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With the continuous deployment and advancement of mining equipment, the need for 

effective health management and fault prediction has become critical to ensuring operational 

safety and enhancing equipment efficiency. Vibration signals, which serve as vital indicators 

of equipment operating conditions, have been widely employed in fault diagnosis and 

remaining useful life (RUL) prediction. However, the presence of substantial noise in 

vibration signals often hinders the effective extraction of meaningful features, thereby 

compromising the accuracy of RUL prediction. Although deep learning has demonstrated 

notable progress in signal processing and RUL forecasting, challenges persist in 

environments with high noise levels. Therefore, how to combine signal processing and deep 

learning techniques to improve prediction performance has become a current research 

hotspot. Existing approaches predominantly rely on traditional feature extraction techniques 

and machine learning algorithms, which tend to underperform under nonlinear or high-noise 

conditions. To address these limitations, a vibration signal denoising method based on 

improved wavelet thresholding was proposed in this study to suppress high-frequency noise 

while preserving key feature information. Furthermore, a method for RUL prediction based 

on the deep residual network (ResNet) was proposed in this study, wherein the residual 

learning mechanism enhances the generalization capacity and prediction accuracy of the 

model. By integrating wavelet threshold denoising with ResNet, a novel framework for 

predicting the RUL of mining equipment was established. This approach offers improved 

accuracy, providing both theoretical support and a practical basis for the health management 

of mining equipment.  
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1. INTRODUCTION

With the continued global development of the mining 

industry, increasing attention has been directed toward the 

service life and fault prediction of mining equipment [1, 2]. 

Failures of such equipment not only result in operational 

disruptions [3] but may also pose significant safety hazards to 

personnel [4]. As a result, the accurate prediction of the RUL 

of mining equipment has emerged as a critical issue in 

equipment management and maintenance. Among various 

condition monitoring indicators, vibration signals have been 

extensively utilized for both fault diagnosis and RUL 

estimation [5-7]. Enhancing the accuracy of these predictions 

through advanced signal processing techniques has therefore 

become a focal point in contemporary research on the health 

management of mining equipment. 

The ability to predict RUL offers several strategic 

advantages, including early warning of potential equipment 

failures, optimization of maintenance strategies, and improved 

operational reliability and safety [8-13]. With the ongoing 

advancement of sensor technology and data acquisition 

systems, large volumes of vibration data are being generated, 

providing a substantial basis for data-driven RUL prediction 

[14, 15]. Through in-depth analysis of such data, highly 

accurate forecasting and decision support can be achieved 

[16], offering a robust scientific foundation for equipment 

health management. Accordingly, research on the integration 

of modern signal processing methods with deep learning 

algorithms, aiming to improve the performance of RUL 

prediction, has important theoretical significance and practical 

application value. 

Recent research on the prediction of the RUL of mining 

equipment has primarily focused on the application of 

traditional machine learning and deep learning approaches. 

However, conventional methods often struggle to extract 

meaningful features when faced with noisy environments and 

complex signal patterns, thereby limiting the accuracy of RUL 

predictions [17, 18]. For instance, the feature extraction 

method based on time-domain or frequency-domain analysis 

proposed by Tang et al. [19] demonstrated limited capacity in 

capturing the complete health status of equipment when 

processing nonlinear and complex vibration signals. 

Moreover, deep neural networks designed by Sun et al. [20] 

were shown to be susceptible to noise in training data, 

resulting in model overfitting or diminished predictive 

performance. To address these challenges, various signal 
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denoising techniques—such as wavelet threshold denoising—

have been proposed in recent years. Nonetheless, most of these 

methods have exhibited limited effectiveness in removing 

complex noise components. Additionally, the training of deep 

learning models remains highly dependent on the quality and 

quantity of the input data. 

The present study comprises two primary components. 

First, to mitigate the impact of noise in vibration signals 

collected from mining equipment, a signal denoising method 

based on improved wavelet thresholding was introduced. This 

approach enables the effective suppression of high-frequency 

noise while retaining informative signal features, thereby 

providing more accurate data support for subsequent RUL 

prediction. Second, ResNet was employed for RUL prediction, 

where the incorporation of a residual learning mechanism 

facilitates the learning of complex nonlinear relationships and 

improves prediction accuracy. Taken together, this study is not 

only innovative in signal processing and machine learning 

model optimization but also provides a new solution for the 

health management of mining equipment, with high academic 

value and practical application prospects. 

 

 

2. VIBRATION SIGNAL DENOISING OF MINING 

EQUIPMENT BASED ON IMPROVED WAVELET 

THRESHOLDING 

 

During the operation of mining equipment, vibration 

signals—serving as a critical indicator of equipment health—

are often affected by multiple factors, leading to the existence 

of a large amount of noise in the signals. Such noise may 

originate from environmental disturbances, sensor 

inaccuracies, or mechanical friction, all of which significantly 

degrade signal quality and, consequently, impair the accuracy 

of RUL prediction models. Conventional signal processing 

techniques, such as low-pass or high-pass filtering, often fail 

to effectively remove noise and retain useful information when 

applied to complex vibration signals generated by mining 

equipment. This limitation stems from the highly nonlinear 

nature of the signals and the wide frequency distribution of the 

noise components. As a result, linear filtering methods have 

proven inadequate for practical applications, underscoring the 

need for a more precise and adaptable denoising approach 

capable of handling complex signal structures. To address 

these challenges, an improved wavelet thresholding method 

was proposed in this study, which combines the advantages of 

nonlinear filtering with logarithmic wavelet thresholding. This 

hybrid approach was designed to overcome the limitations of 

traditional techniques in dealing with vibration signals from 

mining equipment. 

In the context of vibration signal processing, classical hard 

and soft thresholding methods have achieved a degree of 

success in denoising tasks; however, both approaches are 

subject to notable limitations. In situations where high 

precision is required, hard thresholding functions tend to 

introduce discontinuities around ±η, resulting in signal 

oscillations that reduce smoothness and complicate 

subsequent feature extraction. On the other hand, soft 

thresholding functions are known to introduce a consistent 

bias, especially when handling impulsive noise, and the 

denoising effect may degrade. Although compromise 

functions—such as the one expressed in Eq. (1)—have been 

proposed to balance the characteristics of hard and soft 

thresholding, the introduction of multiple tuning parameters 

has increased algorithmic complexity and failed to fully 

eliminate bias-related issues. 
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where, z denotes the adjustment factor. In addition, new 

improved thresholding functions have been proposed based on 

the conventional hard and soft thresholding functions and 

existing ones. One such function is expressed in Eq. (2): 
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where, i, n, o, and w represent the adjustable parameters, 

satisfying the condition i=n+1. Those parameters of the 

function are complex. To address the aforementioned 

limitations, an improved logarithmic thresholding function 

was proposed in this study. This new formulation was 

designed to overcome the inherent drawbacks of traditional 

methods and to provide a more effective algorithm for the 

denoising of vibration signals from mining equipment. Let η 

denote the predefined threshold, qk,j the original wavelet 

coefficient, and �̂�𝑘,𝑗  the thresholded wavelet coefficient. The 

structure of the improved logarithmic thresholding function is 

presented in Eq. (5): 
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The improved logarithmic thresholding function exhibits 

significant advantages in the denoising of vibration signals 

from mining equipment. First, the function demonstrates 

favorable continuity, with no discontinuities or oscillatory 

behavior at ±η. This ensures smoothness in the signal 

reconstruction process, which is particularly critical for the 

high-frequency and complex nonlinear characteristics typical 

of equipment vibration signals. 
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Similarly, it can be shown that LIMqk,j→η- �̂�𝑘,𝑗 =0, 
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demonstrating that the improved function is continuous at +η. 

Second, in comparison to soft thresholding and traditional 

compromise threshold approaches, the improved logarithmic 

thresholding function exhibits superior performance in 

eliminating constant bias. Owing to the mathematical 

properties of the logarithmic function, the denoising effect is 

further enhanced while avoiding the over-compression 

commonly observed with soft thresholding functions. 

Moreover, as no additional parameters are introduced, the 

computational complexity of the proposed method is 

significantly lower than that of approaches reported in prior 

literature. This reduction in complexity facilitates improved 

computational efficiency, rendering the method particularly 

suitable for signal processing tasks in mining equipment real-

time monitoring systems. 
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(7) 

 

Furthermore, it can be shown that LIMqk,j→∞(�̂�𝑘,𝑗 -qk,j)=0, 

indicating that the difference between �̂�𝑘,𝑗 and qk,j diminishes 

as the wavelet coefficient qk,j increases.  

The selection of an appropriate threshold plays a critical role 

in the effectiveness of wavelet thresholding for the denoising 

of vibration signals from mining equipment. Given the 

pronounced nonlinear characteristics of such signals and the 

coexistence of both valuable frequency components and 

various types of noise, conventional fixed-threshold methods 

often fail to accommodate this complexity. An excessively low 

threshold may result in residual noise remaining in the 

reconstructed signal, which compromises subsequent fault 

diagnosis and RUL prediction. Conversely, an overly high 

threshold may mistakenly eliminate significant signal 

components by treating them as noise, thereby resulting in the 

loss of essential information. To address the specific 

characteristics of vibration signals from mining equipment, a 

threshold selection method based on the properties of wavelet 

coefficients at different decomposition levels was proposed in 

this study. According to the observed behavior of wavelet 

coefficients across multiple scales, noise components tend to 

diminish with increasing decomposition depth, whereas useful 

signal components exhibit an increasing trend. Accordingly, a 

layered threshold selection strategy was employed: the first-

level wavelet decomposition is processed using a traditional 

thresholding rule, and the thresholds for subsequent layers are 

progressively increased based on the value from the preceding 

level. This enables the threshold of each layer to better adapt 

to the signal and noise distribution in different frequency 

ranges, thereby improving the denoising effect. 

Since wavelet coefficients at different decomposition levels 

exhibit varying sensitivity to noise, it is essential to adjust the 

threshold according to the noise amplitude and signal strength 

at each level. To achieve this, a method estimating the 

Lipschitz exponent based on wavelet transform modulus 

maxima was adopted in this study. By calculating the 

Lipschitz exponent of the noise, the relationship among the 

wavelet coefficients at different levels was evaluated. This 

approach allows for dynamic adjustment of the threshold 

across layers: high-frequency levels are primarily used for 

suppressing fine-grained noise, while low-frequency levels 

retain a greater proportion of informative signal content. 

Additionally, a layer-wise threshold computation rule was 

introduced. Specifically, the threshold for each level is set to 

2σ times the threshold at the preceding level. This ensures that 

during multilevel wavelet decomposition, noise is effectively 

filtered out while preserving key signal features to the greatest 

extent possible, thereby improving both the precision and 

efficiency of the denoising process. Let v denote the length of 

the signal, and δ the standard deviation of the noise, calculated 

as δ=(ME|qk,j|)/0.68, where ME|qk,j| denotes the median of the 

wavelet decomposition coefficients at level k. This leads to: 

 

( )2LN v =  (8) 

 

Let k denote the number of wavelet decomposition levels, 

and let the wavelet coefficients at the k-th level be represented 

by qdk,j. A constant is denoted by J, and the Lipschitz exponent 

of white noise is represented by σ. Under these assumptions, 

the wavelet coefficients at level k satisfy the following 

condition: 
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Accordingly, the wavelet coefficients at the (k+1)-th level 

can be expressed as: 
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Because the amplitude of the wavelet coefficients at the 

(k+1)-th level for the noise component is smaller than 2𝜎 times 

the amplitude of those at level k, a condition can be formulated 

below. Let the maximum value of the wavelet decomposition 

coefficients at the k-th level be denoted by |qk,j|MAX, and let the 

decomposition scale be denoted by t, satisfying t =2k. Based 

on the computation of the Lipschitz exponent of the noise, the 

following expression can be obtained: 
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Based on the above analysis, the threshold can be selected 

for noise suppression as follows: 
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During the denoising of vibration signals from mining 

equipment, interference from impulsive noise with 

pronounced spiking characteristics, such as alpha-stable 

distributed noise, is frequently encountered. This type of noise 

significantly compromises signal accuracy. In particular, at 

locations of strong impulse interference, conventional wavelet 

threshold denoising methods often fail to effectively suppress 

such noise spikes, resulting in suboptimal denoising 

performance. To address this challenge, a combined denoising 

approach was proposed, integrating nonlinear filtering with 

the improved wavelet thresholding method. This hybrid 
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strategy was designed to attenuate strong impulsive noise 

while preserving critical signal components. Initially, a 

median-mean filtering algorithm was applied to the raw signal 

as a preprocessing step. This filtering technique was shown to 

be highly effective in weakening signals containing strong 

pulse noise, thereby reducing the influence of such noise on 

the subsequent wavelet threshold denoising process. Median-

mean filtering, owing to its nonlinear properties, offers strong 

performance in suppressing spike-like noise. Then the 

logarithmic wavelet thresholding function was applied to 

further denoise the filtered signal. This approach preserves 

signal features while minimizing noise, especially for complex 

noise sources in mining equipment vibration signals, thereby 

more accurately restoring the health status of the equipment. 

The specific steps of the proposed denoising algorithm, 

which combines nonlinear filtering with logarithmic wavelet 

thresholding for impulsive interference suppression in mining 

equipment vibration signals, were taken as follows: 

a) The process began with median-mean filtering applied to 

the raw signal in order to suppress the interference caused by 

strong impulsive noise, thereby providing a cleaner signal for 

subsequent processing. Let M denote the window length, L a 

positive integer, a(e) the current signal point, and �̂�(𝑒) the 

filtered signal point after median-mean processing. Given that 

2L+1≤v, where v denotes the signal length, it leads to: 
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b) The denoised signal was then subjected to wavelet 

decomposition based on a suitably determined number of 

decomposition levels. At each level, the threshold was 

computed based on the wavelet coefficients from the 

preceding layer. This ensures effective noise suppression 

across multiple frequency scales. 

c) Logarithmic wavelet thresholding was subsequently 

applied. This step allows for a more accurate delineation 

between noise and signal, overcoming the constant bias 

commonly introduced by traditional methods. 

d) Wavelet reconstruction was finally performed to 

regenerate the denoised signal, ensuring that key features of 

the original vibration signal are preserved. 

By following this structured procedure, the proposed 

algorithm effectively removed impulse interference from 

mining equipment vibration signals through the integrated use 

of nonlinear filtering and wavelet threshold denoising. The 

result was a substantial improvement in signal quality, 

providing a more reliable data foundation for subsequent 

equipment condition monitoring and fault diagnosis. 

 

 

3. RUL PREDICTION OF MINING EQUIPMENT 

BASED ON RESNET 

 

In the task of predicting the RUL of mining equipment, both 

temporal and spatial features of the signal exert a significant 

influence on predictive performance. Traditional deep residual 

shrinkage networks typically generate feature vectors by 

applying absolute value transformation and global average 

pooling (GAP) to the input signal, followed by element-wise 

multiplication with channel attention weights to determine 

thresholds. However, such an approach neglects spatial 

domain information, which causes the models to fail to fully 

consider the influence of spatial position on signal features 

when processing grayscale images of mining equipment 

vibration signals. These signals often exhibit complex spatial 

patterns and structural features that are strongly correlated 

with the equipment's health status and RUL prediction. 

Variations in spatial features at different time points and under 

differing operational conditions directly affect the precision of 

the RUL prediction. As a result, traditional models relying 

solely on channel-domain information are insufficient to meet 

the practical requirements of RUL forecasting in mining 

environments, and often result in degraded prediction 

performance. To address this limitation, a novel residual 

shrinkage model was proposed in this study, designed to 

simultaneously capture both channel-domain and spatial-

domain feature information. 

 

 
 

Figure 1. Architecture of the improved channel attention 

network 

 

In the task of RUL prediction for mining equipment, 

extreme data values embedded within the signal often reflect 

critical information regarding the onset or progression of 

mechanical faults. These extreme signals are typically 

indicative of failure modes or abnormal operational behaviors 

and serve as valuable cues for accurate RUL predication. 

However, conventional GAP, while effective in capturing 

overall signal information, tends to obscure such extreme 

values by computing only the mean level of the signal. In the 

context of mining equipment vibration data, this limitation can 

result in reduced sensitivity to key, extreme outliers associated 

with early fault symptoms, thereby diminishing the model’s 

diagnostic effectiveness. To address this issue, global max 

pooling (GMP) was introduced into the channel attention 

network within the residual shrinkage module. The 

incorporation of GMP enhances the model’s capacity to focus 

on critical outliers, thereby improving sensitivity to failure-

related features. Figure 1 illustrates the architecture of the 

improved channel attention network. Specifically, for a feature 

map H with Z channels obtained through an operation h(.), 

both GAP and GMP were applied in parallel. Let Q, G, and Z 

denote the height, width, and number of channels of the feature 

map, respectively. The resulting compressed global feature 

vectors are denoted as DAVG
O and DMAX

O, respectively, and are 

defined as follows: 

 

( )AVG

OD GAP H=  (14) 

764



 

( )MAX

OD GMP H=  (15) 

 

Let d(.) denote the composite operation applied to both 

DAVG
O and DMAX

O, and let δ(.) represent the Sigmoid activation 

function. The channel attention weight coefficients XO can 

then be computed as: 

 

( ) ( )( )AVG MAX

O O OX d D d D= +  (16) 

 

Finally, element-wise multiplication was performed 

between XO and H to yield the feature map filtered by the 

channel attention network, expressed as: 

 

O OH H X=   (17) 

 

 
 

Figure 2. Architecture of the spatial attention network 

 

In the context of RUL prediction for mining equipment, 

vibration signal grayscale images contain not only rich 

temporal features but also significant spatial information. 

Spatial information often reflects the operational state and 

interrelationships among different components of the 

equipment, which are critical for accurate RUL prediction. 

Traditional channel attention networks primarily focus on 

inter-channel feature dependencies. Although such networks 

assist in capturing important global features, they overlook the 

spatial positional relationships within feature maps. In many 

cases, mechanical faults in mining equipment manifest 

through significant vibration signals concentrated in specific 

regions. Consequently, relying solely on channel attention 

mechanisms may result in the omission of critical spatially 

localized fault signatures. To address this limitation, a spatial 

attention network was integrated into the proposed model. 

This addition enhances the model’s capacity to learn spatial 

relationships within input feature maps and to focus on local 

regions that play a decisive role in fault classification, thereby 

significantly improving the prediction accuracy for the RUL 

of mining equipment. Figure 2 presents the architecture of the 

spatial attention network. 

Let the spatial attention weight coefficients be denoted as 

XT, and the input to the spatial attention network as HO. 

Specifically, GAP and GMP were applied to HO, resulting in 

two spatially compressed feature maps: DAV
O and DMAX

O. 

These two feature maps were then concatenated along the 

channel dimension and passed through a convolutional layer. 

The output was subsequently activated by the sigmoid 

function to obtain the spatial attention weight coefficients. Let 

the convolution operation be represented by CONV(.), and the 

channel-wise concatenation operation by CAT(.). The 

computation is expressed as: 

 

( )( )( ),AVG MAX

T T TX CONV CAT D D=  (18) 

 

Finally, element-wise multiplication was performed 

between XT and HO, yielding the feature map filtered by the 

spatial attention network: 

 

G O TH H X=   (19) 

 
 

 
 

Figure 3. Architecture of the hybrid attention network 
 

Subsequently, HG can be obtained as: 
 

G O TH H X X=    (20) 

 

The implementation of the hybrid attention mechanism was 

realized by serially connecting the channel attention network 

and the spatial attention network. Figure 3 illustrates the 

architecture of the hybrid attention network. Specifically, the 

input feature map was first subjected to an absolute value 

operation, resulting in a feature map H with Z channels. The 
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feature map H was then passed through the channel attention 

network to compute the channel attention weight coefficients 

XO. These weight coefficients were element-wise multiplied 

with the feature map G, producing a feature map HO filtered 

by the channel attention. This operation allows the model to 

automatically emphasize the most informative channel-

specific features in the vibration signal, thereby filtering 

redundant information and preserving those features most 

relevant to RUL prediction. This step enhances the model’s 

ability to extract robust and comprehensive channel-domain 

information, improving representational capacity across 

channels. Next, the refined feature map HO was input into the 

spatial attention network to generate the spatial attention 

weight coefficients XT, which were then element-wise 

multiplied with the feature map H to yield the final threshold 

representation. This process not only strengthens the 

extraction of channel-domain information but also enriches the 

feature representation through spatial attention, ensuring that 

the spatial distribution of vibration signal features is 

adequately captured. The integration of spatial-domain 

information enables the model to recognize subtle spatial 

variations in vibration patterns, thereby enhancing sensitivity 

to changes in equipment health status. Let the feature map D 

be treated as a generalized function and the feature map H as 

the network input, and let the absolute value operation be 

denoted by ADS(.). Then, it leads to: 
 

( )H ADS D=  (21) 

 

The final threshold representation obtained after processing 

through the hybrid attention network is expressed as: 
 

TH X =   (22) 

 

The improved residual shrinkage module enables 

comprehensive consideration of vibration signal 

characteristics across multiple dimensions, thereby optimizing 

feature extraction and information integration in the prediction 

of RUL for mining equipment. The introduction of the hybrid 

attention mechanism allows the model not only to assess the 

relative importance of each channel but also to effectively 

model spatial details within the vibration signal. As a result, 

the model exhibits enhanced robustness and prediction 

accuracy. 

 

 
 

Figure 4. Architecture of the RUL prediction model for mining equipment 

 

Based on the previously described improved residual 

shrinkage module, a ResNet model was further proposed for 

predicting the RUL of mining equipment. Figure 4 illustrates 

the architecture of the RUL prediction model. By employing 

multi-level feature extraction and a progressive refinement 

learning process, the model significantly improves the 

accuracy of RUL prediction. The input to the model consists 

of grayscale images representing vibration signals from 

mining equipment. Initially, the input was processed through 

a convolutional layer, after which the resulting feature map 

was passed into residual shrinkage layers and a multi-scale 

feature extraction module. The residual shrinkage layers adopt 

the architecture described in the earlier sections. The model is 

composed of four serially connected residual shrinkage layers, 

each containing two residual shrinkage modules, following a 

structure similar to that of ResNet-18. These layers employ 

progressive downsampling operations to effectively capture 

multi-level features ranging from fine-grained patterns to 

high-level semantic representations, while simultaneously 

avoiding feature loss commonly caused by large strides in 

traditional convolutional networks. To further enhance 

representational capacity, dilated convolution operations were 

incorporated within each residual shrinkage layer. By 

adjusting the dilation rate, the receptive field was expanded 

across multiple scales, allowing the model to extract rich, 

multi-scale features from vibration signals while preserving 

global contextual information. This mechanism enhances the 

model’s ability to identify early indicators of equipment faults. 

In mining equipment RUL prediction tasks, vibration 

signals often contain critical information distributed across 

various scales, which is essential for accurate estimation. To 

address the limitations of traditional convolutional networks—

particularly the potential for information loss during receptive 

field expansion—a network architecture based on dilated 

convolution feature expansion was proposed in this study. By 

introducing varying dilation rates within convolutional 

kernels, the receptive field was effectively expanded without 

the need for downsampling. As a result, broader feature 

representations can be captured. The primary advantage of 

dilated convolution lies in its ability to enlarge the receptive 

field while avoiding the information degradation typically 

associated with pooling or downsampling operations. This is 

especially critical for preserving the detailed characteristics of 

vibration signals. Within the proposed model, different 

dilation rates were strategically applied to extract global 

features at multiple scales. These features were then fused with 

the output from the residual shrinkage layers, further enriching 

the network’s understanding of the multi-scale structure of the 

vibration signals, thereby enabling the model to identify faults 

at varying depths and granularity. 

Specifically, in the proposed model, the output from each 

dilated convolutional layer was concatenated with the 

corresponding output from the residual shrinkage layer. A 1×1 

convolutional layer was subsequently applied to adjust the 

number of channels, thereby aligning the concatenated feature 

map with the processing requirements of the subsequent 

network layers. For each selected dilation rate, the stride and 

padding of the dilated convolutional layer were matched to the 

dimensions of the output feature map from the corresponding 

residual shrinkage layer. Let f denote the dilation rate and j the 

size of a standard convolutional kernel, then the size of the 

dilated convolutional kernel is defined as: 
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( ) ( )' 1 1j j j f= + −  −  (23) 

 

The core objective of this study’s task is to predict the RUL 

of mining equipment by analyzing historical vibration signals. 

This prediction problem is typically formulated as a multi-

class classification task. To estimate the RUL at different life 

stages, the Softmax function was used as the activation 

function in the final fully connected output layer. The Softmax 

function can convert multiple neuron values output by the 

model into a probability distribution, ensuring that the output 

of each class falls within the interval (0, 1), and that the sum 

of all class probabilities equals one. Each output corresponds 

to the probability that the equipment belongs to a specific RUL 

interval. The final prediction results are represented by the 

probability values at different life stages. To optimize the 

model's performance in RUL prediction, the cross-entropy loss 

function was employed. This loss function quantifies the 

discrepancy between the predicted probability distribution and 

the target distribution, and is widely used in classification 

tasks due to its effectiveness in measuring divergence between 

probabilistic outputs and ground truth labels. In the context of 

RUL prediction for mining equipment, the target probability 

distribution is generated based on historical condition data and 

known failure modes, while the predicted distribution 

represents the model's estimation of the equipment’s 

remaining life. By minimizing the cross-entropy loss, the 

model was iteratively refined to produce predictions that more 

accurately reflect actual conditions. Let o(a) denote the target 

probability distribution and w(a) the predicted distribution. 

The objective function is defined as: 

( ) ( ) ( ), log
a

G o w o a w a= −  (24) 

 
 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

Upon examining the denoising results presented in Figure 

5, it can be observed that residual noise remains in the signals 

processed using Empirical Wavelet Transform (EWT), 

Empirical Mode Decomposition (EMD), and sparsity-based 

denoising. The waveforms exhibit limited smoothness in finer 

details, and irregular fluctuations persist—particularly around 

the signal value of 200 and in other regions of notable 

variation. In contrast, the signal processed by the proposed 

method displays a significantly smoother overall trend, with 

noise effects markedly attenuated. The resulting waveform 

more closely approximates the characteristics of an ideal clean 

signal, thus visually reinforcing the denoising advantages 

achieved by the proposed approach. By employing an 

optimized wavelet thresholding strategy, the proposed method 

enables more precise identification and elimination of noise 

components while maximizing the retention of informative 

signal features. In terms of signal fidelity, the waveform 

reconstructed using the proposed method exhibits clearer 

structure and reduced noise interference. This indicates a 

superior capability in noise filtering, resulting in improved 

signal purity and more accurate representation of underlying 

characteristics, thereby providing a more accurate data 

foundation for subsequent RUL prediction of mining 

equipment. 

 

  
(a) EWT (b) EMD 

  
(c) Sparsity-based denoising (d) Proposed method 

 

Figure 5. Comparison of denoising outcomes using different methods 

 

As observed in Figure 6, a decreasing trend in mean squared 

error (MSE) is exhibited by the proposed method with 

increasing input signal-to-noise ratio (SNR). When the SNR is 

0 dB, the MSE achieved by the proposed method is 

approximately 0.65, which is notably lower than the values 

obtained by hard threshold denoising, soft threshold 

denoising, and EWT. As the SNR increases to 15 dB, the MSE 

of the proposed method is further reduced to approximately 

0.2, significantly outperforming the comparison algorithms 

under the same noise conditions. For example, the MSE for 

hard threshold denoising remains around 0.3, while that of 

EMD is approximately 0.18 but exhibits considerable 
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fluctuation. These results demonstrate that across a range of 

SNR conditions, the MSE of the proposed method consistently 

decreases with rising SNR and remains lower than those of the 

baseline algorithms at all evaluated points. This performance 

advantage is attributed to the optimized wavelet thresholding 

strategy, which enables more accurate noise identification and 

suppression while preserving the informative components of 

the signal. By contrast, other algorithms present distinct 

limitations: hard and soft threshold denoising methods exhibit 

insufficient flexibility in noise suppression, often resulting in 

either loss of signal features or retention of residual noise. 

Additionally, methods such as EWT and EMD display limited 

adaptability when processing signals with varying SNRs, 

leading to less pronounced MSE reduction or unstable error 

performance. Therefore, the proposed method demonstrates 

superior robustness and adaptability across a wide range of 

noise conditions. Its trend of decreasing MSE with increasing 

SNR is more significant. 
 

 
 

Figure 6. SNR vs. MSE curves for different denoising 

methods 
 

 
(a) Training accuracy 

 
(b) Testing accuracy 

 

Figure 7. Training and testing accuracy of the proposed 

model 

As observed in Figure 7, the training and testing accuracy 

curves of the proposed model demonstrate exceptionally fast 

convergence. The training accuracy stabilizes and reaches 

100% after only 280 iterations. In terms of testing accuracy, a 

value of 99.5% is attained after the very first epoch, with 

further increases leading to stable convergence at 100% in 

subsequent epochs. By comparison, the six benchmark 

models—including Aggregated Residual Transformations for 

Deep Neural Networks (ResNeXt) and Wide ResNet—exhibit 

noticeable fluctuations during both training and testing phases. 

For instance, the training accuracy curve of the Stochastic 

Depth model shows repeated oscillations, and the testing 

accuracy of Wide ResNet displays multiple declines across 

epochs. These variations indicate that the training processes of 

the baseline models are less stable. The experimental results 

confirm that the proposed model achieves high testing 

accuracy at an early stage—99.5% in the first epoch—and 

rapidly stabilizes at 100%. The instability observed in the 

benchmark models is largely attributed to the absence of 

targeted signal preprocessing techniques and suboptimal 

network architecture design, resulting in reduced performance 

when handling noisy inputs or learning complex feature 

relationships. This comparison provides strong evidence of the 

proposed model’s significant advantages in terms of 

convergence speed and accuracy stability. Specifically, the 

proposed method converges faster and reaches 100% training 

and testing accuracy earlier and more consistently than the 

other six models evaluated. 

 

 
  

Figure 8. Ablation study results of the proposed model 

 

As shown in Figure 8, the complete model consistently 

outperforms the other three configurations under various SNR 

conditions. At an SNR of 10 dB, the prediction accuracies for 

the models without denoising, with only channel-domain 

features, and with only spatial-domain features are 

approximately 95%, 98%, and 98%, respectively, whereas the 

complete model achieves 100%. As the SNR decreases to 2 

dB, the prediction accuracy of the model without denoising 

drops to approximately 80%, while the models with only 

channel-domain and spatial-domain features achieve 

approximately 85% and 88%, respectively. In contrast, the 

complete model maintains a higher accuracy of approximately 

90%, demonstrating superior stability and robustness across 

different noise levels. The results of the ablation study validate 

the critical importance of both the improved wavelet threshold 

denoising process and multi-domain feature fusion—

specifically the integration of channel-domain and spatial-

domain features—in enhancing prediction accuracy. When 

denoising is omitted, the presence of high-frequency noise 
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significantly degrades performance, confirming the 

effectiveness of the proposed denoising strategy in preserving 

useful signal characteristics. When only a single domain of 

features is considered, the model’s representation of signal 

characteristics is incomplete, resulting in lower prediction 

accuracy compared to the full model. The complete model, by 

incorporating the improved wavelet thresholding method, 

effectively suppresses noise and provides more accurate data 

for subsequent prediction tasks. Furthermore, the use of a 

ResNet for multi-domain feature integration enables more 

comprehensive learning of complex nonlinear relationships. 

As a result, higher and more stable prediction accuracy is 

achieved across varying SNR conditions, highlighting the 

synergistic advantage of combining denoising and multi-

domain feature fusion in the proposed method. 

 

Table 1. Complexity comparison of different models 

 

Model Input Size FLOPs Number of Parameters 

Without denoising processing 31×31 0.54218 11.25485 

With only channel-domain features considered 31×31 0.64235 12.23015 

With only spatial-domain features considered 31×31 0.54859 11.20325 

Complete model 31×31 0.64213 12.22356 

 

As shown in Table 1, the input dimensions of all models are 

31 × 31. The floating-point operations (FLOPs) for the model 

without denoising amount to 0.54218; for the channel-domain-

only and spatial-domain-only models, the values are 0.64235 

and 0.54859, respectively; and for the complete model, the 

value is 0.64213. Regarding the number of parameters, the 

values are 11.25485 for the model without denoising, 

12.23015 for the channel-domain-only model, 11.20325 for 

the spatial-domain-only model, and 12.22356 for the complete 

model. These results indicate that although variations exist 

across the models in terms of complexity, FLOPs and 

parameter count of the complete model are similar to those of 

the channel-domain-only configuration and are slightly lower. 

Importantly, despite integrating both the improved wavelet 

thresholding for denoising and multi-domain feature fusion, 

the complete model does not exhibit a significant increase in 

computational complexity. Both the operation count and 

parameter size remain within a reasonable range. Compared 

with configurations that omit denoising or consider only a 

single feature domain, the complete model achieves higher 

input quality through denoising and more comprehensive 

learning of complex nonlinear relationships via ResNet-based 

feature fusion while ensuring a certain level of computational 

complexity. This effective balance between complexity and 

performance enables enhanced prediction performance 

through the joint application of denoising and feature fusion 

strategies without incurring excessive computational burden. 

The overall results validate the feasibility and effectiveness of 

the proposed method in real-world mining equipment RUL 

prediction scenarios, offering a practical solution that achieves 

both accuracy and efficiency. 

 

 

5. CONCLUSION 

 

This study centers around two core components: signal 

denoising and RUL prediction. In practical mining equipment 

applications, vibration signals are often contaminated by high-

frequency noise, which adversely affects the accuracy of 

subsequent RUL predictions. To address this challenge, an 

improved wavelet thresholding-based denoising method was 

proposed. This approach enables effective suppression of 

high-frequency noise while preserving essential signal 

features, thereby providing more accurate input data for RUL 

prediction tasks. The enhanced signal quality achieved 

through this innovative denoising method offers a more robust 

foundation for health management and early fault detection in 

mining equipment. In addition, a ResNet framework was 

introduced for RUL prediction. By incorporating residual 

learning mechanisms, the network was capable of capturing 

complex nonlinear relationships embedded in the vibration 

signals, while also mitigating the vanishing gradient issue 

commonly encountered in deep neural network training. 

Leveraging a hybrid attention mechanism based on the 

improved residual shrinkage module, the model was designed 

to perform feature selection and enhancement across multiple 

dimensions, significantly improving prediction accuracy. This 

study presents innovations in both signal processing and 

machine learning model optimization. Notably, the integration 

of the hybrid attention mechanism for feature extraction 

contributes not only to enhanced model performance but also 

to the development of a new solution for health management 

of mining equipment. 

However, several limitations remain in the present study. 

Although the proposed signal denoising method effectively 

removes high-frequency noise, residual low-frequency noise 

may still persist under certain complex operating conditions. 

Further optimization of the denoising algorithm to 

accommodate more diverse noise patterns represents an 

important direction for future research. Additionally, while the 

ResNet demonstrates a strong capacity to learn complex 

nonlinear relationships, its performance under extreme 

conditions may still be constrained by the diversity of the 

training data. Therefore, enhancing the generalization 

capability of the model through the construction of more 

diverse and representative training datasets remains a key 

challenge. Future research may proceed in several directions. 

First, the signal denoising algorithm could be further refined 

through the integration of multi-scale processing techniques 

and advanced wavelet-based transformations to improve 

adaptability to complex noise environments. Second, the 

interpretability of ResNets could be enhanced by leveraging 

explainable machine learning approaches, thereby increasing 

the transparency of the model’s predictive behavior and 

facilitating practical deployment. Third, to address multiple 

fault patterns in mining equipment, the development of more 

robust multi-task learning models could be pursued, enabling 

more efficient and accurate RUL prediction. Collectively, 

these future directions are expected to further advance the field 

of mining equipment health management with broad 

application prospects by improving maintenance efficiency 

and reducing fault incidence.
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