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A Regularized Spiking Neural Network and Gated Recurrent Unit (RSNN-GRU) with 

multi-level feature learning are used in the proposed model to forecast agricultural yield. 

Using t-SNE and Kernel PCA approaches, the preprocessing step encompasses data 

cleaning, standardization, normalization, and dimensionality reduction. The dataset is 

divided into training and testing sets with an 80-20 split to create the model. Statistical and 

higher-order statistical features as well as two newly proposed features, adaptive weighted 

kurtosis, and adaptive weighted skewness, are all used in feature extraction. A Self-Adaptive 

Farmland Fertility Optimization (SAFFO) algorithm is used for feature selection, improving 

feature selection performance. The SAFFO algorithm's hyperparameter adjustment helps the 

RSNN-GRU model even more. The performance of the proposed model is compared to that 

of previous deep-learning models for agricultural yield prediction using some evaluation 

metrics. The proposed model performs better than others, according to the results, and has 

a lot of potential for usage in the agricultural sector. Python 3.7.9 is used to carry out the 

proposed model's implementation. The results show that the proposed SNN-GRU has better 

performance in terms of predicting the better crop-yield with an accuracy of 96.1% and 

96.5% with the help of hyperparameter learning rate of 0.7 and 0.8 respectively. The other 

metrics such as precision, sensitivity, specificity and F-measure have shown better results 

when compared to existing models such as CNN, RNN, LSTM and DNN. 
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1. INTRODUCTION

Crop yield prediction is the practice of estimating how 

many crops will be harvested from a specific area or farm 

utilizing a variety of technology and data analysis techniques. 

Farmers and agricultural specialists use this information to 

make judgments about crop management, resource allocation, 

and market forecasts. Predicting crop yields accurately can aid 

in streamlining farming procedures, boosting productivity, and 

ultimately enhancing food security. based on remote sensing, 

agricultural yield. Due to the lack of yield mapping devices 

among farmers, machine learning methodologies for 

prediction are limited [1], and enhancing the accuracy of 

agricultural yield prediction can be done by integrating MLR 

coefficients and bias in ANN [2]. For all built ML models, 

adding fresh inputs from a cropping systems simulation model 

(APSIM) can increase the precision of yield forecasts [3]. It is 

critical for the economy, policymaking, and increasing global 

food security measures to anticipate soybean production in 

Brazil [4]. Owing to its ubiquity, accurate crop production 

forecasts and yield loss estimation owing to soil salinity are 

essential in Mediterranean countries [5]. At the county level, 

the CNN-LSTM model is used to forecast soybean production 

both at the end of the season and during the growing season. 

Three Self-Organizing Map models have also been utilized to 

link precision agriculture data with yield productivity is 

frequency classes, including CPANN, SKN, and XYF [6, 7]. 

A novel method for predicting agricultural yield by capturing 

hierarchical information is proposed utilizing a 3-D 

convolutional neural multi-kernel network, overcoming the 

complexity of crop growth and enhancing performance [8]. 

The efficiency of machine learning approaches for silage 

maize yield prediction is limited, especially when cultivated at 

various times and fields within a region, although they have 

been employed for crop monitoring and yield prediction using 

remotely sensed data. During the procedure, an electronic 

instrument is used to record the relative humidity, ambient 

temperature, and geographic coordinates, including latitude 

and longitude [9, 10]. 

The development of crop productivity prediction techniques 

can help farmers and other stakeholders choose the right crops 

and agronomic procedures for various climatic situations [11]. 

The goal of the study was to evaluate the effectiveness of 

combining data from a DNN with multispectral, UAV-

mounted RGB, and thermal meters to predict soybean grain 

production [12]. Data analysis and computational tools must 
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be developed to satisfy the needs of farmers to help them make 

decisions and get insights [13]. Crop yield can be optimized 

by using machine learning algorithms to extract meaningful 

information from precision agriculture equipment [14]. On the 

Google Earth Engine (GEE) platform, a modeling framework 

has been developed to forecast winter wheat yield. It integrates 

data on the weather, remote sensing, and soil [15]. Crop yield 

prediction plays a significant role in better allocation of 

resources, ensuring food security, and data-driven decision-

making in the farm. Conventional machine learning and deep 

learning models, including Convolutional Neural Networks 

(CNN), Recurrent Neural Networks (RNN), and Long Short-

Term Memory (LSTM) models, have been extensively used 

for yield prediction. However, these approaches have several 

drawbacks. Feature extraction in conventional techniques 

struggle to capture complex statistical relationships in 

agricultural data, as the process relies mainly on raw data. 

Hence the feature extracted are sub-optimal which may lead to 

incorrect predictions. Principle Component Analysis (PCA) 

fails to preserve the relationship between input variables 

which impacts predictive performances. Inefficient feature 

selection leads to increased computational costs. To address 

these limitations, we propose a Regularized Spiking Neural 

Network with Gated Recurrent Unit (RSNN-GRU) model 

with multi-level feature learning which integrates. 

1. Adaptive weighted kurtosis & adaptive weighted 

skewness is used to capture the higher order statistical 

properties of crop yield data for better accuracy then 

conventional learning models 

2. Self-Adaptive Farmland Fertility Optimization (SAFFO) 

Algorithm improves feature selection and hyperparameter 

tuning to enhance the model’s efficiency 

3. To reduce computation complexity, Two-Fold 

Dimensionality Reduction (t-SNE and KPCA) ensures 

retaining discriminative features and information. 

There are various components to this study article. A 

literature review is provided in Section II. In Section III, the 

putative mechanism employed in this work is outlined, and in 

Section IV, the experimental findings are covered. Section V 

provides an overview of the research's conclusions. 

 

 

2. LITERATURE REVIEW 

 

To forecast rice grain yield in 2017, Zhou et al. [16] 

employed single-stage and multi-temporal vegetation indices 

generated from multispectral and digital photos. According to 

the findings, regardless of the type of imaging, the booting 

stage is the best stage for prediction utilizing VIs at a single 

stage. A cutting-edge UAV-based hyperspectral push broom 

scanner system that has been created to gather superior 

spectral and spatial quality high-resolution data was proposed 

in 2018 by Kanning et al. [17]. This revolutionary technique 

was best suited for exploring smaller areas, such as specific 

plots in precision farming. Zhao et al. [18] explored the 

potential application of S2 MSI imagery for mapping the 2020 

dryland wheat yield at the field scale and across the NEAUS. 

S2 time series were used to derive vegetation indices (VIs) and 

vegetation growth metrics. Then, the accuracy of these traits 

in predicting wheat yields was tested. At the shire scale, we 

evaluated whether merging VIs with a crop stress index 

produced by the Oz-wheat model improved yield prediction. 

Wei et al. [19] suggested partitioning soybean 

evapotranspiration for yield projections. The dual crop 

coefficient method accounting for transpiration and soil 

evaporation components was used in the SIMDualKc water 

balance model. This allowed for the full analysis of soybean 

water use, an important step towards understanding yield gaps 

and enhancing crop management practices. Cai et al. [20] have 

presented a range of machine learning and regression 

algorithms for predicting wheat yields in Australia based on 

weather and satellite data in 2019 using Exploratory Data 

Analysis (EDA).  

According to the study, accurate yield forecasts are better 

obtained when one uses satellite and climate data information. 

Wan et al. [21] proposed to combine structural and spectral 

information produced from UAV-based images in order to 

improve the prediction of rice yield across growing cycle in 

2020. The aim of the study was to increase the accuracy and 

consistency of meteorological data used in yield forecasting 

models by using both types of data. In 2018, Sabzi et al. [22] 

proposed a computer vision-based expert system for site-

specific spraying to identify potato plants and three types of 

weeds (Secale cereale L., Polygonum aviculare L., and 

Xanthium strumarium L.) This technique employs advanced 

image processing algorithms to reliably differentiate between 

desirable plant species and weeds, enabling the same crop 

health to be maintained with less herbicide. Saranya and 

Nagarajan [23] predicted that low-resolution satellite images 

would be required in operational systems in 2020, because 

they were being widely used for crop monitoring and yield 

prediction. Due to their wide coverage and high temporal 

frequency, these images are a profitable alternative at both 

national and regional scales. This capability makes them 

widely used for numerous agricultural applications such as 

crop health monitoring and forecasting yield potential. 

Elavarasan and Vincent [24] proposed a new hybrid 

regression-based generalization method called Reinforcement 

Random Forest in 2021, which outperformed classical 

machine learning models, which conventional machine 

learning algorithms like decision trees, random forests, and 

artificial neural networks and gradient boosting and DQNs. 

This novel strategy dramatically boosts performance through 

reinforcement learning to maximize utilization of available 

samples during the tree construction stage. In 2021, Gong et 

al. [25] proposed a greenhouse crop yield prediction method 

based on fusing two advanced frameworks, namely temporal 

convolutional network (TCN) and recurrent neural network 

(RNN), to handle the temporal sequence data from the 

greenhouse environment. This approach produces more 

accurate and reliable yield estimates. 

 

2.1 Problem statement 

 

The process of collecting the evaluation data from UAV-

based multispectral and digital images, as well as the 

processing of images in multi-temporal vegetation indices, 

takes a long time and is resource-intensive, thus the 

application of multi-temporal vegetation indices for prediction 

of rice production using UAV-based multispectral and digital 

images is limited. External factors, like weather, affect crop 

growth and development and also influence the accuracy of 

projections [17]. A dataset of unmanned aerial vehicle 

multispectral images acquired over a field [26] is considered 

for this research. A limitation of this approach is that it requires 

the use of specialised equipment and knowledge to fly the 

UAV and analyse the data, particularly: (1) multi-temporal 

UAV-based RGB and multispectral images for predicting rice 
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grain yield; (2) UAV images of multi-temporal bases; (3) 

UAV multispectral images. In addition, how different 

environments, growth stages and climate in different locations 

would affect the population models limited the applicability of 

it [22]. Another disadvantage is that the implementation of 

multi-temporal UAV-based RGB and multispectral images for 

prediction of rice grain yield requires advanced equipment and 

qualified personnel that can operate the UAV and interpret the 

data. In addition, differences in environmental conditions and 

growth stages between geographical sites and seasons may 

restrict the applicability of the model [23]. On the downside, 

agricultural output prediction systems may be based on data 

from the past, which does not account for rapid changes or 

unanticipated events, such as diseases or extreme weather. In 

addition, variations in environmental conditions, soil quality, 

etc., which could potentially impact crop growth and 

development, may also be negative [24]. Crop yield prediction 

algorithms may behind aggressive and exact data inputs, such 

as weather and dirt data, that aren't always to be had or correct, 

which may be a downside. Additionally, prediction accuracy 

can be affected by changes in weather, outbreaks of diseases, 

pest infestations, or other factors that may influence the 

growth and development of a crop. 

 

 

3. PROPOSED METHODOLOGY 

 

The proposed method for agricultural production prediction 

consists of several procedures aimed at obtaining precise and 

efficient estimates. First, an open-source platform allowed one 

to compile a dataset on agricultural yields. Pretreatment 

processes like data cleansing, standardization, normalizing, 

two-fold dimensionality reduction employing t-SNE and 

KPCA help to provide a clean dataset. Features from the data 

are extracted using statistical and higher-order statistical 

features as well as the proposed adaptive weighted kurtosis 

and skewness features following the division of the data into 

training and testing sets. Farmland Fertility Optimization 

(FFO) is a recently developed self-adaptive metaheuristic 

algorithm used for feature selection. The FFO algorithm is 

changed to improve performance and becomes self-adaptive 

with changing its parameters. Better optimization solutions 

and feature selection performance are obtained by the 

proposed Self- Adaptive FFO algorithm. The top features 

found by feature selection then feed the classifier forecasting 

crop yield. 

Agricultural yield is estimated using a modified spiking 

neural network (MSNN), which features a regularized loss 

function to improve prediction performance. To enhance the 

MSNN, a gated recurrent unit (GRU) is included into its 

architecture and produces a Regularized SNN with GRU 

(RSNN-GRU). Hyperparameter adjustment is done using the 

SAFFO approach, therefore optimizing the RSNN-GRU 

model even more. The performance of the proposed model is 

finally assessed using multiple criteria including RMSE, MAE, 

BCE, CCE, F1-Measure, and Accuracy. To evaluate the 

suggested approach, several well-known models including 

"Convolution Neural Network (CNN), Recurrent Neural 

Network (RNN), Long Short-Term Memory (LSTM), and 

Deep Neural Network (DNN) are compared. It is a feasible 

option for estimating agricultural output since the proposed 

technique performs better and generates more accurate 

forecasts. Figure 1 shows the whole flow of the suggested 

model. 

3.1 Pre-processing 

 

Many pre-processing techniques can help to clean a dataset 

before classification modelling. These comprise standardizing 

the data to assure homogeneity, normalizing the data to take 

into account different scales, and data cleansing to eliminate 

disparities. T-SNE and kernel PCA are two methods for two-

fold dimensionality reduction that can help to lower the 

required number of variables for analysis. 

 

3.1.1 Data cleaning 

During data preparation, data is examined, cleaned, and 

corrected to create a wholesome, error-free final data set. In a 

wide range of applications, faulty or incomplete data can lead 

to poor analysis and incorrect conclusions with dire 

implications. In order to prepare your data for analysis you will 

need to perform a data cleaning task, which means detecting 

and removing any inaccuracies or inconsistencies (e.g., 

duplicate data, missing values, problems with format). 

However, cleaning the data you can make sure the dataset is 

accurate, reliable, and suitable for analytics, and that any 

derived conclusions are legitimate and useful. 

 

3.1.2 Data standardization 

Data standardizing means transforming data into a format 

that is quickly understood and interpret by computers. This 

enables data analysis to be performed in a simplified manner, 

making it possible for a range of systems to successfully 

exchange data. Data standardizing help to keep the data correct 

and quality. Uniform data provides a backing for the decision-

maker to recognize glitches and aberrances. Also, data 

standardizing saves time and resources while working on data 

administration and help to achieve better communication 

between various teams and companies that utilize the same 

data. 

 

3.1.3 Data normalization 

Data normalization helps to eliminate redundancy and 

dependency issues therefore guaranteeing consistency and 

accuracy in data. It means breaking down a large database into 

smaller, more controllable tables with individual sets of 

relevant data. This helps to reduce the likelihood of data 

discrepancies that is, duplicate or inconsistent data. 

Normalization also helps to minimize data duplication, so 

producing an easier to update and maintain database with less 

storage space usage. 

 

3.1.4 Two-fold dimensionality reduction 

Dimensionality can be lowered using two different 

approaches: Kernel Principal Component Analysis (KPCA) 

and t-Distributed Stochastic Neighbor Embedding (t-SNE). 

These techniques can help to reduce the feature count of a 

dataset, therefore enabling analysis and visualization. 

 

3.1.5 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

Using the efficient data visualization method called t-

Distributed Stochastic Neighbor Embedding (t-SNE), high-

dimensional data can be effectively reduced to two or three 

dimensions for visualization. When presenting complex and 

erratic data structures, the method is particularly useful. Using 

t-SNE, data points are first evaluated in a high-dimensional 

space for pairwise similarities and subsequently a low-

dimensional representation of the data is optimised 

maintaining these similarities. t-SNE is useful for high-
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dimensional data representation visualization as it preserves 

local structures. t-SNE retains nonlinear structures inherent in 

remote sensing and soil data unlike PCA which assumes 

linearity. It is useful for identifying clusters in crop yield data 

that may correspond to particular weather conditions, soil 

types, or farming practices.  
 

3.1.6 KPCA 

A dimensionality reduction approach called KPCA converts 

high-dimensional data into a lower-dimensional space. The 

KPCA is a nonlinear generalization of PCA through kernel 

functions. The advantage of utilizing a kernel function to 

translate the data to a high-dimensional space before 

performing PCA makes it similar to the conventional PCA 

technique. When the data cannot be separated linearly, or 

when the connection between the features is nonlinear, KPCA 

may be helpful. KPCA can find complicated associations 

between the characteristics that would be impossible to find 

with conventional PCA by mapping the data into a high-

dimensional space. This is especially beneficial when trying to 

analyze heterogeneous agricultural datasets, wherein attributes 

such as soil composition, weather parameters, NDVI indices, 

etc. have complex interdependencies. Feature extraction, 

which entails changing the data into a new collection of 

features that are more beneficial for downstream analysis, is 

another application of KPCA. KPCA retains important spatial 

and temporal variations in the ability to predict the yield of 

agricultural production, unlike ICA that aims of statistical 

independence. 
 

3.2 Feature extraction 
 

Higher-order statistical features like skewness, variance, 

and kurtosis are frequently utilized in feature extraction 

together with more traditional statistical features such as 

Harmonic Mean (HM), median, and standard deviation. To 

extract more significant characteristics from data, the 

proposed techniques of adaptive weighted kurtosis and 

adaptive weighted skewness can be used.  

3.2.1 Statistical features 

Statistical features are foundational in data science and 

analytics because they provide insight into the distribution 

data and inform the selection of the best machine learning 

models. These characteristics include statistical properties 

such as the mean, median, and percentiles. Statistically based 

feature selection methods are also of utmost importance in the 

analysis of the data since they help discern the most important 

features that are impacting the target variable significantly. 

Methods make models more accurate and efficient by 

removing unnecessary or irrelevant traits. The study of 

statistical correlations between input and target variables is a 

fundamental aspect of machine learning model optimization.  

• HM: HM is a statistical measurement which is the 

reciprocal of the average of the reciprocal of the data values. 

It also accounts for all the observations and gives less 

weighting to the larger values as compared to the smaller ones. 

Hence, it is employed whenever there is a need to specify the 

nuances. When ratios are involved such as the case of average 

speed or price per unit the HM is used. This feature of 

balancing out the small and large numbers that can skew the 

entire view is how HM can help to give a better picture of 

actual data. The arithmetic mean is obtained by listing the 

objects reciprocally and dividing the individual counts from 

the overall count. 

 

ℎ𝑚 =
𝑚

[(
1

𝑎1
)+(

1

𝑎2
)+...+(

1

𝑎𝑚
)]

  (1) 

 

• Median: A median is a statistical estimate of central 

tendency that shows the midway value of a set of statistics. It 

is the point at which a set of data is split in half with half of 

the values above the median and the other half below. Usually 

called the 50th percentile, the median is the central observation 

in distribution. Calculated with m as the total number of 

observations, the mean and the median have value. 

 

𝑚𝑒𝑑𝑖𝑎𝑛 =
(𝑚+1)

2
  (2) 

 

 
 

Figure 1. Proposed model for crop yield prediction 

 

• Standard Deviation: The standard deviation is a statistical 

instrument for measuring dispersion or variance in a dataset. 

The square root of the variance shows the extent of data point 

deviations from the mean. Whereas a smaller standard 

deviation indicates a steadier distribution, a larger standard 

deviation indicates a more diverse sample. Since it clarifies the 

features of the dataset and helps to identify any outliers or 

patterns, this statistic is helpful in many fields, including risk 

analysis and quality management. The mean's, medians, and 

standard deviation's respective values are found by: 

 

𝑆𝑑 = √
1

𝑚−1
∑ (𝑎𝑝 − 𝑎̅)2𝑚

𝑝=1   (3) 

 

3.2.2 Higher order Statistical Features 

• Skewness: Skewness is a statistical measure of a dataset's 

asymmetrical distribution. It implies that if the distribution 

spans one side of the peak longer than the other. A positive 
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skewness denotes a right-skewed distribution; a negative 

skewness denotes a left-skewed distribution. 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 3 ×
(𝑀𝑒𝑎𝑛−𝑚𝑒𝑑𝑖𝑎𝑛)

𝑆𝐷
  (4) 

 

• Variance: Variance in statistics is a measure of dataset 

distribution. It measures dispersion and assesses the 

fluctuation of data points about the mean. Data can be 

expressed both as a group or non-groups. Individual data 

points make up ungrouped data; grouped data is data shown as 

class intervals. 

 

𝑉𝑎𝑟(𝐴) = 𝐸[(𝐴 − 𝜇)2] (5) 

 

• Kurtosis: Kurtosis measures how much outliers are 

present in your data, the higher the kurtosis means that there is 

a high presence of outliers. It reflects how much the tails of a 

distribution deviate from a normal distribution. High excess 

kurtosis indicates the presence of more aggressive outliers, and 

it measures the tail of the distribution compared to a Gaussian 

distribution. Therefore, E = E(a). 

 

𝛽2 = (
𝐸(𝑎)4

(𝐸(𝑎)2)2) − 3  (6) 

 

3.2.3 Adaptive weighted kurtosis 

Kurtosis which is a measure of tail data is helpful in 

determining outliers which is helpful in data related to crop 

yield for rare events. An example is adaptive weighted kurtosis, 

which gives relative weight to check the values more if there 

are any changes into data set. The adaptive weighted kurtosis 

Approach uses historical data to identify relationships between 

distributions and, ultimately, predicts crop yields by 

leveraging patterns it finds in the kurtosis of that distribution. 

This method allows for more specific estimations of crop yield 

by changing the weights given to different parts of the 

distribution as the shape of the distribution changes through 

time. The first step in predicting crop yield via adaptive 

weighted Kurtosis is gathering historical data about the crop 

yield in a specific location. It should be spread over multiple 

years and involve different climate and environment variables. 

Once the historical data is collected, the next step would be to 

calculate the kurtosis of the distribution of crop yields 

recorded in each year in the data set using the following 

formula: 
 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  [∑(𝐴𝑗  −  𝐴̅)4 / 𝑀] / (𝐾4) (7) 

 

where, A is the mean of yield over all years, Aj is the yield in 

the j-th year, M is the number of years and K is the standard 

deviation of yield over the years. The weights for each year are 

then determined according to the kurtosis value after the 

kurtosis values have been obtained. This way, in the case of 

high kurtosis values, more weight can be placed on the years 

with a high possibility of extreme yields. If you want, you can 

calculate the weight using this formula:  
 

𝑊𝑒𝑖𝑔ℎ𝑡 =  (𝑆 − 𝑆̅) / 𝐾 (8) 
 

where, S is the kurtosis in a given year, 𝑆̅  is the average 

kurtosis and K is the average kurtosis standard deviation after 

the weights are determined, the adaptive weighted mean yield 

for the following year can be computed as a weighted mean of 

all the historical yield data. In the previous step, we established 

the weight for every single year. Where AWM is the adaptive 

weighted mean, μ is the mean and σ is the standard deviation.: 
 

𝐴𝑊𝑌 =  ∑(𝑊𝑒𝑖𝑔ℎ𝑡 ∗  𝐵𝑗) / ∑𝑊𝑒𝑖𝑔ℎ𝑡 (9) 
 

where, Bj is the particular year yield, Weight is the weight of 

the particular year as decided at the previous step, AWY is the 

adaptive weighted mean yield for future year. Adaptive 

weighted Kurtosis offers a way for farmers and policymakers 

to more accurately predict agricultural yields by taking into 

consideration variations in the crop yield distribution over 

time. This could lead to better decision-making and more 

accurate estimates of agricultural yields, which would drive 

towards improvements in crop management and higher yields. 

Using an adaptive version of the conventional kurtosis, this 

improved high impact events detection in crop yield data and 

achieved better prediction performance. 
 

3.2.4 Adaptive weighted skewness 

 Skewness refers to the asymmetry in the distribution of data 

points and indicates whether yields are skewed upward or 

downward. The statistical method of adaptive weighted 

skewness can be applied to predict crop yield when using past 

agricultural production data and investigate the distribution of 

agricultural production data. Skewness is a measure of the 

asymmetry of a distribution can inform whether the 

distribution predicting crop yields is skewed low or high in 

value. In practice, the adaptive weighted skewness approach 

involves changing the weights assigned to each observation in 

the historical data set based on their distance from the 

weighted mean of the historical data set. Adaptive weighted 

skewness is formulated in terms of data weighted standard 

deviation of the observations and total number of observations 

in the data set. This will cover negative (or positive) yield since 

Adaptive Weighted Skewness is completely dependent on 

time- and location-based skewness and thus ensures an 

accurate assessment of yield. By slowly updating weights of 

observations based on changes in the distribution of yield data 

over time, adaptive weighted skewness can eventually help 

identify crop performance trends in a more realistic light. 

When combined with adaptive weighted kurtosis, which 

measures the peak of the distribution, adaptive weighted 

skewness can provide a more comprehensive view of the 

distribution of agricultural yields, and contribute 

considerations for forecasting crop yields. 
 

𝐴𝑊𝑆 =  𝛴(𝑤𝑗 ∗  (𝑎𝑗  −  𝑎̅)3) / ((𝛴(𝑤𝑗))3/2 ∗  𝑚 

∗  𝑘3) 
(10) 

 

where, 

wj = weight of the j-th observation 

aj = j-th observation 

a ̅ = weighted mean of the observations 

m = number of observations 

k = weighted standard deviation of the observations 

Adaptive weighted skewness and adaptive weighted 

kurtosis can make farm and government decisions, including 

crop management practices, such as planting techniques, 

fertilizer application, insect control, etc. The use of machine 

learning methods also allows for previous distributions of 

yields and their characteristics over time to be factored into 

forecasts, ensuring greater accuracy in predictions that would 

allow for better decision making on the ground, which could 

ultimately lead to more sustainable agricultural practices. 
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3.3 Feature selection 
 

 A new self-adaptive metaheuristic algorithm called FFO is 

proposed to accomplish optimal feature selection. Image 

Segmentation Locks its Focusing Features into the FFO 

Algorithm Output: 1) Setting of the FFO algorithm has been 

changed to the self-adaptive types and improved its 

performance. We have presented Self-Adaptive FFO to better 

optimize the feature selection process using new alternatives. 

In the next step, the selected best features are taken as inputs 

for the classifier to predict the yield of a crop resulting in better 

agricultural practices.  
 

3.3.1 Self-adaptive FFO 

 In order to obtain the optimal feature selection, a new self-

adaptive metaheuristic algorithm has been introduced called 

FFO. The parameters of the FFO algorithm are improved to 

self-adaptive performance. Based on the above analysis, the 

Self-Adaptive FFO is proposed to enhance the procedure of 

feature selection with more effective optimization options. 

The selected best features are then used as input by the 

classifier to predict the crop yield which results in better 

agricultural practices. 

 

Initializing FFO Parameters and Solutions 

 

• Step 1: Upgradation of Soil Quality 

In this step, the FFO algorithm generates the total 

population 𝑀𝑝𝑜𝑝  in the search space using the number of 

cropland segments (s) and the possible solutions in each piece 

(m). Initializing both FFO parameters and solutions serves not 

just as the first step of the algorithm but also opens doors for 

further inquiries. 
 

𝑀𝑝𝑜𝑝 = 𝑠. 𝑚 (11) 

 

Pics of the FFO Algorithm-The algorithm doesn't use 

general equations like other algorithms, but generates the 

values of the solution from the supplied data range and its 

distribution. This equation, Eq. (12), is utilized for generating 

random solutions in the search space. This stage is crucial to 

ensuring a diverse solution and is instrumental in initializing 

the FFO parameters. 
 

𝑎𝑗𝑖 = 𝐿𝐿𝑖 + 𝑟𝑎𝑛𝑑 ∙ (𝑈𝐿𝑖 − 𝐿𝐿𝑖),  

∀𝑗 ∈ 𝑚, 𝑖 ∈ 𝑠 
(12) 

 

where, LLi and ULi are respectively the min/max bounds of 

solution x and a rand is a number randomized between 1 and 

0. 

• Step 2: Define SQ in each section of farming 

At this point, solutions in each piece of farmland can be 

determined, as indicated in the subsequent Eq. (13). 

𝑃𝑜𝑟𝑡𝑖𝑜𝑛𝑘 = 𝑎(𝑥𝑖), 𝑥 = 𝑚 ∙ (𝑘 − 1) + 1: 𝑚 ∙ 𝑘, ∀𝑘 ∈
𝑠, 𝑖 ∈ s 

(13) 

 

The average of the present solutions in each area of 

farmland is used to determine SQ. 

 

𝐹𝑖𝑡𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑘
= 𝑚𝑒𝑎𝑛(𝑎𝑙𝑙𝐹𝑖𝑡(𝑎𝑗𝑖)𝑖𝑛𝑃𝑜𝑟𝑡𝑖𝑜𝑛𝑘), 

∀ 𝑘 ∈ 𝑠, 𝑗 ∈ 𝑚, 𝑖 ∈ 𝑠 
(14) 

 

• Step 3: Memory modification 

The best answers for every section are saved in the global 

memory, along with a few of them in the accompanying 

regional memory for that section. The number of solutions in 

the regional memory NReg and the number of solutions in the 

universal memory NUniv, respectively, are defined by the 

following Eqs. (15) and (16). 

 

𝑁𝑅𝑒𝑔 = 𝑟𝑜𝑢𝑛𝑑(𝑇 ∙ 𝑚), 0.1 < 𝑇 < 1 (15) 

 

𝑁𝑈𝑛𝑖𝑣 = 𝑟𝑜𝑢𝑛𝑑(𝑇. 𝑀𝑝𝑜𝑝), 0.1 < 𝑇 < 1 (16) 

 

These memories retain solutions because they are relevant 

and suitable. At this point, both memories had been updated, 

and the greatest and worst parts had been determined. This 

stage involves defining the finest and worst parts when 

memories have been refreshed. 

• Step 4: Change SQ in each section of cropland 

The region with the lowest SQ will currently have the most 

variations, and its responses are coupled with a solution that is 

already stored in the global memory, as shown in the following 

Eq. (17): 

 

𝐴𝑛𝑒𝑤 = 𝑞 ∙ (𝐴𝑗𝑖 − 𝐴𝑁𝑈𝑛𝑖𝑣
) + 𝐴𝑗𝑖 (17) 

 

𝑞 = 𝛼 ∙ 𝑟𝑎𝑛𝑑(−1.1) (18) 
 

where, 𝐴𝑁𝑈𝑛𝑖𝑣
 is a parameter of FFO that is first adjusted 

between 0 and 1, and 𝐴𝑁𝑈𝑛𝑖𝑣
 is randomly selected from the 

existing solutions within the universal memory, where 𝐴𝑛𝑒𝑤 

represents a new solution, 𝐴𝑗𝑖 is a solution in the poorest area 

of farmland that is chosen to perform variations, and 𝐴𝑁𝑈𝑛𝑖𝑣
 is 

a parameter of FFO that is adjusted between 0 and 1. After the 

poorest area of farmland has undergone adjustments, the 

remaining areas must be integrated with the available options 

across the entire search width. The solutions that can be found 

in the remaining portions are defined by the following Eqs. (19) 

and (20): 
 

𝐴𝑛𝑒𝑤 = 𝑞 ∙ (𝐴𝑗𝑖 − 𝐴𝑣𝑗) + 𝐴𝑗𝑖 (19) 

 

𝑞 = 𝛽 ∙ 𝑟𝑎𝑛𝑑(0.1) (20) 
 

where, 𝐴𝑣𝑗 is an FFO parameter that is initially set between 0 

and 1 and randomly selected from the already-found solutions 

across the whole search breadth. 

• Step 5: Incorporate Soil 

Every soil in the farming parts is now included under the 

best options in their local memory, which is called FitnessReg 

the end. As shown in the following Eq. (21), the incorporation 

of all accessible solutions is not constrained by local memory 

or at this stage, but rather, they are integrated with the best 

solutions currently available to improve the quality of 

solutions in each segment. 

𝑄 = {
𝐴𝑛𝑒𝑤 = 𝐴𝑗𝑖 + 𝜔1 ∙ (𝐴𝑗𝑖 − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑈𝑛𝑖𝑣(𝑦)) , ∀ 𝐻 > 𝑟𝑎𝑛𝑑

𝐴𝑛𝑒𝑤 = 𝐴𝑗𝑖 + 𝑟𝑎𝑛𝑑 ∙ (𝐴𝑗𝑖 − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑅𝑒𝑔(𝑦)) , ∀ 𝐻 ≤ 𝑟𝑎𝑛𝑑
  (21) 

 

where, H represents an FFO parameter that is initially adjusted 

and gradually decreased as a result of multiplying by a factor 

Du based on algorithm reiteration as shown in the following 

Eq. (22) where 1 represents an FFO parameter that is initially 

adjusted and gradually decreased as a result of multiplying by 

a factor Du based on algorithm reiteration. 

 

𝜔1 = 𝜔1 ∙ 𝐷𝑢, 0 < 𝐷𝑢 < 1 (22) 
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• Step 6: Finishing Conditions  

When the FFA algorithm has examined all potential 

solutions in the search space and has reached the maximum 

number of optimization iterations, it stops. 

 
MFFA 

 

The FFA algorithm has been enhanced with MFFA to 

improve performance. The addition of a mutation factor and 

the inclusion of a local search mechanism, respectively, are the 

alterations performed in the fourth and fifth phases of 

traditional FFA. In the fourth stage. The Levy flight motion 

method was used in place of Eqs. (18) and (20). Levy flights, 

a random walk approach, are employed in this stage to alter 

Eqs. (18) and (20) for improved exploitation and exploration. 

To enhance the FFA method, the modified equations add the 

Levy flights technique, which involves taking a sequence of 

successive random steps. 

 

𝑞 = 𝛼 × 𝐿𝑒𝑣𝑦(𝑀𝑣𝑎𝑟) (23) 

 

𝑞 = 𝛽 × 𝐿𝑒𝑣𝑦(𝑀𝑣𝑎𝑟) (24) 

 

The MFFA including Levy flights enable the algorithm to 

have both local and global searching capabilities. In the 

exploitation and exploration phases of the algorithm, levy 

flights represent a series of successive random movements. 

Additionally, the same formula to determine Levy flights is 

also used in ways to optimize performance. 

 

𝐿𝑒𝑣𝑦(𝑀𝑣𝑎𝑟) = 0.01 ×
𝑑𝑑1×𝛿

|𝑑𝑑2|

1
𝛽

  (25) 

 

The step size, d, in Eq. (25). In the random walk process, 

diffusion of step sizes is controlled by the Levy flight exponent. 

This means that high exponents increase chances of taking 

longer steps which is better for a global search, and low 

exponents increases chances of taking shorter steps which is 

better for a local search. 

 

𝛿 = (
Γ(1+𝛽)×sin (

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2 )
)  (26) 

 

where, Γ(𝑎) = (𝑎 − 1)!. 
In the fifth stage, the sine-cosine method adds the sine-

cosine function to the Eq. (21), so that the various solutions 

can oscillate around the best one. The output equation appears 

in an altered version that includes sine-cos function and 

flooded with paths teaming to converge to the optimal. 
 

𝑄 =

{
𝐴𝑛𝑒𝑤 = 𝐴𝑗𝑖 + 𝑑1 × sin(𝑑2) × (𝐴𝑗𝑖 − 𝐵𝑒𝑠𝑡𝐺𝑙𝑜𝑏𝑎𝑙(𝑦)) . 𝐻 > 𝑟𝑎𝑛𝑑

𝐴𝑛𝑒𝑤 = 𝐴𝑗𝑖 + 𝑑1 × cos(𝑑2) × (𝐴𝑗𝑖 − 𝐵𝑒𝑠𝑡𝑙𝑜𝑐𝑎𝑙(𝑦)) . 𝐻 > 𝑟𝑎𝑛𝑑
}  (27) 

 

𝑑1 = 2 − 𝐼𝑡 × (
2

𝑀𝑎𝑥𝐼𝑡
)  (28) 

 

𝑑2 = (2 × 𝑝𝑖) × 𝑟𝑎𝑛𝑑(0,1) (29) 

 

where, "It" is the current iteration, MaxIt is the maximum 

number of iterations and "rand" is a random number generated 

uniformly over (0-1). 
 

3.4 Crop yield prediction 
 

 The authors proposed a modified Spiking Neural Network 

(MSNN) with Regularized Loss and the Gated Recurrent Unit 

(GRU) to enhance agricultural production forecast. SAFFO 

while readjusting hyper-parameters (such as Batch Size, 

Momentum, Learning Rate, Epoch, etc.) equipped the 

resultant Regularized SNN with GRU (RSNN-GRU) model, 

and so far a significantly improved prediction performance 

was reached using criteria such as RMSE, MAE, BCE, CCE, 

F1-Measure, and Accuracy. RSNN-GRU achieving better 

accuracy underscores its potential as a tool for predicting crop 

yield. Figure 2 illustrates the layered architecture for the 

proposed RSNN and GRU. 
 

3.4.1 Modified Spiking Neural Network 

Regularized SNN: Crop yield prediction is important for 

food security and sustainable agriculture. The regularized 

Spiking Neural Network (RSNN), for instance, employs 

spiking neurons to account for the complex relationship 

between environmental factors and agricultural output. The 

RSNN employs a regularized loss function adding a penalty 

term to the context of the objective function to reduce 

overfitting and improve generalization performance. This 

gives our network and urge to have smaller weights. A 

regularization term like LT1 or LT2, for example, is added as 

a penalty that is inversely proportional to the sum of absolute 

values of the weights or the respective squared values. LT1 

regularization also prefers sparse weights as it reduces 

network complexity, helps in overfitting, and increases 

generalization performance. 

The RSNN can be trained using various approaches, such as 

backpropagation through time (BPTT) or spike-timing-

dependent plasticity (STDP), by adjusting the network weights 

based on the difference between the desired and the actual 

outputs. This allows the network to predict more accurately the 

relationship between environmental condition and crop 

productivity. In conclusion, RSNN is a new method for 

predicting agricultural yield with optimal generalization 

performance since it has the ability of capturing nonlinear 

relationships, and the ability of overcoming the problem of 

overfitting in the model, and it is promising once again. A 

principal component of the RSNN, the regularization term of 

the loss function promotes simpler network architectures, 

enhancing prediction performance. It is stated that the 

regularized Loss function is 
 

𝐿𝑓 = 𝐸1 + 𝜆𝐷 (30) 

 
 

Figure 2. Layered architecture for RSNN and GRU 
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E1 is for the original loss function, Lf stands for the 

regularized loss function, D stands for the regularization term, 

and λ is a hyperparameter that defines the regularization 

strength. LT regularization is denoted as 

 

𝐷 = Σ|𝑊| (31) 

 

where, W is the weight of the network. 

 

GRU 

A GRU is less complicated and has fewer characteristics, 

but it still incorporates gating units that affect the flow of 

content within the unit. Follow the formula below to create a 

GRU layer. 
 

cT = σ(𝑎𝑇𝑉𝑐 + 𝑞𝑇−1𝑤𝑐) (32) 

 

Algorithm: Proposed RSNN-GRU model’s algorithm 

for crop yield maximization 

INPUT: Dataset (crop yield, environmental, soil, and 

weather features), Population size (N), Maximum 

iterations, Learning rate, Number of epochs, RSNN-GRU 

hyperparameters   

OUTPUT: Optimized RSNN-GRU model with high 

prediction accuracy   

Start 

1: Initialize dataset and preprocess data   

2: Normalize and standardize input features   

3: Apply dimensionality reduction using t-SNE and KPCA   

4: Extract statistical features: Mean, Median, Standard 

Deviation, Variance   

5: Compute adaptive weighted kurtosis and skewness   

6: Initialize SAFFO-based feature selection   

7: Compute initial fitness evaluation for all feature subsets   

8: Set s = initial feature subset   

9: For iteration = 1 to Maximum iteration do   

10:     While f(s) < f(best) do   

11:         For all k ∈ neighbors(s) do   

12:             Generate s* ∈ neighbors(s)   

13:             If fitness(s*) > fitness(s) then   

14:                 Replace s with s*   

15:             End If   

16:         End For   

17:     End While   

18: End For   

19: Initialize RSNN-GRU model with hyperparameters:   

        RSNN Layer: 2 layers, Leaky Integrate-and-Fire (LIF) 

neurons   

        GRU Layer: 3 layers, 128 units each, ReLU activation   

        Fully Connected Layer: 64 units, ReLU activation   

        Output Layer: 1 neuron, Sigmoid activation   

20: For epoch = 1 to Maximum Epochs do   

21:     Train RSNN-GRU model using optimized feature set   

22:     Compute loss using Mean Squared Error (MSE)   

23:     Backpropagate errors and update weights using Adam 

optimizer   

24: End For   

25: Evaluate model performance using Accuracy, RMSE, 

MAE, F1-score, Precision, Sensitivity, Specificity   

26: Compare results with CNN, RNN, LSTM, and DNN 

models   

27: Deploy trained model for real-time crop yield prediction   

28: Provide recommendations for precision agriculture   

end 

𝑑T = σ(𝑎𝑇𝑉𝑑 + 𝑞𝑇−1𝑤𝑑) (33) 

 

𝑞̌𝑇 = tanh (𝑎𝑇𝑉𝑞 + (𝑞𝑇−1 ∙ 𝑑𝑇)𝑤𝑞) (34) 

 

q𝑇 = (1 − 𝑐𝑇) ∙ 𝑞𝑇−1 + 𝑐𝑇 ∙ 𝑞̌𝑇  (35) 

 

where, 𝑞̌𝑇  represents the potential activation of the hidden 

state q𝑇 , cT  indicates how much of the prior memory is 

cascaded into the current time step, and 𝑑T determines how to 

mix the incoming input with the previous memory. 

 
 

4. RESULTS AND DISCUSSION 
 

The effectiveness of the suggested model was assessed 

using several measures, including RMSE, MAE, BCE, CCE, 

F1-Measure, and Accuracy. The outcomes were contrasted 

with those of other widely employed neural network 

architectures, including Deep Neural Networks, Long Short-

Term Memory, Convolutional Neural Networks, and 

Recurrent Neural Networks. 

 

4.1 Proposed model performance analysis 
 

All other models, apart from other CNN, RNN, LSTM and 

DNN, were compared with the recommended model at 0 

learning rate. The proposed model was the best of all the 

models; therefore, it has an accuracy of 0.961054 for overall 

performance. The precision of the proposed model was also 

very good as evidenced by its value of 0.885136, which 

indicated it was generating very few false positives. The 

proposed model achieved sensitivity and specificity values of 

0.885136 and 0.986360 respectively, demonstrating its ability 

to correctly identify positive scenarios while avoiding false 

positive diagnoses. The model reveals an F-measure that 

comes out as relatively high with a value of 0.885136 to assure 

balance between both sensitivity and precision. Matthew’s 

correlation coefficient (MCC) predictors or how significant 

the proposed model predict the future was 0.834525. The high 

Negative Predictive Value (NPV) of the model proposed also 

indicated that it generated very few false negatives. All in all, 

as we can see from this Table 1, the proposed model has the 

lowest False Positive Rate (FPR) [6] of all other models with 

FPR = 0.050612, indicating low number of false positives. As 

indicated by the 0.151835 value, the proposed model also 

produced a low FNR with a low number of false negatives. 

The proposed model, which demonstrated higher performance 

across several parameters, is, therefore, a potential model for 

further analysis and application. With a learning rate of 1, 

Table 2 lists the performance characteristics [6] for five 

different models: CNN, RNN, LSTM, DNN, and Proposed. 

With an accuracy of 0.965006, precision of 0.914321, 

sensitivity of 0.981900, specificity of 0.981900, F-measure of 

0.914321, MCC of 0.880532, NPV of 0.981900, FPR of 

0.033790, and FNR of 0.10136, the proposed model fared 

better than the other models in all metrics. The CNN model 

achieved 0.943351 accuracy, 0.849731 precision, 0.849731 

sensitivity, 0.974558 specificity, 0.849731 F-measure, 

0.787317 MCC, 0.974558 NPV, 0.062413 FPR, and 0.187240 

FNR. 
 

4.2 Graphical representation of the performance metrics 

of proposed model 
 

Figure 3 presents a visual illustration of the accuracy 
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performance statistic. It shows the relationship between the 

number of samples and "prediction accuracy rating" of a 

model. The accuracy score is higher when the predictions of 

the model are closer to the actual values. Figure 4 shows a 

graphic representation of our performance indicator, the F-

measure. X-axis denotes the number of samples or 

observations, while the y-axis denotes the F-measure score. 

Higher score on y-axis corresponds to better performance The 

above graph can be used to monitor a model’s performance 

during training and validation, and identify any trends or 

deviations in the F measure results. Figure also shows the 

performance statistic False Negative Rate (FNR) in the 

graphical representation in Figure 5. It shows how the FNR 

changes with the number of samples or observations. Figure 6 

illustrates the False Positive Rate (FPR) performance metric. 

It keeps track of how well a given model is working over the 

training and validation set as it shows how the False Positive 

Rate (FPR) changes with an increasing number of entries or 

data points. Figure 7. Since the graph shows how the MCC 

changes as there are more samples or observations, it can be 

used to monitor a model's development during training and 

validation. Figure 8 shows the Negative Predictive Value 

(NPV) performance statistic. It can be used to assess a model's 

performance during training and validation because it 

demonstrates how the NPV changes as the number of samples 

or observations rises. 

 

 
 

Figure 3. Accuracy comparison statement for different learn 

rate 

 
 

Figure 4. F-Measure comparison statement for different 

learn rate 

 
 

Figure 5. FNR comparison statement for different learn rate 
 

 
 

Figure 6. False Positive Rate comparison statement for 

different learn rate 
 

 
 

Figure 7. Mathew Correlation Coefficient comparison 

statement for different learn rate 

 

 
 

Figure 8. Negative Predictive Value comparison statement 

for different learn rate 

 

Figures 9 provides the comparative statement on Receiver 

Operating Characteristics and Area Under the Curve response 
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(LR-0.7) with different learning rates. The Sensitivity [23] 

performance metric is shown in Figure 10. It can be used to 

track the effectiveness of a model during training and 

validation because it demonstrates how the sensitivity score 

increases with an increasing number of samples or 

observations. The Specificity [23] performance statistic is 

shown in Figure 11. It can be used to track a model's 

effectiveness throughout training and validation because it 

demonstrates how the specificity score varies with an 

increasing number of samples or observations. 

The confusion matrix for the existing models such as LSTM, 

RNN, DNN, CNN and the proposed RSNN-GRU with 

learning rate 0.7 are shown in Figures 12-16 respectively. The 

confusion matrix for the existing models such as LSTM, RNN, 

DNN, CNN and the proposed RSNN-GRU with learning rate 

0.8 are shown in Figures 17-21 respectively. Figure 22 

provides the comparative statement on Receiver Operating 

Characteristics and Area Under the Curve response (LR-0.8) 

[6] with different learning rate. The ablation study results in 

Table 3 are evident that the use of adaptive weighted kurtosis 

and skewness greatly contributes to the performance of the 

model. The accuracy increased from 92.3% to 96.5%, which 

indicates that these features help discriminate yield variations 

better. The presence of different features reduces the RMSE 

and MAE values highlighting that when including these 

characteristics, the model presents predictions with better 

accuracy and less propensities. F1-score and sensitivity also 

improved significantly and demonstrated a better trade-off 

between precision and recall. 

 

Table 1. Metrics-learn rate—0.7 

 
Metrics CNN RNN LSTM DNN Proposed 

Accuracy 0.918520 0.929536 0.921008 0.822937 0.961054 

Precision 0.754715 0.776745 0.759689 0.563549 0.885136 

Sensitivity 0.754715 0.776745 0.759689 0.563549 0.885136 

Specificity 0.973122 0.980466 0.974781 0.909400 0.986360 

F-Measure 0.754715 0.776745 0.759689 0.563549 0.885136 

MCC 0.645511 0.674884 0.652144 0.390623 0.834525 

NPV 0.973122 0.980466 0.974781 0.909400 0.986360 

FPR 0.109204 0.101860 0.107546 0.172926 0.050612 

FNR 0.327612 0.305581 0.322637 0.518777 0.151835 

 

Table 2. Matrices-learn rate—0.8 

 
Metrics CNN RNN LSTM DNN Proposed 

Accuracy 0.943351 0.908627 0.901477 0.922244 0.965006 

Precision 0.849731 0.780282 0.765983 0.807517 0.914321 

Sensitivity 0.849731 0.780282 0.765983 0.807517 0.914321 

Specificity 0.974558 0.951408 0.946642 0.960486 0.981900 

F-Measure 0.849731 0.780282 0.765983 0.807517 0.914321 

MCC 0.787317 0.694719 0.675654 0.731032 0.880532 

NPV 0.974558 0.951408 0.946642 0.960486 0.981900 

FPR 0.062413 0.085563 0.090329 0.076485 0.033790 

FNR 0.187240 0.256690 0.270988 0.229455 0.101369 

 
 

Figure 9. Receiver operating characteristics and area under the curve response (LR-0.7) 
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Figure 10. Sensitivity comparison statement for different learn 

rate 

Figure 11. Specificity comparison statement for different 

learn rate 

 

 
 

Figure 12. Confusion matrix for LSTM model (LR-0.7) 

 

 
 

Figure 13. Confusion matrix for RNN model (LR-0.7) 
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Figure 14. Confusion matrix for DNN model (LR-0.7) 

 

 
 

Figure 15. Confusion matrix for CNN model (LR-0.7) 

 

 
 

Figure 16. Confusion matrix for RSNN-GRU model (LR-0.7) 
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Figure 17. Confusion matrix for LSTM model (LR-0.8) 

 

 
 

Figure 18. Confusion matrix for CNN model (LR-0.8) 

 

 
 

Figure 19. Confusion matrix for RNN model (LR-0.8) 
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Figure 20. Confusion matrix for RSNN-GRU model (LR-0.8) 

 

 
 

Figure 21. Confusion matrix for DNN model (LR-0.8) 

 

 
 

Figure 22. Receiver operating characteristics and area under the curve response (LR-0.8) 
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Table 3. Performance comparison of the proposed model 

with conventional skewness and kurtosis with adaptive 

weighted kurtosis and skewness  

 
Metric With Skewness 

and Kurtosis 

With Adaptive Weighted 

Kurtosis and Skewness 

Accuracy 92.3% 96.5% 

RMSE 0.107 0.085 

MAE 0.089 0.065 

Precision 0.853 0.914 

Sensitivity 0.872 0.982 

Specificity 0.950 0.987 

F1-score 0.860 0.914 

 

 

5. CONCLUSION 

 

The study proposes the RSNN-GRU model that enhances 

yield prediction accuracy with improved feature extraction, 

optimal feature selection, and powerful learning. It also 

surpasses all current deep learning models through utilizing 

higher-order statistical features, working along with adaptive 

optimization. They could make significant contributions to 

food security, climate resilience, and sustainable agriculture 

through data-driven farming decisions using this research. 

Multi-modal data integration, explainability enhancements, 

and real-time deployment are next objectives in order to 

enhance precision agriculture practices. The pre-processing 

stage is vital in getting the data ready for feature extraction and 

selection. An effective method of choosing the best features 

from a wide feature space is to employ the self-adaptive FFO 

algorithm. The regularization and GRU architecture of the 

RSNN-GRU model increases the model's capacity for 

generalization and sequential data processing. The SAFFO 

algorithm's hyperparameter adjustment fine-tunes the model's 

performance, improving forecast accuracy. The suggested 

model outperforms other deep learning models when 

compared in terms of prediction accuracy, according to the 

comparison. Overall, farmers may find the proposed model to 

be a helpful tool for estimating agricultural yield, which can 

help them make decisions that will improve crop management 

and increase crop yields. The weighted skewness features 

improve the model's capacity to extract features. An effective 

method of choosing the best features from a wide feature space 

is to employ the self-adaptive FFO algorithm. Even though the 

RSNN-GRU model has high accuracy (96.5%), it is limited 

and can struggle with sparse datasets, extreme environmental 

conditions, computational complexity, and limited 

interpretability. Such a model may not perform well for rare 

climate anomalies and needs a lot of data to learn accurately. 

Further research opportunities include the incorporation of 

multi-modal data, enhanced explainability using XAI 

techniques, optimization of compute efficiency in low-

resource settings and improvement of robustness through 

synthetic-data augmentation. Model comparison with 

transformer-based and ensemble models can also increase the 

predictive performance and generalizability to a range of 

training datasets. 
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