], EfficientNet [41], 

VGG-16 [13], MobileNet v2 [41] and the results are tabulated 

in Table 4. The experimental results shown in Table 4 

demonstrate that the GAPCNN with all the statistical 

distribution patterns produced highest performance measures, 

i.e., ~98% PRE, ~98% REC, ~98% ACC, ~99% SP and ~98% 

FS for both the datasets. Table 4 also illustrates that, CNN 

without using GAP produced ~97% PRE, ~96% REC, ~98% 

ACC, ~97% SP and ~95% FS for both the datasets. It is also 

examined that, AlexNet produced ~93% PRE, ~94% REC, 

~95% ACC, ~93% SP and ~94% FS for both the datasets. 

Moreover, it is also inferred that GoogLeNet produced ~92% 

PRE, ~93% REC, ~94% ACC, ~92% SP and ~90% FS for 

both the datasets. It is also observed that, EfficientNet 

produced ~89% PRE, ~98% REC, ~90% ACC, ~89% SP and 

~86% FS for both the datasets. Similarly, VGG-16 produced 

~85% PRE, ~83% REC, ~86% ACC, ~84% SP and ~82% FS 

for both the datasets. Likewise, MobileNet produced ~80% 

PRE, ~81% REC, ~82% ACC, ~80% SP and ~81% FS for 

both the datasets. Following the evaluation approach in Manit 

et al. [42], this work presents epoch-wise accuracy and loss 

plots for the GAPCNN model across different statistical 

distribution features, as shown in Figure 13, to analyze training 

behavior and model performance. 

A comparative performance table structure, similar to 

Jayasree et al. [4, 37], has been adapted here to present the 

evaluation results across various models and statistical 

distributions; however, the results, datasets, and proposed 

GAPCNN architecture are original contributions of this study. 

The results shown in Table 4 reveal that all the statistical 

distribution patterns with GAPCNN provided better outcomes 

compared with the pre-trained networks, such as AlexNet, 

EfficientNet, GoogleNet, VGG-16, MobileNet, SVM, and 

KNN. This is because the pre-trained CNN needs a large input 

size, and they are not optimized for tasks. This tends to 

produce lower accuracy and performance. It is observed that 

performance improvements of ~more than 12% are achieved 

using the proposed GAPCNN. Thus, it is concluded that all the 

distribution patterns with GAPCNN produced the highest 

performance compared to CNN alone. In the proposed CNN 

design, the last fully connected layer is replaced by the GAP 

layer. All the performance results illustrate that the proposed 

GAPCNN model outperforms others. The GAP helps to 

reduce the overfitting of the model and improves the 

performance measures. The experimental results obtained 

using the proposed methods for the classification of infant cry 

signals are validated with the Paediatrician in the Government 

Hospital in Tiruchendur, Thoothukudi District, located in 

Tamil Nadu in India. A total of 5 paediatricians with diverse 

clinical experience in infant care participated in the validation 

of the proposed model. The paediatricians evaluated the model 

based on four primary criteria: accuracy, precision, recall and 

F score which assessed the models ability to correctly classify 

various types of infant cries consistency, which measured the 

models reliability in classifying similar cry signals across 

repeated instances; practical relevance, evaluating how well 

the model’s predictions aligned with clinical expectations for 

cry type differentiation; and ease of use, which focused on how 

intuitive and user-friendly the model's output was for the 

paediatricians. The validation involved both quantitative 

metrics and qualitative feedback. Paediatricians were 

presented with a set of infant cry signals alongside the models 

predicted classifications, and they assessed whether the 

predictions corresponded with their clinical judgment. This 

valuable input will inform future refinements to the model, 

ensuring its clinical effectiveness and enhancing its 

deployment in real-world infant monitoring systems. The 

proposed MSDP-GAPCNN methodology can be integrated 

into real-time infant monitoring systems that detect different 

cry types, enabling caregivers or medical professionals to 

respond quickly to specific needs. The system could be 

embedded in smart baby monitors or wearable devices, where 

the model continuously analyzes the infant's cry signals, 

providing alerts or detailed feedback on the baby’s condition. 

By incorporating the statistical patterns and GAPCNN 

classification, the system would offer more accurate 

identification of cry types, thereby improving infant care and 

safety. This balances performance and computational 

efficiency, which reduces the number of parameters compared 

to conventional CNNs. Hence, it is manageable on devices 

with moderate processing power, allowing for efficient real-

time operation. Given the reduced model size and 

computational efficiency of GAPCNN, our methodology is 

suitable for deployment on edge devices, such as smartphones 

or low-power embedded systems. The model can run on these 

devices in real time, enabling immediate processing of cry 

signals without the need for constant connectivity to cloud 

servers, ensuring both privacy and fast responses. 

 

 
 

Figure 13. Training accuracy, testing accuracy, training loss and testing loss curves for GAPCNN with all distribution patterns 
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Table 4. Performance comparison of proposed GAPCNN with other methods 

 

Distribution Patterns and Network Models 
DS1 (Donat-a-Cry-Corpus Dataset) DS2 (Neo-Cry Dataset) 

PRE REC ACC SP FS PRE RE ACC SP FS 

Mean + GAPCNN 98.15 98.76 99.75 97.20 97.85 98.35 97.40 98.17 98.34 98.11 

Mean + CNN  96.40 97.45 97.10 96.45 95.75 96.56 95.54 97.40 96.11 96.90 

Mean + AlexNet  93.56 91.34 95.34 92.30 93.90 94.89 94.22 95.76 93.20 93.11 

Mean +GoogleNet  90.90 90.29 92.10 91.99 91.97 92.00 92.23 92.45 91.99 91.90 

Mean+EfficientNet 88.32 87.89 89.20 88.20 87.17 87.20 86.44 89.43 87.40 86.11 

Mean+VGG-16 85.90 84.28 86.34 84.70 85.70 87.98 84.60 87.70 85.79 85.70 

Mean+MobileNet v2  85.60 84.29 85.20 84.90 84.40 85.20 84.00 86.43 86.09 85.67 

Mean+SVM  83.20 82.67 83.10 83.00 82.15 82.90 81.99 82.20 81.21 82.03 

Mean+KNN 81.79 81.00 81.07 80.67 80.45 82.90 81.67 80.34 81.27 80.13 

Median + GAPCNN 98.35 98.75 99.75 98.20 97.22 98.85 98.90 99.20 98.02 98.20 

Median + CNN 93.13 92.21 93.78 92.55 91.20 94.56 92.11 96.49 93.67 94.11 

Median + AlexNet 90.89 90.20 91.45 90.45 90.34 90.12 90.32 92.90 91.09 91.18 

Median +GoogleNet 88.90 87.90 89.70 88.70 86.90 90.00 89.95 90.90 89.97 87.90 

Median+EfficientNet 86.78 85.88 86.78 85.30 84.19 88.89 87.98 88.90 87.89 88.60 

Median+VGG-16 84.69 85.66 85.34 84.44 83.20 86.12 85.44 87.30 84.67 83.33 

Median+MobileNet v2 83.98 83.89 84.30 83.89 82.10 85.99 85.23 86.20 85.40 85.02 

Median+SVM 82.67 81.98 82.10 82.20 81.45 82.90 81.99 81.98 82.00 81.70 

Median+KNN 81.19 81.01 80.90 80.11 81.29 81.90 80.23 80.21 80.11 80.55 

Variance+ GAPCNN 98.00 97.66 98.65 97.03 98.08 98.33 98.13 98.76 97.32 98.32 

Variance+ CNN 94.98 94.37 95.99 94.22 93.10 95.91 95.11 96.90 95.01 93.34 

Variance+ AlexNet 94.01 94.01 94.12 92.01 90.21 94.59 94.09 95.00 94.20 93.29 

Variance +GoogleNet 92.10 92.99 93.01 92.10 91.00 91.99 91.20 92.19 91.03 89.12 

Variance+EfficientNet 91.10 90.22 92.45 91.25 91.00 90.21 89.32 90.46 89.34 89.23 

Variance+VGG-16 85.21 84.22 86.22 83.20 81.00 85.89 84.89 86.99 83.45 84.20 

Variance+MobileNet v2  80.19 81.20 82.10. 80.20 80.02 81.09 81.07 82.99 81.89 80.03 

Variance+SVM 81.98 80.80 81.07 81.00 80.32 82.12 80.12 81.22 80.97 80.20 

Variance+KNN 81.07 80.09 81.08 81.79 80.09 81.99 80.98 81.01 80.11 80.00 

Energy+ GAPCNN 99.55 99.45 99.85 99.07 98.59 99.34 98.31 99.22 98.43 98.40 

Energy+ CNN 97.01 96.20 97.90 96.29 97.11 94.99 93.40 95.08 92.99 91.90 

Energy+ AlexNet 90.99 90.00 92.30 91.45 90.14 93.01 92.30 93.09 91.98 90.86 

Energy +GoogleNet 89.89 88.89 90.10 90.00 90.23 89.11 89.90 90.47 87.78 90.32 

Energy+EfficientNet 88.78 87.90 89.98 87.89 86.67 86.20 87.79 88.90 86.30 83.56 

Energy+ VGG-16 85.56 87.34 86.67 83.56 84.23 85.23 76.60 87.34 84.30 82.30 

Energye+MobileNet v2 82.30 81.30 83.80 85.90 82.45 80.23 75.20 81.90 80.12 82.90 

Energy+SVM 82.07 81.90 81.00 81.90 81.06 81.95 80.76 80.32 81.29 80.07 

Energy+KNN 81.98 81.77 80.65 81.09 80.97 80.98 80.43 80.01 80.00 80.21 

Entropy+ GAPCNN 99.65 98.54 99.96 99.34 98.21 99.09 98.87 99.11 98.20 98.32 

Entropy+ CNN 98.23 97.65 97.56 95.60 96.23 97.54 95.67 98.09 97.50 95.45 

Entropy+ AlexNet 95.90 93.56 96.78 93.56 94.56 96.90 95.56 97.44 96.88 93.78 

Entropy+GoogleNet 94.56 92.45 95.67 92.00 93.20 94.50 93.00 94.40 95.12 90.34 

Entropy+EfficientNet 89.89 90.00 90.50 89.56 90.09 90.43 90.26 90.23 88.09 89.56 

Entropy+ VGG-16 87.54 87.09 89.90 87.89 86.89 88.54 84.65 89.89 86.51 82.45 

Entropy+MobileNet v2 86.89 85.81 84.56 80.76 85.56 82.90 83.00 84.36 82.67 80.45 

Entropy+ SVM 84.45 84.09 84.20 83.90 82.22 83.90 82.98 81.76 82.90 83.09 

Entropy+ KNN 82.89 82.19 81.98 81.67 82.09 81.99 80.23 81.80 81.03 81.65 

Kurtosis+ GAPCNN  99.95 98.85 99.97 98.93 99.52 98.20 98.28 99.98 99.11 99.09 

Kurtosis+ CNN 97.09 96.08 97.65 95.66 96.09 92.67 90.04 93.20 91.23 92.33 

Kurtosis+ AlexNet v2 93.56 92.33 94.78 93.40 94.11 90.08 88.90 91.33 90.22 90.00 

Kurtosis+GoogleNet 90.10 91.90 92.94 92.11 91.00 86.88 85.67 90.00 86.34 84.56 

Kurtosis+EfficientNet 85.78 85.89 90.11 89.09 84.56 87.98 87.90 89.90 83.55 83.45 

Kurtosis+ VGG-16 86.57 85.89 87.34 87.77 82.20 87.08 86.89 88.45 82.60 85.67 

Kurtosis+MobileNet v2 82.80 82.49 84.69 86.90 82.07 84.09 84.34 85.12 84.70 83.33 

Kurtosis+SVM 81.90 80.76 81.65 80.67 80.09 82.90 82.23 82.90 81.60 81.80 

Kurtosis+KNN 80.95 80.77 80.01 80.00 80.32 81.89 80.98 80.45 81.90 80.98 

Skewness+ GAPCNN 98.55 98.46 99.22 99.10 99.09 99.70 99.75 99.85 98.90 98.89 

Skewness+ CNN 95.89 94.20 97.90 95.67 97.33 97.22 96.33 97.90 95.44 95.22 

Skewness + AlexNet 93.56 91.90 95.40 93.56 92.01 93.70 92.45 95.43 92.40 91.09 

Skewness EfficientNet 86.90 83.89 87.78 84.51 83.40 84.23 83.12 88.76 83.04 85.45 

Skewness + VGG-16  85.09 85.23 85.54 83.37 82.20 83.00 81.34 84.56 82.11 80.44 

Skewness +MobileNet v2 80.00 81.98 82.56 80.12 81.88 81.90 80.31 82.00 80.10 81.99 

Skewness+SVM 81.90 80.87 80.55 80.12 80.21 82.90 82.07 81.80 81.08 81.01 

Skewness+KNN 80.95 80.88 80.54 80.00 80.21 81.99 81.80 81.75 81.00 80.95 
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5. CONCLUSION 

 

Infant cries convey information about the infant’s feelings. 

This article discusses different types of statistical distribution 

patterns and the GAPCNN for the classification of infant cry 

signals. The audio cry signals are converted into mean, 

median, variance, energy, entropy, skewness, and kurtosis 

pattern distribution images using MODWT. Different types of 

distribution pattern images are fed into the GAPCNN for 

further classification. The performance of the proposed 

methods is compared with other CNN models, and the 

experimental results reveal that the statistical base methods 

produce promising results compared to other methods. 
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