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Automated computer-assisted tools based on deep learning explored promising results in the 

instant and accurate prediction of Brain cancers. However, the availability of large medical 

imaging datasets for training deep-learning models remains limited. In this work, a hybrid 

approach for brain tumor classification using a Generative Adversarial Network (GAN) 

called DenseUnetGAN is proposed. The GAN-based model incorporates pre-trained models 

in the generator and discriminator components. Specifically, a modified U-Net architecture 

serves as the generator, while DenseNet is utilized as the discriminator and classifier after 

modifying the fully connected layers. Further, the hyperparameters of the GAN model are 

tuned using Lemur’s optimizer. By leveraging pre-trained models and the GAN framework, 

the proposed approach is presented to enhance the efficiency and accuracy of brain tumor 

classification despite the limitations of limited data availability. Through extensive 

experimentation and evaluation, it demonstrates the effectiveness among brain tumor 

classes. The results highlight the potential of the proposed model for improving the 

diagnosis of brain tumors, thereby aiding healthcare professionals and reducing the burden 

on healthcare systems.  
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1. INTRODUCTION

An abnormal cells enlargement within the brain is known as 

tumor. Brain tumors encompass a wide range of neoplasms in 

the human body, which exhibit diverse characteristics 

influenced by factors including the cell of origin, location, 

structure, and manner of progression [1]. 

The tumor is divided into primary and secondary tumors. 

Approximately 60% of all brain tumors are primary tumors, 

while the remaining 40% are classified as secondary tumors. 

The classification is based on the source of the tumors, where 

primary tumors initiate in the brain itself. Conversely, 

secondary tumors initiate in remaining body parts and later 

spread to the brain. It is important to mention that the majority 

of secondary tumors, around 40%, are malignant [2]. 

Medical image analysis has undergone a transformative 

advancement in practicality and innovative approaches, 

primarily driven by rapid hardware development and the 

utilization of sophisticated mathematical tools. These 

advancements enable the acquisition of highly detailed 

medical images [3, 4]. Leveraging these medical images, 

accurate and efficient image analysis techniques can assist 

healthcare professionals in diagnosing and treating patients 

effectively.  

An imaging method is available for the segmentation and 

classification of brain tumors, among which MRI is utilized as 

a non-invasive approach. The popularity of MRI stems from 

its advantages, such as ionizing radiation absence, greater 

resolution of soft tissues, and the capability to capture various 

images through different imaging parameters. There has been 

significant research interest in the development of automated 

AI-based intelligent systems. Presently, various automated 

systems are provided using Machine Learning (ML), transfer 

learning approaches, and Deep Learning (DL) models [5]. 

Traditional approaches to classifying brain tumors using ML 

algorithms involve multiple steps, such as feature extraction 

and classification. Feature extraction and selection pose 

requires domain expertise, precision of classification relies on 

the identification of relevant features. 

GANs are a type of DL model that consists of a Generator 

(G) and a Discriminator (D) network [6]. GANs have been

employed in various medical imaging tasks, including image

synthesis, image-to-image translation, data augmentation, and

anomaly detection. A key difference between traditional

generative models and GANs is that GANs learn the

distribution of the input as a complete image rather than

making pixels individually. The proposed work is contributed

as follows:

•Proposing the new U-Net architecture model for the

generator part of the GAN model classification using 

automated MRI image processing. 

•Proposing the new GAN model for rapid tumor

classification using automated MRI images. 

•The classification task of the model is improved by

applying Lemur’s optimization for parameter tuning. 

•The constructed GAN model is compared with the other

models. 

The remaining sections of the work are as follows: Section 
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2 presents the related works of existing literature, Section 3 

introduces the DenseUnetGAN model, Section 4 describes the 

results and discussion, and finally, Section 5 concludes the 

paper. 

 

 

2. RELATED WORK 

 

This section reviews several related works that employ DL 

techniques to detect and classify brain tumours. Vidyarthi et 

al. [7] proposed a novel Cumulative Variance method-based 

feature selection for brain MRI. The extracted features are 

used to train different ML models like AdaBoost, neural 

networks and decision trees. Among these, the neural network 

shows higher classification accuracy.  

In their work, Yu et al. [8] proposed an improved sparrow 

search approach to classify brain tumor. The search strategy of 

the sparrow is applied to select relevant training features. The 

optimum feature selection increases the model's classification 

accuracy by 4.5% compared to without optimization. 

Yang et al. [9] proposed a tumor segmentation based on 

Dual Disentanglement Network (D2-Net) that employs a 

spatial frequency to decouple modality-specific data from a 

dataset, which enables segmentation even with missing 

modalities. 

Sultan et al. [10] explored a convolutional neural network 

(CNN) for tumor detection. The developed model is applied in 

two datasets to classify with an overall accuracy of 95.45% 

and 97.6%. 

Another CNN model was developed by Huang et al. [11] 

based on complex networks to categorize brain tumors. The 

network structure is created using randomly generated graph 

algorithms, eliminating the need for manual design and 

optimization. The CNN model based on complex networks 

achieves an accuracy of 95.49%, outstanding other models in 

previous work. 

Asif et al. [12] utilized popular DL architectures, including 

Xception, GoogleNet, DenseNet121, and ResNet, for brain 

tumor diagnosis. Pre-trained models are employed to extract 

deep features.  

Shah et al. [13] proposed a DL based on the EfficientNet-

B0 model to detect brain tumor efficiently. Data augmentation 

methods are improved the quality and increase the training 

data. The overall accuracy for classification and detection 

reaches 98.87%. Rizwan et al. [14] proposed a Gaussian CNN 

model with two datasets are utilized, one for classifying 

tumors and the other for distinguishing between three grades 

of glioma.  

Imtiaz et al. [15] proposed a superpixel-level from 3D 

volumetric MR images. The images are partitioned into 

superpixels to capture precise boundaries. By considering 

image planes separately, the statistical and textural features are 

extracted from each superpixel. A feature selection scheme is 

introduced to reduce dimensionality while maintaining 

classification performance.  

Zhou et al. [16] investigated UNet++ for tumor 

segmentation. UNet++ addresses an unknown network depth 

issue by using an ensemble of U-Nets with varying depths. It 

introduces redesigned skip connections to combine features 

from distinctive semantic scales, resulting in effective feature 

selection. Additionally, a pruning method is devised to 

accelerate inference speed without significant performance 

degradation. Likewise, Micallef et al. [17] developed a U-

Net++ model for brain tumor segmentation. This modified 

model incorporates changes in the loss function and functional 

layers to increase network performance. 

Alhassan and Zainon [18] proposed an automated 

segmentation method for brain tumor detection in MRI 

images. The approach utilizes pre-processing and 

segmentation processes, incorporating a modern learning-

based method with the Bat Algorithm and Fuzzy C-ordered 

means clustering technique. Bat algorithms are employed to 

segment the tumor by calculating initial centroids and 

distances between pixels, distinguishing the tumor Region of 

Interest from non-tumor. 

Gumaei et al. [19] proposed hybrid feature extraction, and 

extreme learning classification. Experimental results 

demonstrate improved accuracy compared to existing 

approaches, with accuracy increasing from 91.51% to 

94.233%. Ferdous et al. [20] introduced linear-complexity 

data-efficient image transformers. Teacher-student methods 

are used to achieve high precision rates.  

Noreen et al. [21] proposed a method for quick 

identification of brain tumors using multi-level feature 

learning and concatenation. Inception-v3 and DensNet201 DL 

models are employed for brain tumor detection and 

classification, achieving high testing accuracies of 93.9% and 

94.24% respectively and demonstrating superior performance. 

Mishra et al. [22] introduced a self-supervised-based 

contrastive loss for feature learning. Unlabeled data is utilized 

to train a DL model through contrastive learning, maximizing 

similarity and contrastive instances learning. It outperforms 

random or ImageNet initialization for the classification of 

MRI images. Afshar et al. [23] introduced a modified CapsNet 

architecture by incorporating tumor coarse boundaries as extra 

inputs. This enhancement allows CapsNet to focus on the 

tumor while considering the surrounding tissues, improving its 

performance. The proposed approach significantly 

outperforms other methods, addressing the sensitivity of 

CapsNets to miscellaneous image backgrounds. 

Mirza and Osindero [24] introduced a conditional version 

of generative adversarial networks (CGAN) for generating 

MNIST digits conditioned on class labels. The functioning of 

the GAN model can be varied based on the condition given by 

the user. Gurumurthy et al. [25] presented a GAN model for 

varied and limited training data environments. By 

reparameterizing the latent generative space and learning its 

parameters alongside the GAN, DeLiGAN enables variety in 

generated samples despite being trained with limited data. 

Ghassemi et al. [26] presented a GAN method for tumor 

classification in MR images. By replacing the fully connected 

layers and training the network as a classifier, the proposed 

approach achieves effective tumor classification. Ge et al. [27] 

addressed brain tumor subcategory classification using MRI 

images from various imaging systems. To overcome limited 

datasets and incomplete modality issues, they employ a 

pairwise GAN model to generate synthetic MRIs across 

different modalities. A post-processing approach combining 

slice-level classification results is proposed, and a multi-stage 

training technique using GAN-augmented MRIs followed by 

real MRIs is employed. 

Yerukalareddy and Pavlovskiy [28] proposed a DL model 

for brain tumor classification on MRI images. The trained DL 

model with an auxiliary classifier in a discriminator allows 

feature extraction and tumor classification. The model is tested 

on publicly available MRI datasets, achieving accurate 

classification of different brain tumor types. 

Ahmad et al. [29] proposed a variational auto-encoder-
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based GAN named VAE-GAN. The developed GAN model 

uses an auto encoder to generate a noise pattern for the 

generator instead of generating random noise. 

Chauhan et al. [30] proposed a modified DenseNet model 

for brain tumour detection with an accuracy of 95.68%. 

Milletari et al. [31] introduced a deep V-net network optimized 

by an improved Genetic optimization algorithm. The 

optimized V-net achieves 96.64% accuracy in medical image 

classification. In Huang’s research, the 3D U²-Net, which 

combines U-Net with an optimized classifier, achieved an 

accuracy of 95% [32]. Cheng et al. [33] applied transfer 

learning with ResNet50V2. It shows 94.68% accuracy for the 

public MRI dataset. Ejiyi et al. [34] developed a segmentation 

network with SegNet for tumor grade classification.  

Based on the existing models for brain tumor classification 

face challenges with limited annotated datasets and poor 

generalization across diverse MRI images. Many approaches 

are based on manual hyperparameter tuning, which is time-

consuming and inefficient. Additionally, synthetic data 

generated by conventional GANs often lacks the diversity and 

quality needed to improve model performance. These 

limitations highlight the need for a hybrid approach that uses 

pre-trained architectures with GANs to increase classification 

accuracy and robustness. 

 

 

3. PROPOSED GAN 

 

The GAN model has main elements like the Generator (G) 

and the Discriminator (D) [35]. The element ‘G’ is responsible 

for producing an output image that closely matches the 

distribution of the original image. The discriminator, depicted 

in Figure 1, is responsible for differentiating the generated 

image from the images generated by the generator model. 

 

 
 

Figure 1. General GAN model [6] 

 

While training, the generative model processes synthetic 

data, attempting to failure the process of discriminator by 

making the generated samples appear realistic. 

Simultaneously, the discriminator is trained to correctly 

classify whether a given sample is real or generated. As 

training progresses, the generative model increases its ability 

to produce more accurate outputs, while the discriminator 

becomes more talent to find the differ among real and 

generated data. 

The proposed DenseUnetGAN model combines the 

strengths of DenseNet and U-Net architectures. Compared to 

traditional U-Net models, the propsoed model based on simple 

skip connections. The DenseUnetGAN integrates DenseNet's 

dense blocks to learn more complex feature representations by 

promoting feature reuse. The dense connection capture both 

local and global information more effectively. Additionally, 

the DenseUnetGAN incorporates a U-Net-based generator 

which is designed for precise image segmentation. The 

DenseNet discriminator helps to evaluate the realism of 

generated images by capturing intricate patterns across 

different scales. 

 

3.1 DenseUnetGAN 
 

In this work, the DenseUnetGAN model incorporates pre-

trained models in the generator and discriminator components. 

Specifically, a modified U-Net architecture serves as the 

generator, while DenseNet is utilized as the discriminator and 

classifier after modifying the fully connected layers. In 

conventional GAN, the model tries to provide new images 

from random noise. The generator of the GAN has very few 

dimensions in input, but the output is of large dimensions.  

In the proposed model, the modified UNet is the generator 

to generate fake images instead of generating from random 

noise. The proposed architecture with DenseUnetGAN model 

is given in Figure 2(a) and Figure 2(b). 

The loss functions for the modified U-Net generator and 

DenseNet discriminator can be adjusted accordingly.  

GAN Loss: The GAN objective function measures the 

adversarial loss among the generator and discriminator. It 

consists of two terms: 

 

LGAN(G, D) = E(x, y) [log(D(x, y))] + E(x) [log(1 - 

D(x, G(x)))] 
(1) 

 

G represents the modified U-Net generator, D represents the 

DenseNet discriminator, x is an input image, and y is the 

corresponding brain tumor category label Eq. (1). The first 

term aims to maximize the discriminator (x, y) as real, while 

the second term aims to maximize the discriminator data x and 

its corresponding generated data G(x) as fake. 

Generator Loss: It used to process generator features to 

deceive discriminator. It is described in Eq. (2): 

 

LGenerator(G, D) = λGAN * LGAN(G, D) (2) 

 

where, λGAN is a hyperparameter that controls the importance 

of the GAN loss, and LGAN(G, D) is the GAN loss. 

Discriminator Loss: It is used to distinguish real and fake 

data which has two classification losses: 

 

LDiscriminator(G, D) = LClass(D, x, y) + LClass(D, 

x, G(x)) 
(3) 

 

In Eq. (3) LClass(D, x, y) is the classification loss for the 

DenseNet discriminator applied to real data x with the 

corresponding ground truth label y. LClass(D, x, G(x)) is the 

classification loss for the discriminator applied to x and G(x). 

Generator Classification Loss: In addition to the GAN loss, 

it includes a classification loss for the generator to directly 

optimize the classification task. It can be described in formal 

terms as follows Eq. (4): 

 

LGenerator_Class(G, D) = LClass(G(x), y) (4) 

 

where, LClass(G(x), y) is the classification loss for the 

DenseNet discriminator applied to the created data G(x) with 

the ground truth label y. 
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(a) 

 

 
(b) 

 

Figure 2. (a) Proposed architecture; (b) DenseUnetGAN model 

 

3.2 Modified U-Net  

 

U-Nets have performed an efficient segmentation for a 

complex image. It consists of an encoder that gradually 

downsamples the input, learning the global context and a 

decoder that executes advanced upsampling to equal the 

output resolution with the input by allowing exact localization. 

However, conventional U-Nets lack contextual information 

sharing between shallow and deep layers. To address this 

limitation and enhance the local and global features of the 

network, the modified U-Net architecture is introduced that is 

given in Figure 2(b). The Data Degradation Control Block 

with Contextual Aggregation (DDCBWCA) block is 

connected between the encoder to decoder is shown in Figure 

3. 

 

 
 

Figure 3. DDCBWCA block 
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The improved U-Net takes MRI input images and outputs 

images of the same dimensions. Convolution layers with 

padding are employed to ensure that the output image size 

matches the input size. The encoder side has convolution 

layers, pooling layers, and dropout layers to perform 

downsampling. On the decoder side, the output of 

DDCBWCA is connected to the Conv2DTranspose layer for 

feature control from the previous block. Finally, the dropout is 

applied to the concatenated output. 

The Data Degradation Control Block with Contextual 

Aggregation plays a crucial role. It generates middle-level 

features, ensuring control over important degradation of 

features. The complex size variations issues of brain tumor 

size can be effectively handled by concatenated connections. 

The DDCBWCA connection makes the model scale invariant 

and allows contextual aggregation on multiple scales. The 

DDCBWCA expands the valid field to learn and improve its 

performance effectively. 

The DDCBWCA block consists of five parallel 

connections, each processing the input data differently as 

shown in Figure 3. The first four connections apply two 

convolutional layers with a specific filter size: N×1 for the first 

convolution and 1×N for the second convolution. This 

approach decreases the number of parameters compared to N 

× N convolution layer. The impact of the cascaded convolution 

layers with fewer parameters is found to be similar to a single 

layer with more parameters. 

Next, skip connection is used to preserve the original input. 

The outputs of all parallel connections are merged to obtain a 

single output. Then, three consecutive convolutional layers 

with filter sizes of 3×3, 3×3, and 1×1 are applied to the 

summed output. 

The improved U-Net architecture incorporates the 

DDCBWCA module to bridge the gap between shallow and 

deep layers, enabling enhanced integration of local and global 

features. The DDCBWCA block uses dense connectivity 

combined with attention mechanisms to allow the network to 

focus on important features. Unlike standard UNet skip 

connections that directly concatenate encoder features with the 

decoder, this block provides better integration of local features 

and global features. It is used for better segmentation in 

complex tasks. 

The discriminator in the DenseUnetGAN model is based on 

a DenseNet structure which includes several dense blocks 

stacked with multiple convolutional layers. Typically, the 

DenseNet discriminator consists of 4 to 5 layers of dense 

blocks with total feature maps growing from 64 in the initial 

layers to 512 in the deeper layers. This design enables the 

discriminator to attain both local and global features within the 

generated images. By focusing on a rich combination of 

feature patterns at multiple scales, the DenseNet discriminator 

significantly improves to differentiate among fake and real 

images. 

 
3.3 Lemur optimizer based parameter tuning  

 
Optimization is a crucial process used to provide the most 

favorable solution for a given problem while considering 

constraints. The objective function is typically minimized or 

maximized to determine the optimal outcome. Optimization 

plays a vital role in decision-making across various domains 

[36]. However, many real-world problems are intricate, 

involving multiple nonlinear constraints. This complexity 

adds to the difficulty of achieving effective optimization. 

It is based on a metaheuristic optimization algorithm that is 

inspired by the behaviors of lemurs [37]. The two important 

behaviors of lemurs like leap-up and dance-hub. are 

statistically translated into solving optimization problems. In 

the exploration stage, the dance-hup behavior is used. 

Similarly, the leap-up behaviour is used for exploiting the 

search space. The problem solving approach is mathematically 

modelled as follows. 

The solution for decision variable j with i as Eq. (5): 

 

𝑆𝑖
𝑗

= 𝑟 ∗ (𝑢𝑙𝑗 − 𝑙𝑙𝑗) ⩝ 𝑖 ∈ (1,2, … . 𝑑) (5) 

 

where, r is the random variable varies between zero to one. 

 

𝑆𝑖
𝑗

= 

{
𝑠(𝑖, 𝑗) + 𝑎𝑏𝑠(𝑠(𝑖, 𝑗) − 𝑠(𝐵, 𝑗)) ∗ (𝑟 − 0.5) ∗ 2; 𝑟 < 𝑓𝑟

𝑠(𝑖, 𝑗) + 𝑎𝑏𝑠(𝑠(𝑖, 𝑗) − 𝑠(𝐺, 𝑗)) ∗ (𝑟 − 0.5) ∗ 2; 𝑟 > 𝑓𝑟

 
(6) 

 

where, B represents the nearest best lemur and G denotes 

global best lemur. 
 

𝑓𝑟 = 𝑓𝑟 ∗ (ℎ𝑟𝑟) − 𝑐𝑢𝑟𝑟𝑖𝑡𝑒𝑟 ∗ (ℎ𝑟𝑟 − 𝑙𝑟𝑟)/𝑚𝑎𝑥𝑖𝑡𝑒𝑟 (7) 
 

where, 𝑓𝑟 is the free risk rate, hrr and lrr is high and low risk 

rates, 𝑐𝑢𝑟𝑟𝑖𝑡𝑒𝑟 is the current iterations. The above steps are 

applied to the fitness function iteratively to get optimal GAN 

parameters. The pseudocode for proposed parameter tuning is 

given below: 

Pseudocode: Lemur Optimizer based Tuning  

1. Initialize parameters: 

a. Initialize n lemurs (solutions) randomly within the 

bounds [ll, ul]. 

b. Set the current iteration to 0 (currIter = 0). 

c. Define high-risk rate (hr) and low-risk rate (). 

d. Evaluate the fitness of each lemur using F. 

2. Determine the best lemur: 

a. Identify the global best solution (G) with the highest 

fitness. 

b. Identify the nearest best lemur (B) for each lemur based 

on fitness. 

3. Loop until maxIter is reached: 

a. For each lemur (i): 

i. Generate a random number r in the range [0, 1]. 

ii. Update decision variable 𝑆𝑖
𝑗
for each dimension j using 

Eq. (6). 

b. Update 𝑆𝑖
𝑗
using the Eq. (7). 

c. Clip 𝑆𝑖
𝑗
within bounds [ll, ul] to ensure valid solutions. 

d. Evaluate the new fitness of each lemur using F. 

e. Update the global best (G) and nearest best (B) lemurs 

based on the new fitness values. 

4. Increment the iteration (currIter = currIter + 1). 

5. Output the global best solution (G) as the optimal GAN 

parameters. 

The algorithm starts by defining the population size, 

bounds, and other parameters. Each lemur's position 

represents a possible set of GAN parameters. The fitness 

function F evaluates how well the parameters perform in 

training the DenseUnetGAN model. In the early iterations, the 

algorithm prioritizes exploration, broadly searching across the 

parameter space. This is controlled by 𝑓𝑟 , which starts high 

(encouraging risk-taking) and gradually decreases over time. 

As iterations progress, 𝑓𝑟 lowers, focusing on refining 

solutions near the best candidates. Lemurs move closer to 
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either the closest best solution. The updated solutions are 

clipped to remain within the specified bounds. The process is 

repeated, adjusting positions and fitness evaluations, until the 

maximum number of iterations is reached. The global best 

solution (G) represents the optimal parameters for training 

DenseUnetGAN. 

 

 

4. RESULT AND DISCUSSION 

 

Table 1. Experimental Settings 

 
Parameter Value 

Dataset Brain Tumor Dataset (e.g., BRATS 2018) 

Train-Test Split 80% train, 20% test 

Image Dimensions 240×240×4 

Batch Size 16 

Number of Epochs 50 

Optimizer Adam 

Learning Rate 1e-4 

Momentum 0.9 

Weight Decay 1e-5 

Data 

Augmentation 

Random rotations (10-30 degrees), 

flipping, scaling (0.8-1.2), elastic 

deformation 

Dropout Rate 0.5 

Activation 

Function 
ReLU and SoftMax 

Evaluation 

Metrics 

Dice Similarity Coefficient (DSC), IoU, 

Accuracy 

Hardware NVIDIA Tesla V100 (16GB VRAM) 

 

This work uses two datasets for the purpose of training and 

evaluating a classification method using MRI. The first 

dataset, created by Cheng et al. [38] comprises a total of 3064 

T1-CE MR images. This dataset includes three distinct types 

of brain tumors: 708 meningioma tumors, 1426 glioma 

tumors, and 930 pituitary tumors. It encompasses MR images 

captured in all different planes. Table 1 offers simulation 

parameters related to this research study. 

The second data set used in this study is a collection of 

whole brain volume MR images initially presented by Marcus 

et al. [39]. This dataset was primarily designed to investigate 

dementia in elders. It comprises longitudinal images of 372 

sets obtained from 100 aged subjects among 50 and 93 years. 

The sample data set image is shown in Figure 4. 

 

 
 

Figure 4. Data set image 

 

The DenseUnetGAN’s hyperparameters are tuned before 

evaluation. The best hyperparameters of the model are 

identified by lemur optimization. The fitness function is used 

to find the best values of the optimizer, dropout rate (DR) and 

learning rate (LR). The performance of the model for different 

LR, DR, and optimizer is given in Tables 2 and 3. The best 

optimizer is identified as Adam with an LR of 0.001. Likewise, 

the best DR is identified as 0.5 with the highest accuracy. The 

generated images of the GAN model are shown in Figure 5. 

The training curve of the model is given in Figure 6. 

 

 
 

Figure 5. Generated images 

 

 
(a)                                                                                                                (b) 

Figure 6. Training curve (a) DenseUnetGAN loss vs epochs, (b) DenseUnetGAN accuracy vs epochs 
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Table 2. Performance of different optimizers 

 

Optimizer 
LR 

1 0.1 0.01 0.001 

Adam 70.2 70.2 70.2 96.78 

Stochastic Gradient 

Descent 
60.4 70.2 80.56 84.83 

RMSProp 60.4 60.4 70.2 94.55 

Adaptive Gradient 70.2 70.2 88.56 92.43 

Adaptive delta 93.56 90.78 80.23 72.56 

 

Table 3. Performance of different dropout rates 

 
DR 0.1 0.3 0.5 0.7 0.9 

Accuracy 95.6 96.78 97 95.2 79.4 

 

Table 4. Classification results of the GAN model 

 
 Glioma Meningioma Pituitary 

Rec 81.56 84.28 77.89 

Acc 87.21 89.86 88.19 

Pre 86.59 76.65 78.27 

F1-Score 84.85 80.99 78.28 

 

Table 5. Classification results of DeLiGAN model 

 
 Glioma Meningioma Pituitary 

Rec 82.7 85.56 79.22 

Acc 88.32 90.93 89.82 

Pre 87.15 77.23 79.43 

F1-Score 85.79 81.11 79.12 

 

Table 6. Classification results of the VAE-GAN model 

 

 Glioma Meningioma Pituitary 

Rec 95.4 91.14 85.45 

Acc 92.15 95.14 96.74 

Pre 91.78 87.46 93.86 

F1-Score 93.67 89.73 89.33 

 

Table 7. Classification results of DenseUnetGAN model 

 
 Glioma Meningioma Pituitary 

Rec 98.89 94.44 88.77 

Acc 95.76 98.49 98.9 

Pre 95.78 91.37 97.80 

F1-Score 96.43 92.88 92.79 

 

Table 8. Performance analysis of different classifier models 

 
Method Accuracy 

CapsNet 90.8 

CNN 88.6 

CGan 92.6 

GAN 81.6 

DeLiGAN 82.5 

GAN -random split 85.6 

VAE-GAN 92.3 

DenseUnetGAN 95.32 

 

Tables 4-7 present a comparison of DenseUnetGAN against 

conventional generative models. Among the models 

evaluated, the GAN model achieved an average accuracy of 

81.6%, while the DeLiGAN model reached an average 

accuracy of 82.5%. The GAN model utilizing a random split 

strategy achieved an average accuracy of 85.6%. Additionally, 

the VAE-GAN model [29] demonstrated a higher average 

accuracy of 92.3%. Notably, the DenseUnetGAN model 

achieved a notable average accuracy of 95.32%. 

 

 
 

Figure 7. Confusion matrices of the proposed model 

 

The proposed confusion matrix result is shown in Figure 7. 

When considering the type of Pituitary test images of 1044 and 

spotting the matrix horizontally, the 1023 images are predicted 

properly as Pituitary by classifier. It wrongly classified the 

remaining 21 images of Pituitary: 13 as glioma and 8 as 

meningioma.  

Table 8 provides a summary of performance results in terms 

of accuracy percentages for various classifier models. 

DenseUnetGAN attained the accuracy of 95.32. It shows 

promising performance in generating high-quality output or 

making accurate predictions. Other models such as CapsNet, 

CNN, CGan, GAN - random split, VAE GAN, DeLiGAN, and 

GAN achieved accuracies ranging from 81.6% to 92.6%.  

Table 9 presents a Comparative analysis of Results for Brain 

Tumor Classification along with standard benchmark models. 

The proposed DenseUnetGAN model achieved the highest 

accuracy at 95.3%, outperforming all other models. U-Net 

followed with an accuracy of 92.1%. The DenseNet achieved 

92.7%. The 3D U-Net model recorded an accuracy of 93.2%, 

and ResNet achieved 91.2%. V-Net had an accuracy of 90.8%, 

and SegNet showed the lowest accuracy at 88.9%. Thus, the 

proposed model showed the best results in terms of accuracy. 

To assess the performance robustness and variability of the 

DenseUnetGAN model, statistical analysis was conducted on 

the classification metrics across different tumor types. The 

parameters used for the statistical analysis include mean, 

standard deviation (SD), and 95% confidence intervals (CI). 

The results are given in Table 10. 

The DenseUnetGAN model shows high recall, accuracy, 

and precision across all tumor types. The low standard 

deviations across metrics highlight the model's stable and 

reliable performance in tumor classification. 
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Table 9. Comparative results for brain tumor classification 

 
Model Accuracy (%) Dice Similarity Coefficient (DSC) IoU Precision Recall F1-Score 

DenseUnetGAN (Proposed) 95.3 0.88 0.82 0.91 0.88 0.89 

U-Net 92.1 0.85 0.80 0.89 0.86 0.87 

ResNet [33] 91.2 0.83 0.78 0.87 0.84 0.85 

DenseNet [30] 92.7 0.86 0.81 0.90 0.87 0.88 

V-Net [31] 90.8 0.80 0.75 0.85 0.82 0.83 

3D U-Net [32] 93.2 0.87 0.81 0.89 0.87 0.88 

SegNet [34] 88.9 0.77 0.72 0.83 0.79 0.81 

 

Table 10. Statistical analysis of classification results for DenseUnetGAN 

 

Metric Tumor Type Mean (%) SD (%) 95% CI Lower Bound (%) 95% CI Upper Bound (%) 

Recall 

Glioma 98.89 1.2 97.89 99.89 

Meningioma 94.44 1.4 93.04 95.84 

Pituitary 88.77 1.8 86.97 90.57 

Accuracy 

Glioma 95.76 1.0 94.86 96.66 

Meningioma 98.49 0.9 97.74 99.24 

Pituitary 98.90 0.8 98.10 99.70 

Precision 

Glioma 95.78 1.5 94.28 97.28 

Meningioma 91.37 1.6 89.77 92.97 

Pituitary 97.80 0.7 97.05 98.55 

 

 

5. CONCLUSION 

 

This paper proposed a hybrid model for brain tumor 

classification using DenseUnetGAN. By incorporating pre-

trained models in the generator and discriminator components, 

aimed to overcome the limitations of limited data availability 

in medical imaging datasets. The generator is performed by 

modified U-Net architecture, while the DenseNet model is 

utilized as the discriminator and classifier after modifying the 

fully connected layers. Through extensive experimentation 

and evaluation, the proposed approach is accurately 

distinguishing between different tumor classes. The results 

obtained from experiments highlight the potential of proposed 

techniques in improving the identification of brain tumors. 

One significant limitation of the proposed GAN-based 

approach is its handling of class imbalance. The proposed 

GAN-based approach may exacerbate class imbalance by 

generating biased synthetic images that reflect the dominant 

class distribution. Moreover, GAN training is computationally 

expensive, requiring significant resources that may not be 

available in all settings. Future work could focus on addressing 

class imbalance by incorporating strategies such as adaptive 

loss functions or using GAN-generated images for 

oversampling underrepresented classes.  

 

 

REFERENCES  

 

[1] DeAngelis, L.M. (2001). Brain tumors. New England 

Journal of Medicine, 344(2): 114-123. 

https://doi.org/10.1056/NEJM200101113440207 

[2] Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., 

Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van 

Ginneken, B., Sanchez, C.I. (2017). A survey on deep 

learning in medical image analysis. Medical Image 

Analysis, 42: 60-88. 

https://doi.org/10.1016/j.media.2017.07.005 

[3] Bauer, S., Wiest, R., Nolte, L.P., Reyes, M. (2013). A 

survey of MRI-based medical image analysis for brain 

tumor studies. Physics in Medicine & Biology, 58(13): 

R97. https://doi.org/10.1088/0031-9155/58/13/R97 

[4] Dandıl, E., Çakıroğlu, M., Ekşi, Z. (2015). Computer-

aided diagnosis of malign and benign brain tumors on 

MR images. In ICT Innovations 2014: World of Data, 

Ohrid, North Macedonia, pp. 157-166. 

https://doi.org/10.1007/978-3-319-09879-1_16 

[5] Pereira, S., Pinto, A., Alves, V., Silva, C.A. (2016). Brain 

tumor segmentation using convolutional neural networks 

in MRI images. IEEE Transactions on Medical Imaging, 

35(5): 1240-1251. 

https://doi.org/10.1109/TMI.2016.2538465 

[6] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 

Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. 

(2020). Generative adversarial networks. 

Communications of the ACM, 63(11): 139-144. 

https://doi.org/10.1145/3422622 

[7] Vidyarthi, A., Agarwal, R., Gupta, D., Sharma, R., 

Draheim, D., Tiwari, P. (2022). Machine learning 

assisted methodology for multiclass classification of 

malignant brain tumors. IEEE Access, 10: 50624-50640. 

https://doi.org/10.1109/ACCESS.2022.3172303 

[8] Yu, W., Kang, H., Sun, G., Liang, S., Li, J. (2022). Bio-

inspired feature selection in brain disease detection via 

an improved sparrow search algorithm. IEEE 

Transactions on Instrumentation and Measurement, 72: 

2500515. https://doi.org/10.1109/TIM.2022.3228003 

[9] Yang, Q., Guo, X., Chen, Z., Woo, P.Y., Yuan, Y. 

(2022). D ̂2-Net: Dual disentanglement network for brain 

tumor segmentation with missing modalities. IEEE 

Transactions on Medical Imaging, 41(10): 2953-2964. 

https://doi.org/10.1109/TMI.2022.3175478 

[10] Sultan, H.H., Salem, N.M., Al-Atabany, W. (2019). 

Multi-classification of brain tumor images using deep 

neural network. IEEE Access, 7: 69215-69225. 

https://doi.org/10.1109/ACCESS.2019.2919122 

[11] Huang, Z., Du, X., Chen, L., Li, Y., Liu, M., Chou, Y., 

Jin, L. (2020). Convolutional neural network based on 

complex networks for brain tumor image classification 

with a modified activation function. IEEE Access, 8: 

89281-89290. 

https://doi.org/10.1109/ACCESS.2020.2993618 

[12] Asif, S., Yi, W., Ain, Q.U., Hou, J., Yi, T., Si, J. (2022). 

758



 

Improving effectiveness of different deep transfer 

learning-based models for detecting brain tumors from 

MR images. IEEE Access, 10: 34716-34730. 

https://doi.org/10.1109/ACCESS.2022.3153306 

[13] Shah, H.A., Saeed, F., Yun, S., Park, J.H., Paul, A., 

Kang, J.M. (2022). A robust approach for brain tumor 

detection in magnetic resonance images using finetuned 

efficientnet. IEEE Access, 10: 65426-65438. 

https://doi.org/10.1109/ACCESS.2022.3184113 

[14] Rizwan, M., Shabbir, A., Javed, A.R., Shabbir, M., 

Baker, T., Obe, D.A.J. (2022). Brain tumor and glioma 

grade classification using Gaussian convolutional neural 

network. IEEE Access, 10: 29731-29740. 

https://doi.org/10.1109/ACCESS.2022.3153108 

[15] Imtiaz, T., Rifat, S., Fattah, S.A., Wahid, K.A. (2019). 

Automated brain tumor segmentation based on multi-

planar superpixel level features extracted from 3D MR 

images. IEEE Access, 8: 25335-25349. 

https://doi.org/10.1109/ACCESS.2019.2961630 

[16] Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J. 

(2019). Unet++: Redesigning skip connections to exploit 

multiscale features in image segmentation. IEEE 

Transactions on Medical Imaging, 39(6): 1856-1867. 

https://doi.org/10.1109/TMI.2019.2959609 

[17] Micallef, N., Seychell, D., Bajada, C.J. (2021). Exploring 

the u-net++ model for automatic brain tumor 

segmentation. IEEE Access, 9: 125523-125539. 

https://doi.org/10.1109/ACCESS.2021.3111131 

[18] Alhassan, A.M., Zainon, W.M.N.W. (2020). BAT 

algorithm with fuzzy C-ordered means (BAFCOM) 

clustering segmentation and enhanced capsule networks 

(ECN) for brain cancer MRI images classification. IEEE 

Access, 8: 201741-201751. 

https://doi.org/10.1109/ACCESS.2020.3035803 

[19] Gumaei, A., Hassan, M.M., Hassan, M.R., Alelaiwi, A., 

Fortino, G. (2019). A hybrid feature extraction method 

with regularized extreme learning machine for brain 

tumor classification. IEEE Access, 7: 36266-36273. 

https://doi.org/10.1109/ACCESS.2019.2904145 

[20] Ferdous, G.J., Sathi, K.A., Hossain, M.A., Hoque, M.M., 

Dewan, M.A.A. (2023). LCDEiT: A linear complexity 

data-efficient image transformer for MRI brain tumor 

classification. IEEE Access, 11: 20337-20350. 

https://doi.org/10.1109/ACCESS.2023.3244228 

[21] Noreen, N., Palaniappan, S., Qayyum, A., Ahmad, I., 

Imran, M., Shoaib, M. (2020). A deep learning model 

based on concatenation approach for the diagnosis of 

brain tumor. IEEE Access, 8: 55135-55144. 

https://doi.org/10.1109/ACCESS.2020.2978629 

[22] Mishra, A., Jha, R., Bhattacharjee, V. (2023). SSCLNet: 

A self-supervised contrastive loss-based pre-trained 

network for brain MRI classification. IEEE Access, 11: 

6673-6681. 

https://doi.org/10.1109/ACCESS.2023.3237542 

[23] Afshar, P., Plataniotis, K.N., Mohammadi, A. (2019). 

Capsule networks for brain tumor classification based on 

MRI images and coarse tumor boundaries. In ICASSP 

2019-2019 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), Brighton, UK, 

pp. 1368-1372. 

https://doi.org/10.1109/ICASSP.2019.8683759 

[24] Mirza, M., Osindero, S. (2014). Conditional generative 

adversarial nets. arXiv preprint arXiv:1411.1784. 

https://doi.org/10.48550/arXiv.1411.1784 

[25] Gurumurthy, S., Kiran Sarvadevabhatla, R., Venkatesh 

Babu, R. (2017). Deligan: Generative adversarial 

networks for diverse and limited data. In 2017 IEEE 

Conference on Computer Vision and Pattern Recognition 

(CVPR), Honolulu, HI, USA, pp. 4941-4949. 

https://doi.org/10.1109/CVPR.2017.525 

[26] Ghassemi, N., Shoeibi, A., Rouhani, M. (2020). Deep 

neural network with generative adversarial networks pre-

training for brain tumor classification based on MR 

images. Biomedical Signal Processing and Control, 57: 

101678. https://doi.org/10.1016/j.bspc.2019.101678 

[27] Ge, C., Gu, I.Y.H., Jakola, A.S., Yang, J. (2020). 

Enlarged training dataset by pairwise GANs for 

molecular-based brain tumor classification. IEEE 

Access, 8: 22560-22570. 

https://doi.org/10.1109/ACCESS.2020.2969805 

[28] Yerukalareddy, D.R., Pavlovskiy, E. (2021). Brain tumor 

classification based on mr images using GAN as a pre-

trained model. In 2021 IEEE Ural-Siberian Conference 

on Computational Technologies in Cognitive Science, 

Genomics and Biomedicine (CSGB), Novosibirsk-

Yekaterinburg, Russia, pp. 380-384. 

https://doi.org/10.1109/CSGB53040.2021.9496036 

[29] Ahmad, B., Sun, J., You, Q., Palade, V., Mao, Z. (2022). 

Brain tumor classification using a combination of 

variational autoencoders and generative adversarial 

networks. Biomedicines, 10(2): 223. 

https://doi.org/10.3390/biomedicines10020223 

[30] Chauhan, T., Palivela, H., Tiwari, S. (2021). 

Optimization and fine-tuning of DenseNet model for 

classification of COVID-19 cases in medical imaging. 

International Journal of Information Management Data 

Insights, 1(2): 100020. 

https://doi.org/10.1016/j.jjimei.2021.100020 

[31] Milletari, F., Navab, N., Ahmadi, S.A. (2016). V-net: 

Fully convolutional neural networks for volumetric 

medical image segmentation. In 2016 Fourth 

International Conference on 3D Vision (3DV), Stanford, 

CA, USA, pp. 565-571. 

https://doi.org/10.1109/3DV.2016.79 

[32] Huang, C., Han, H., Yao, Q., Zhu, S., Zhou, S.K. (2019). 

3D U ̂2-Net: A 3D universal U-Net for multi-domain 

medical image segmentation. In International 

Conference on Medical Image Computing and 

Computer-Assisted Intervention, Shenzhen, China, pp. 

291-299. https://doi.org/10.1007/978-3-030-32245-8_33 

[33] Cheng, J., Tian, S., Yu, L., Gao, C., Kang, X.J., Ma, X., 

Wu, W.D., Liu, S.J., Lu, H.C. (2022). ResGANet: 

Residual group attention network for medical image 

classification and segmentation. Medical Image 

Analysis, 76: 102313. 

https://doi.org/10.1016/j.media.2021.102313 

[34] Ejiyi, C.J., Qin, Z., Ukwuoma, C., Agbesi, V.K., 

Oluwasanmi, A., Al-antari, M.A., Bamisile, O. (2024). A 

unified 2D medical image segmentation network 

(SegmentNet) through distance-awareness and local 

feature extraction. Biocybernetics and Biomedical 

Engineering, 44(3): 431-449. 

https://doi.org/10.1016/j.bbe.2024.06.001  

[35] Radford, A., Metz, L., Chintala, S. (2015). Unsupervised 

representation learning with deep convolutional 

generative adversarial networks. arXiv preprint 

arXiv:1511.06434. 

https://doi.org/10.48550/arXiv.1511.06434 

759



 

[36] Ganesamoorthy, B.N., Sakthivel, D.S., Balasubadra, K. 

(2024). Hen maternal care inspired optimization 

framework for attack detection in wireless smart grid 

network. International Journal of Informatics and 

Communication Technology, 13(1): 123-130. 

https://doi.org/10.11591/ijict.v13i1.pp123-130 

[37] Abasi, A.K., Makhadmeh, S.N., Al-Betar, M.A., 

Alomari, O.A., et al. (2022). Lemurs optimizer: A new 

metaheuristic algorithm for global optimization. Applied 

Sciences, 12(19): 10057. 

https://doi.org/10.3390/app121910057 

[38] Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, 

Z.Q., Wang, Z.J., Feng, Q.J. (2015). Enhanced 

performance of brain tumor classification via tumor 

region augmentation and partition. PloS One, 10(10): 

e0140381. https://doi.org/10.1371/journal.pone.0140381 

[39] Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, 

J.C., Buckner, R.L. (2010). Open access series of 

imaging studies: Longitudinal MRI data in nondemented 

and demented older adults. Journal of Cognitive 

Neuroscience, 22(12): 2677-2684. 

https://doi.org/10.1162/jocn.2009.21407  

760




