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This study addresses the challenges of low-cost, high-precision positioning for shared 

electric bicycles (e-bikes) in complex urban environments by proposing an integrated 

navigation system combining Beidou Real-Time Kinematic (RTK) and Inertial Navigation 

System (INS) technologies. Traditional Global Navigation Satellite Systems (GNSS) suffer 

from severe signal degradation, multipath interference, and outages in urban canyons, 

leading to meter-level positioning errors. To overcome these limitations, the proposed 

system synergizes the centimetre-level absolute positioning capability of Beidou RTK with 

the continuous relative motion estimation of INS, enhanced by low-cost Micro-

Electromechanical System (MEMS) sensors and wheel speed measurements. A robust 

adaptive Kalman filter algorithm, incorporating dynamic error modelling and calibration for 

MEMS sensors, is developed to optimize data fusion, mitigate drift, and ensure stability 

during GNSS signal interruptions. Experimental results demonstrate that the system 

achieves an average positioning error of 1.17 meters, with 90% of errors below 2 meters 

under continuous GNSS coverage and a maximum error of 6.74 meters during partial signal 

loss. Eastward and northward positioning accuracies are improved by 12.46% and 9.92%, 

respectively, while hardware is low-cost compared to conventional solutions. The algorithm 

significantly enhances operational efficiency for shared e-bike fleets, enabling precise 

geofencing and fleet management, and offers a scalable, cost-effective solution for smart 

city transportation and autonomous logistics in signal-degraded urban environments. 
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1. INTRODUCTION

1.1 Research background and significance 

Shared electric bicycles (e-bikes) have emerged as a flexible 

and convenient mode of short-distance transportation, playing 

a significant role in modern urban traffic systems. It provides 

an efficient solution to the "last mile" problem in urban 

commuting. With the rise of the sharing economy, shared e-

bikes have rapidly expanded across cities globally, particularly 

in densely populated and traffic-congested areas [1]. This 

widespread adoption not only enhances the efficiency of urban 

mobility but also contributes to reducing private car usage, 

alleviating traffic pressure, and promoting environmental 

sustainability [2]. As a low-carbon transportation mode, the 

proliferation of shared e-bikes aligns with green urban 

development and sustainability goals. 

However, the operation of shared e-bikes faces challenges 

in complex urban environments. In areas with high-density 

buildings, often referred to as “urban canyons,” the dense 

arrangement of structures leads to signal reflections and 

blockages, which cause multipath effects and non-Line-Of-

Sight (NLOS). When barriers impede direct Line-Of-Sight 

(LOS) signals, only reflected signals are received, resulting in 

NLOS reception, which raise the possibility of the multipath 

[3]. However, multipath produces a distorted correlation 

function, when estimating delays and pseudoranges, resulting 

in incorrect navigation solutions are produced [4]. These 

environmental factors make it difficult for traditional GNSS 

(Global Navigation Satellite System) to provide accurate 

positioning, with errors often reaching several meters or even 

tens of meters [5]. Such inaccuracies not only affect the rider’s 

experience but also complicate the management of e-bike 

fleets, as mispositioning can lead to improper parking and 

operational inefficiencies [6]. 

To address the inaccurate position of shared e-bikes in the 

complex urban environment, high-precision and low-cost 

positioning systems are essential in the context of shared e-

bikes. The integration of Beidou RTK (Real-Time Kinematic) 

and INS (Inertial Navigation System) technologies allows for 

metre-level accuracy in urban canyon environments, 

significantly improving the accuracy and continuity of e-bike 

positioning [2]. But for shared e-bikes, even a one-meter error 

would result in the users being unable to return the vehicle at 

the designated location, which causes a bad user experience. 

The combined navigation system enhances the management 

and dispatching efficiency of e-bikes, reducing operational 

costs and user complaints caused by positioning errors [6]. 

Furthermore, the integrated navigation system could 

overcome the inaccurate position by employing Kalman filter 
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to couple multi-source data. Through the integrated system, 

the low-cost advantage of this system makes it economically 

viable for large-scale deployment, providing a competitive 

technological solution for the shared e-bike industry and 

promoting the development of smart urban mobility and green 

transportation systems [7]. 

 
1.2 Research objectives and contributions 

 
The primary objective of this study is to develop a low-cost, 

high-precision positioning system that integrates Beidou RTK 

and INS technologies to address the positioning challenges in 

complex urban environments. Traditional GNSS systems face 

significant signal attenuation and multipath effects in urban 

canyons, leading to substantial accuracy degradation [8]. 

Beidou RTK technology provides centimetre-level absolute 

positioning accuracy, but data loss may occur when signals are 

weak or obstructed. INS, on the other hand, compensates for 

these gaps by using inertial measurement units (IMUs) to 

provide short-term positioning data. This study aims to 

optimize the coupling of RTK and INS technologies through 

the use of Kalman filtering to maintain high-precision 

positioning even when GNSS signals are obstructed, thereby 

adapting to the complex urban environments. 

This study makes significant contributions in the following 

areas: A tightly coupled RTK/INS navigation system is 

developed, utilizing extended Kalman filters (EKF) or robust 

Kalman filters (RKF), to optimize data fusion and error 

correction between RTK and INS. This ensures high-precision 

positioning even during GNSS signal blockages or 

interruptions, which is crucial for continuous positioning in 

urban environments. Furthermore, the study develops error 

modeling techniques for low-cost MEMS sensors and 

calibrates these models using experimental data. This 

approach significantly reduces the accumulated errors of low-

cost IMU devices, thereby enhancing the system's precision 

and stability. Finally, the research employs multi-frequency 

techniques, along with adaptive filtering algorithms, to 

improve the system's resistance to interference in densely 

built-up areas. These innovations effectively address the 

precision limitations of traditional high-accuracy positioning 

systems in complex environments, while maintaining the cost-

effectiveness of the system, making the technology broadly 

applicable in the market with significant prospects for 

widespread adoption. 

Through the integration and optimization of these 

technologies, this study significantly enhances the positioning 

accuracy of shared e-bikes in complex urban environments, 

providing a practical solution for smart transportation and 

urban management. 

 

 

2. LITERATURE REVIEW 

 

This section provides a review of the key technologies 

directly relevant to this study, including Beidou RTK, Inertial 

Navigation Systems (INS), low-cost MEMS sensor-based 

positioning systems, and urban environment positioning 

techniques. This section is divided into two parts. Section 2.1 

presents the domestic and international research status, 

categorizing the literature according to technological areas. 

Section 2.2 then identifies the research gaps and outlines the 

innovative contributions of the current work. 
 

2.1 Urban environment positioning challenges 

 

Real-time kinematic (RTK) positioning has been widely 

recognized for its ability to provide centimetre-level accuracy, 

and the Beidou navigation system has emerged as a viable 

alternative to traditional GNSS systems in this field. Several 

studies have demonstrated the potential of Beidou RTK for 

high-precision positioning in open-sky conditions. For 

instance, Cai et al. have shown that Beidou RTK can achieve 

remarkable accuracy when adequate satellite geometry is 

available [2]. However, the performance of Beidou RTK 

degrades significantly in environments with signal 

obstructions, such as urban canyons, where multipath effects 

and non-line-of-sight conditions are prevalent. To mitigate 

these challenges, integrating Beidou RTK with other 

technologies, such as LiDAR and Inertial Measurement Units 

(IMUs), has been proposed to enhance positioning accuracy in 

urban settings [9]. 

In addition, researchers have noted that while the Beidou 

system provides a competitive alternative to GPS-based RTK, 

the high cost of traditional RTK infrastructure remains a 

significant barrier to widespread application, particularly in 

cost-sensitive sectors such as shared micro-mobility. To 

address this issue, studies have explored the use of low-cost 

dual-frequency GNSS receivers, which offer a balance 

between performance and affordability, making them suitable 

for applications like shared e-bikes [10]. Wang et al. [1] 

further report that the reliability of Beidou RTK in dynamic 

urban settings is compromised by intermittent signal loss, 

thereby limiting its standalone applicability in environments 

with severe signal blockages. 

Inertial Navigation Systems (INS), which rely on 

integrating accelerometer and gyroscope measurements to 

estimate position, velocity, and orientation, are widely 

recognized for their ability to provide continuous, short-term, 

precise navigation solutions in environments where satellite 

signals are intermittently unavailable, as highlighted by the 

University of Cambridge [11]. However, despite their 

independence and robustness in such scenarios, INS inherently 

suffer from cumulative drift errors over time due to the double 

integration of sensor noise and biases, rendering them 

unsuitable as standalone solutions for long-term, high-

precision applications without periodic corrections from 

external sources. To mitigate this limitation, sensor fusion 

techniques combining INS with complementary systems (e.g., 

GNSS, vision, or LiDAR) have been developed, though the 

University of Cambridge underscores the persistent challenges 

in achieving sub-meter accuracy over extended periods, 

particularly due to the computational complexity of real-time 

fusion algorithms and the trade-offs involved in balancing 

performance with hardware cost constraints [11]. 

Recent studies have focused on improving INS performance 

through sensor fusion techniques. Inertial Labs discusses how 

integrating INS with other sensors, such as Global Navigation 

Satellite Systems (GNSS), enhances the robustness of the 

positioning system by compensating for drift during GNSS 

signal outages [12].  

Low-cost Micro-Electro-Mechanical Systems (MEMS) 

sensors have revolutionized the field of inertial navigation by 

offering compact, affordable alternatives to traditional high-

grade inertial sensors. These sensors have gained traction in 

consumer-grade applications, including smartphones and 

shared mobility devices, due to their low cost and small form 

factor. Studies have demonstrated that with proper calibration 
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and error modelling, MEMS sensors can provide reasonably 

accurate measurements suitable for short-term positioning 

applications [13].  

However, the low cost of MEMS sensors comes with 

significant challenges. Their measurements are typically 

affected by biases, scale factors, and random noise, which can 

lead to considerable errors if not properly compensated. 

Researchers have presented methodologies for calibrating 

MEMS sensors using stochastic error models, which include 

both random walk and white noise components [13]. Although 

these calibration techniques have improved the performance 

of MEMS-based INS, the residual errors still contribute to drift 

and uncertainty over longer periods. 

Furthermore, integrating low-cost MEMS sensors with 

high-precision satellite-based systems, such as Beidou RTK, 

can create a synergistic effect. This integration leverages the 

continuous output of MEMS sensors to fill the gaps during 

GNSS outages, while the satellite-based system provides long-

term accuracy. Despite this promising approach, the fusion 

process is complex and requires sophisticated algorithms to 

balance the trade-offs between sensor noise and dynamic 

errors [14]. Urban environments present unique challenges for 

positioning systems due to high-rise buildings and dense 

infrastructure, leading to severe multipath effects, signal 

blockage, and degradation of GNSS signals. Studies have 

systematically analyzed the impact of urban canyons on GNSS 

performance, finding that positioning errors in these settings 

can be significant, often exceeding several meters [14].  

To overcome these challenges, numerous studies have 

proposed hybrid approaches integrating multiple sensors and 

positioning techniques. For instance, fusing RTK with INS can 

mitigate the shortcomings of each system when used 

independently. Fusion techniques typically employ Kalman 

filters to optimally combine measurements from different 

sensors. Adaptive filtering methods have further improved the 

reliability of these fusion systems by dynamically adjusting 

filter parameters in response to varying signal conditions [15].  

Despite these advances, urban positioning systems still 

struggle to achieve a satisfactory balance between cost, 

complexity, and accuracy. Many state-of-the-art methods rely 

on high-cost sensors or require extensive computational 

resources, making them impractical for large-scale 

deployment in cost-sensitive applications like shared micro-

mobility. Consequently, there is an urgent need for low-cost, 

robust solutions that can maintain high accuracy even in 

challenging urban environments [16]. 

 

2.2 Research gaps and innovative approaches 

 

2.2.1 Research gap 

Although significant progress has been made in the 

development of high-precision positioning systems, several 

research gaps remain, particularly in the context of urban 

environments and cost-sensitive applications. A major 

limitation in current literature is the lack of a unified solution 

that simultaneously addresses both low-cost constraints and 

the complex dynamics of urban signal interference. 

A significant limitation in current literature is the inherent 

trade-off between cost and accuracy in conventional RTK 

systems. Traditional RTK implementations require high-grade 

reference stations and expensive hardware, which limit their 

applicability in shared electric bicycle fleets and similar cost-

sensitive transportation modes. For instance, Gou et al. (2025) 

discuss the challenges of implementing high-precision GNSS 

systems in urban transportation networks, highlighting the 

need for cost-effective solutions [17]. 

Moreover, while INS provides excellent short-term 

continuity, its long-term accuracy is hindered by drift, 

especially when using low-cost MEMS sensors. Zhu et al. [18] 

emphasize that even though INS can operate independently for 

short durations, its inherent drift makes it unsuitable as a long-

term standalone solution in high-precision applications. 

The existing studies have not fully resolved the issue of how 

to integrate these systems cost-effectively while maintaining 

high accuracy in complex urban settings. Recent research by 

Wu et al. [19] proposes a novel robust adaptive scheme for 

accurate GNSS RTK/INS tightly coupled integration in urban 

environments, addressing some of these challenges. 

The current research aims to bridge this gap by proposing 

an innovative fusion framework that combines the 

complementary strengths of Beidou RTK and INS. The 

proposed approach leverages an advanced adaptive filtering 

algorithm, referred to herein as KF-GINS, which enhances the 

data fusion process between RTK and INS [20]. Unlike 

traditional Kalman filters, the KF-GINS algorithm 

dynamically adjusts to changes in signal quality and sensor 

performance, thereby mitigating the effects of multipath 

interference and drift. This approach is expected to provide 

continuous centimetre-level accuracy even in environments 

with intermittent GNSS availability. 

In addition to the algorithmic improvements, the research 

emphasizes the use of low-cost MEMS sensors that have 

undergone rigorous error modelling and calibration. By 

incorporating stochastic error models—such as random walk 

and white noise models—the proposed system significantly 

reduces the accumulated errors in low-cost IMU 

measurements [21]. This calibration process is essential for 

ensuring that the low-cost sensors can reliably complement the 

high-precision RTK data. 

The integration of these technologies is further enhanced by 

the use of multi-frequency and multi-antenna techniques. 

These techniques improve the robustness of the system by 

increasing the number of available measurements and 

reducing the impact of signal blockage and interference. Wu 

et al. [19] have noted that such approaches can substantially 

enhance positioning performance in urban settings. By 

combining these hardware improvements with the KF-GINS 

adaptive filtering strategy, the proposed system aims to 

overcome the limitations identified in existing studies. 

Moreover, while previous research has typically focused on 

either high-precision performance or low-cost implementation, 

very few studies have attempted to optimize both 

simultaneously. The research gap, therefore, lies in developing 

an integrated solution that not only provides high precision in 

complex urban environments but also does so at a reduced 

hardware and operational cost. This dual focus is critical for 

practical applications in shared electric bicycle systems and 

other urban micro-mobility solutions, where cost-

effectiveness is as important as accuracy. 

Recent studies in adaptive filtering and sensor fusion have 

laid the groundwork for addressing these challenges, but they 

often assume a homogeneous sensor set or idealized urban 

conditions. For example, Zhang et al. [20] also demonstrated 

adaptive Kalman filtering techniques for RTK/INS integration; 

however, these methods did not account for the significant 

variations in sensor performance encountered with low-cost 

MEMS devices. Similarly, Artese and Trecroci [21] focused 

on the benefits of sensor fusion in mitigating GNSS signal 
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degradation, yet they did not explore the cost implications of 

implementing such systems on a large scale [21]. 
 

2.2.2 Innovation approach 

The existing GNSS/INS fusion systems and low-cost 

MEMS sensor systems each have their strengths and 

limitations. GNSS, while providing high-precision global 

positioning, faces significant challenges in urban 

environments due to signal degradation and multipath effects 

caused by buildings and other obstructions. Despite the 

implementation of multi-frequency and multi-antenna 

techniques to mitigate these issues, maintaining consistent 

meter-level accuracy in densely built urban areas remains 

difficult. In contrast, INS systems based on low-cost MEMS 

sensors can operate independently of GNSS signals, offering 

short-term continuity in the absence of reliable GNSS 

coverage. However, the long-term accuracy of MEMS-based 

INS is hindered by drift, noise, and temperature sensitivity, 

which can accumulate over time, leading to significant errors, 

particularly in dynamic urban environments. 

To address these limitations, this research proposes an 

integrated framework that combines low-cost MEMS sensors 

with high-precision Beidou RTK, utilizing an advanced 

adaptive filtering algorithm (referred to as KF-GINS) to 

enhance system robustness and accuracy. Unlike traditional 

Kalman filters, which assume fixed noise covariance, KF-

GINS dynamically adjusts filter parameters based on real-time 

satellite signal quality and sensor performance, effectively 

mitigating the effects of multipath interference and drift from 

MEMS sensors. Additionally, to compensate for errors 

inherent in low-cost IMUs, such as random walk and white 

noise, the study incorporates rigorous error modeling and 

calibration. The stochastic error models developed during the 

calibration process are integrated into the filtering algorithm, 

reducing the accumulation of inertial measurement errors. 

Moreover, multi-frequency and multi-antenna techniques 

are employed at the hardware level to increase the number of 

available measurements and reduce the risk of signal loss. In 

urban environments, where GNSS signals may be 

intermittently blocked, the INS system can seamlessly provide 

positioning during GNSS outages. Once the GNSS signal is 

restored, KF-GINS quickly integrates the RTK and INS data, 

ensuring high-precision positioning. Experimental results 

demonstrate that this system achieves continuous meter-level 

accuracy in complex urban environments, while the hardware 

cost is only a fraction of that required for traditional high-end 

RTK/INS systems. 10 dollars increasing compared to more 

than $2000 [22], which making it feasible for large-scale 

deployment in cost-sensitive applications such as shared 

electric bicycles. By combining low-cost solutions, optimized 

algorithms, and efficient sensor fusion techniques, this 

research overcomes the previous challenges of balancing cost 

and accuracy, providing a practical solution for high-precision 

positioning in urban micro-mobility scenarios. 
 

 

3. SYSTEM DESIGN AND IMPLEMENTATION 
 

3.1 System structure 
 

The hardware platform comprises 3 primary modules: RTK 

module, INS module, and wheel speed measurement module. 

 

3.3.1 RTK module 

The RTK module leverages the Beidou satellite navigation 

system to provide absolute positioning information with 

centimetre-level accuracy under favourable conditions. It 

consists of a high-sensitivity Beidou receiver, a multi-

frequency antenna, and associated RF front-end circuitry for 

signal acquisition and preprocessing. In this research, the 

XWCM260R chip (as shown in Figure 1) was employed as the 

RTK module to provide GNSS messages. 

 

 
 

Figure 1. The XWCM260R module [23] 

 

3.1.2 INS module 

The INS module is based on a low-cost MEMS inertial 

measurement unit (IMU) that includes accelerometers and 

gyroscopes. Although MEMS IMUs are subject to bias, scale 

factor errors, and drift over time, their continuous output is 

essential for relative positioning—particularly during short-

term GNSS outages. In this paper, the ICM42605, as shown in 

Figure 2, was chosen for the INS navigation data. 

 

 
 

Figure 2. The ICM42605 module [24] 

 

3.1.3 Wheel speed measurement module 

This module employs magnetic sensors attached to the 

bicycle wheels to measure rotational speed. The wheel speed 

data provides an independent estimate of the vehicle’s velocity, 

which is critical for correcting INS drift during periods of 

GNSS degradation. By offering an additional source of 

relative motion data, this module enhances the robustness and 

stability of the overall positioning solution. 

 

3.2 Algorithm design 

 

3.2.1 Beidou RTK/INS fusion algorithm 

The GNSS/IMU loosely coupled model adopted in this 

paper constructs a 22-parameter system error state vector input 

into the Kalman filter as follows: 

 
𝑋 =

[(𝛿𝒓𝐼𝑀𝑈)𝑇(𝛿𝒗𝐼𝑀𝑈)𝑇(𝛿𝝓𝐼𝑀𝑈)𝑇(𝒃𝑔)𝑇(𝒃𝑎)𝑇(𝒔𝑔)𝑇(𝒔𝑎)𝑇(𝒗)𝑇]  
(1) 

 

where: 

 𝛿𝒓𝐼𝑀𝑈 , 𝛿𝒗𝐼𝑀𝑈  and 𝛿𝜙𝐼𝑀𝑈  are the three-dimensional 

position error vector, velocity error vector, and attitude 

error vector of the IMU, respectively; 

 𝑏𝑔 , 𝑏𝑎 , 𝑠𝑔  and 𝑠𝑎 represent the gyroscope triaxial bias, 

accelerometer triaxial bias, gyroscope triaxial scale 

factor error vector, and accelerometer triaxial scale factor 
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error vector, respectively; 

 𝑣 denotes the velocity error vector. 

The Kalman filter equations are as follows: 
 

𝑋𝑘,𝑘−1 = Φ𝑘,𝑘−1𝑋𝑘−1 (2) 
 

Σ𝑘,𝑘−1 = Φ𝑘,𝑘−1Σ𝑘−1Φ𝑘,𝑘−1
𝑇 + 𝑄𝑘−1 (3) 

 

𝑉𝑘 = 𝑍𝑘 − 𝐻𝑘𝑋𝑘,𝑘−1 (4) 
 

𝐾𝑘 =
1

𝛼𝑘
Σ𝑘,𝑘−1𝐻𝑘

𝑇 [𝐻𝑘 (
1

𝛼𝑘
Σ𝑘,𝑘−1) 𝐻𝑘

𝑇 +
𝑅𝑘

𝛾𝑘
]

−1

  (5) 

 

𝑋𝑘 = 𝑋𝑘−1 + 𝐾𝑘𝑉𝑘 (6) 
 

Σ𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘]Σ𝑘,𝑘−1[𝐼 − 𝐾𝑘𝐻𝑘]𝑇 + 𝐾𝑘
𝑅𝑘

𝛾𝑘
𝐾𝑘

𝑇  (7) 

 

where: 

 𝑋 is a one-step predicted state vector; 

 Φ𝑘,𝑘−1 is state transition matrix; 

 Σ𝑘,𝑘−1 is one-step predicted state covariance matrix; 

 𝑍𝑘  is observation vector (difference between GNSS 

output position and IMU-derived position); 

 𝑉𝑘 is innovation vector; 

 𝐾𝑘 is kalman gain matrix; 

 𝑋𝑘 is estimated state vector; 

 𝑄𝑘−1  is non-negative definite variance matrix of 

dynamic model error; 

 𝑅𝑘  is symmetric positive definite variance matrix of 

observation noise; 

 Σ𝑘 is estimated state covariance matrix; 

 𝛾𝑘  and 𝛼𝑘  represent robust factor matrix and adaptive 

factor respectively. 

The calculation of the resistance factor is as followed: 
 

𝛾𝑘
𝑋 = {

1, |𝑉𝑘
𝑋| ≤ 𝑐

𝑐

|𝑉𝑘
𝑋|

, |𝑉𝑘
𝑋| ≥ 𝑐

  (8) 

 

where:  

 𝛾𝑘
𝑋 is the 𝑋𝑡ℎ diagonal element of 𝛾𝑘; 

 𝑐 is the constant. 

The calculation of 𝑉𝑘
𝑋 is as followed: 

 

𝑉𝑘
𝑋 =

𝑉𝑘
𝑋

√Σ𝑉𝑘
𝑋𝑋

  (9) 

 

where: 

 𝑉𝑘
𝑥 is the 𝑋𝑡ℎ element of 𝑉𝑘; 

 Σ𝑉𝑘 is the covariance matrix of the innovation vector; 

 Σ𝑉𝑘
𝑋𝑋  is the 𝑋𝑡ℎ diagonal element of Σ𝑉𝑘. 

The calculation formula for the error discrimination statistic 

Δ𝑉𝑘 and the corresponding adaptive factor 𝛼𝑘 is as follows: 
 

Δ𝑉𝑘 = (
𝑉𝑘

T𝑉𝑘

tr(Σ𝑉𝑘
)
)

1

2

  (10) 

 

𝛼𝑘 = {
1, Δ𝑉𝑘 ≤ 𝑐1

𝑐1

Δ𝑉𝑘
, Δ𝑉𝑘 > 𝑐1

  (11) 

 

where: 

 𝑡𝑟(∙) represents the trace of the matrix; 

 𝑐1 is the constant. 

 

3.2.2 Low-cost optimization strategy 

Low-cost MEMS sensors are a key component of the 

proposed positioning system due to their economic advantages; 

however, they inherently suffer from significant measurement 

errors such as bias drift, scale factor errors, and random noise. 

To address these issues and ensure high-precision positioning, 

our low-cost optimization strategy integrates comprehensive 

sensor error modelling, real-time calibration, and adaptive 

fusion techniques into the overall RTK/INS fusion framework. 

a) MEMS Sensor Error Modeling 

The performance degradation of low-cost sensors is 

primarily attributed to two error sources: bias (offset) errors 

and scale factor errors. For both accelerometers and 

gyroscopes, the measurement models are defined as follows: 

 

𝑎meas = (1 + 𝑠𝑎)𝑎true + 𝑏𝑎 + 𝜂𝑎 (12) 

 

𝜔meas = (1 + 𝑠𝜔)𝜔true + 𝑏𝜔 + 𝜂𝜔 (13) 

 

where: 

 𝑎true  and 𝜔true  represent the true acceleration and the 

true angular rate, respectively; 

 𝑆𝑎  and 𝜔true  represent the accelerometer scale factor 

error and gyroscope scale factor error, respectively; 

 𝑏𝑎 is the accelerometer bias and 𝑏𝜔 is the gyroscope bias; 

 𝜂𝑎 is zero-mean white noise with variance 𝜎𝑎
2; 

 𝜂𝜔 is zero-mean white noise with variance 𝜎𝜔
2 . 

b) Dynamic Modeling of Sensor Errors 

 

To compensate for these errors in real time, both the bias 

and scale factor errors are modeled as dynamic states that 

evolve over time according to a random walk process. This 

allows the fusion algorithm to continuously estimate and 

correct for these errors. The dynamic models are expressed as: 

 

𝑏𝑎(𝑘) = 𝑏𝑎(𝑘 − 1) + 𝜔𝑏𝑎
(𝑘) (14) 

 

𝑏𝜔(𝑘) = 𝑏𝜔(𝑘 − 1) + 𝜔𝑏𝜔
(𝑘) (15) 

 

𝑠𝑎(𝑘) = 𝑠𝑎(𝑘 − 1) + 𝜔𝑠𝑎
(𝑘) (16) 

 

𝑠𝜔(𝑘) = 𝑠𝜔(𝑘 − 1) + 𝜔𝑠𝜔
(𝑘) (17) 

 

where, 𝜔𝑖(𝑘) ∼ 𝒩(0, 𝑄𝑠𝜔
). 

 

The overall process of the algorithm is as shown in Figure 

3 below. 
 

3.3 Comparison analysis with high cost systems 
 

In terms of pure hardware outlay, a low-cost MEMS IMU 

such as the ICM42605 typically retails for roughly $3.5 each 

when procured in large volumes [24]. By contrast, 

navigation-grade or industrial-grade IMUs generally 

command prices in the $2000 to $10,000 range, with 

aerospace-level units often reaching fifteen thousand dollars 

apiece. A RTK package built around an XWCM260R receiver 

and a multi-frequency antenna usually costs on the order of $3 

[23]. In this case, the MEMS-based approach offers a 

one-to-two order-of-magnitude reduction in per-unit hardware 

cost compared with a high-grade IMU or full RTK solution. 
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Figure 3. Algorithm flow chart 

 

Deploying MEMS-based positioning at scale (thousands to 

tens of thousands of units) yields multiplicative cost savings, 

thanks to their small form factor and standardized interfaces 

that eliminate specialized calibration sites and field support. In 

contrast, high-end IMU/RTK systems demand surveying 

equipment and skilled technicians, with maintenance visits 

costing hundreds of dollars. A MEMS solution achieves a total 

cost of ownership of $20–30 per unit annually versus $2,000–

10,000 for an RTK+IMU setup, translating into savings of 

hundreds of thousands or even millions across large fleets. 

This makes MEMS particularly attractive for cost-sensitive 

applications like shared e-bikes, where both upfront and 

operating expenses must be minimal yet positioning still 

requires decimeter-level accuracy. By fusing wheel-speed, 

MEMS IMU, and GNSS data, reliable precision is maintained 

even in urban canyons or dense foliage—enabling geofencing, 

theft prevention, and fleet management. Moreover, the 

low-power, lightweight modules integrate via UART/SPI/I²C 

and MQTT with IoT/cloud platforms, further reducing 

complexity and enabling economically viable large-scale 

deployment. 

 

 

4. EXPERIMENT AND RESULT ANALYSIS 

 

4.1 Experimental design 
 

4.1.1 Experimental scenarios and conditions 

The core section of Guanggu Chuangye Street in Hongshan 

District of Wuhan City (30.50° N, 114.41° E) is selected as the 

test area. This area has dense high-rise buildings (80-150 m), 

elevated overpasses and underground parking entrances, and 

the dynamic change of satellite visibility is significant (4-15 

pieces), which is in line with the typical characteristics of 

urban canyons. The test period is the morning and evening 

peak hours (08:00-09:30, 17:30-19:00) on weekdays, covering 

extreme scenarios where GNSS signals are blocked by 

dynamic vehicles and pedestrians. The base station adopts the 

Hubei Beidou CORS network (baseline length 2 km). The 

mobile receiver is installed on the former wheel bracket of the 

electric bicycle, and the antenna height is 10 cm, simulating 

the actual deployment conditions of the shared bicycle. 

 

4.1.2 Experimental equipment and parameter setting 

The experimental hardware is composed of a dual-

frequency Beidou RTK receiver (20 Hz update rate), a 

MEMS-IMU (100 Hz sampling rate), and a synchronization 

controller. The main parameters are shown in Table 1. The test 

was conducted in three phases: 

1. Dynamic trajectory test: driving at a constant speed of 15-

25 km/h along a preset circular route (total length 4.5 km), 

collecting GNSS/IMU original observation data. 

2. Static interference test: stationary for 5 minutes under the 

viaduct to record the inertial navigation drift under the 

multi-path effect and signal loss lock. 

3. Power consumption test: The system is powered by a 

constant current source (12 V DC) to measure the full load 

operating current of the system. 

 

Table 1. The cost comparision 

 

 
Low-cost RTK/IMU 

Module 

High-cost RTK/IMU 

Module 

Cost $3 [23] + $3.5 [24] $2000 to $10000 [22] 

 

4.1.3 Experimental procedure 

 System initialization: The equipment was preheated for 

5 minutes and IMU zero-bias calibration was completed 

by static observation (Allan variance method). 

Differential GNSS post-processing solution (PPK) was 

used as the position reference (horizontal accuracy ±1 

cm). 

 Dynamic data acquisition: rode the 4.5km closed route 

for 3 laps at a constant speed of 15 km/h, covering all 

three scenarios, and manually triggered the emergency 

stop at the bottom of the viaduct (GNSS interrupt for 30 

s) to test the continuity of inertial navigation. 

 Static performance test: 10 minutes of static observation 

at a known coordinate point (calibration accuracy ±2 mm) 

to calculate the convergence time of cold start and 

quantify the multipath effect by simulating metal 

shielding through an RF shielding box. 
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4.2 Data collection and processing 

 

In this study, GNSS and IMU data were acquired via the 

AT2 serial port to ensure real-time and reliable transmission. 

Following data collection, a comprehensive preprocessing 

procedure is applied to address issues such as noise, outliers, 

and synchronization discrepancies. Initially, statistical 

methods are employed to detect and eliminate any anomalous 

data points that exceed predefined thresholds. To further 

enhance data quality, noise reduction techniques—such as 

low-pass and Kalman filtering—are implemented, effectively 

smoothing the raw data. Given the potential differences in 

sampling rates between the GNSS and IMU devices, temporal 

synchronization is performed using timestamps and 

interpolation methods when necessary. The resulting dataset is 

then formatted and stored consistently, providing a robust 

foundation for subsequent analysis and sensor fusion 

applications. 

 

4.3 Results analysis 

 

This section provides a detailed analysis of the system’s 

performance in terms of positioning accuracy and overall 

robustness. Both quantitative metrics and visual 

representations have been used to offer a comprehensive 

understanding of the system’s capabilities under various 

operational conditions. The experiments were conducted on 

March 25, 2024, lasting a total of 2495.5 seconds. The driving 

trajectory is illustrated with three traces, which are shown in 

Figure 4: the red line indicates the output from the 

XWCM260R module, the black line represents the truth trace, 

and the blue line shows the output from the Beidou RTK/INS 

navigation algorithm. The Pulse Per Second (PPS) pulse 

alignment achieves a timestamp synchronization error of less 

than 1 millisecond (ms). The results demonstrate that the 

algorithm effectively integrates the Beidou RTK and INS data. 

 

 
 

Figure 4. Experiment driving trajectory 

 

4.3.1 Positioning accuracy evaluation 

The result is shown in Tables 2-5 and Figures 5 to 8. 

The positioning accuracy was evaluated by using a range of 

statistical items. The mean error distance was determined to be 

1.1688 meters, the median error distance was 1.0042 meters, 

and the standard deviation of the error distance was calculated 

as 9.5182 meters, which is because the GNSS signal weak 

area due to the area blocked by the viaduct. Additionally, 

compared to the original output of the XWCM260R Module, 

the upgrade rate of eastwards and westwards is 12.46% and 

9.92% respectively, which enhances the position accuracy. 

 

Table 2. Main parameters of experimental equipment 

 
Item Argument 

XWCM260R 

RTK positioning achieves 1 cm + 1 ppm 

horizontal accuracy under open-sky 

conditions with fixed integer ambiguities 

ICM42605 
Gyroscope: Sensitivity Error: ±0.5%, 

Noise Density: 0.0038 𝑑𝑝𝑠/√𝐻𝑧 

 
Accelerometer: Sensitivity Error: ±0.5%, 

Noise Density: 70 𝜇𝑔/√𝐻𝑧 

 

Table 3. Error results of the algorithm 

 
Items Value 

Mean Error Distance 1.1688 𝑚 

Median Error Distance 1.0042 𝑚 

Standard Deviation of Error 9.5182 𝑚 

 

Table 4. The upgrade rate of the algorithm compared to the 

original data 

 
 Eastwards Westwards 

Upgrade Rate 12.46% 9.92% 

 

Table 5. Summary of positioning accuracy metrics 

 
Items Value 

Average Nearest Neighbor Distance 1.1688 𝑚 

Maximum Nearest Neighbor Distance 6.7744 𝑚 

Average Perpendicular Distance 1.2056 𝑚 

Maximum Perpendicular Distance 6.7404 𝑚 

 

Moreover, the positioning accuracy evaluation is shown in 

Table 5. Analysis of nearest neighbour distances yielded an 

average of 1.1688 𝑚  with the maximum nearest neighbour 

distance reaching 6.7744 meters. The mean error distance is 

equal to the average nearest neighbour distance, which means 

the positions in the dataset are uniformly spaced and the errors 

are consistently distributed across the trajectory. Additionally, 

the average perpendicular distance was measured as 1.2056 

meters, with the maximum perpendicular deviation reaching 

6.7404 meters.  

The same-time distance comparison, which examines the 

distances between corresponding points on the trajectories at 

identical time instances, illustrates the temporal consistency of 

the positioning data. As Figure 5 shows, in a complex urban 

environment, the eastward positioning error varies from 0 up 

to approximately 10 m, while the northward error fluctuates 

within a range of 0 to 5 m. 

The combined error from both directions reaches up to 15 

m, indicating that the performance of the current algorithm in 

dynamic environments still requires further optimization. 

Figure 6 depicts the frequency distribution of the error 

distances. The frequency distribution of error distances shows 

a pronounced concentration of values near zero, with about 

85% of samples exhibiting errors below 2 m. This 

concentrated distribution reinforces the effectiveness of the 

sensor fusion and calibration methodologies in minimizing 

positional errors. 

Monitoring of satellite availability over the experiment’s 

duration revealed the variations in satellite availability with 

lower counts correlating to periods of slight increases in 

positioning error. As shown in Figure 7, during the early stage 
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of the experiment, the receiver captured signals from 

approximately 20 satellites. However, as the vehicle moved 

into an overpass area urban area, the number of visible 

satellites dropped to about 10, correlating with slight increases 

in positioning error. 

Figure 8 highlights both the average perpendicular distance 

and the maximum deviation between the measured trajectory 

and the reference path. The deviation analysis shows that 

approximately 38% of eastward error samples exceed ±5 m. 

This is primarily attributed to the occasional loss of satellite 

signals, which forces the system to rely on lower-precision 

IMU data, leading to accumulated drift. Conversely, 78% of 

the eastward error samples remain within the ±5 m range, 

demonstrating a relatively concentrated error distribution. 

 

 
 

Figure 5. Same-time distance comparison diagram 

 

 
 

Figure 6. Error distance distribution histogram 

 

 
 

Figure 7. Satellite count graph 
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Figure 8. Deviation analysis diagram 

 

4.3.2 System robustness analysis 

The robustness of the system was assessed through a 

detailed analysis of directional errors and the influence of 

environmental factors on positioning performance. Although 

the mean directional errors in the northward and eastward 

directions are minimal, the maximum observed errors were 

substantially higher: 20.2282 meters in the northward 

direction and 24.7337 meters in the eastward direction. Such 

deviations are likely associated with periods of degraded 

GNSS signal quality, multipath interference, or temporary 

signal blockages, particularly in complex urban environments. 

Additionally, as shown in the previous section, the mean 

error distance is equal to the average nearest neighbour 

distance. This result suggests that the system’s positioning 

errors are small and fairly consistent throughout the trajectory. 

The uniformity in error and the spacing between points 

indicate that the system is robust, with no significant 

fluctuations in performance. 

The Satellite Count Graph (Figure 7) provides insight into 

these phenomena by illustrating fluctuations in satellite 

availability, which correlate with the instances of increased 

directional errors. Moreover, the adaptive filtering mechanism 

integrated within the sensor fusion algorithm plays a critical 

role in mitigating the impact of these fluctuations by 

dynamically adjusting the weighting of RTK and INS data in 

response to real-time conditions. This adaptive strategy helps 

to maintain overall positioning accuracy even in the presence 

of environmental challenges. 

Collectively, the results indicate that while the system 

demonstrates high precision under ideal conditions, there are 

occasional significant deviations under adverse circumstances.  

 

 

5. DISCUSSION 

 

5.1 Comparison with existing studies 

 

The proposed multi-sensor fusion system demonstrates 

significant improvements in positioning accuracy and stability 

compared to conventional single-sensor approaches. For 

instance, the mean positioning error of 1.1688 𝑚 and standard 

deviation of 0.95182 outperform the error ranges reported in 

studies relying solely on standalone GNSS (2– 5 𝑚 error in 

urban areas [25]) or low-cost IMUs (∼ 0.1– 0.5 𝑚 error over 

short intervals but accumulating drift [26]). This enhancement 

stems from the synergistic integration of GNSS and IMU data, 

which effectively compensates for their limitations. The 

adaptive filtering mechanism, which dynamically weights 

RTK and IMU outputs based on real-time signal quality, 

addresses a critical gap identified in static fusion models, 

where fixed weights often fail to adapt to dynamic 

environmental changes [5]. 

However, challenges persist in complex urban 

environments. The observed maximum eastward error of 

24.7337 𝑚 and northward error of 20.2282 𝑚 highlights the 

lingering impact of multipath interference and temporary 

GNSS signal loss, consistent with findings of Hsu [27]. While 

existing studies propose an advanced multisensor fusion 

positioning method that combines visual/INS and INS/GNSS 

technologies to mitigate multipath effects, our results suggest 

that further integration of predictive algorithms could enhance 

robustness [28]. Additionally, the equality between mean error 

distance (1.1688 𝑚) and average nearest neighbour distance 

indicates uniform spatial error distribution, a characteristic 

rarely discussed in prior works. 

 

5.2 Practical applications 

 

The developed system holds substantial potential for shared 

e-bike operations, where precise localization is critical for 

addressing urban mobility challenges. Real-time tracking with 

high-precision positioning can optimize fleet redistribution, 

minimize idle time, and enforce geofencing to prevent illegal 

parking—issues that significantly impact operational costs for 

fleet operators [29]. For example, the temporal consistency 

demonstrated in same-time distance comparisons ensures 

reliable vehicle tracking even in signal-degraded zones, a 

feature lacking in current commercial solutions. 

Beyond shared mobility, this technology is extensible to 

autonomous driving and logistics. Autonomous vehicles 

require sub-meter accuracy for safe navigation, and the 

system’s robustness to signal fluctuations aligns with the 

demands of urban autonomous navigation frameworks [30]. In 

logistics, the integration of GNSS-IMU fusion with warehouse 

management systems could improve inventory tracking 

efficiency, particularly in hybrid indoor-outdoor environments 
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where GNSS signals are intermittent.  

 

5.3 Future work 

 

Future work will focus on integrating advanced 

machine-learning techniques to enhance adaptive weighting 

and anomaly detection within the fusion framework, enabling 

the system to self-tune to varying signal conditions. We will 

investigate learning-based error modeling for automated 

sensor calibration and assess the addition of auxiliary 

modalities (e.g., magnetometers, barometers, stereo cameras) 

to enrich data diversity. Extensive field trials in urban canyons, 

tunnels, and extreme weather will validate robustness and 

inform iterative refinements, paving the way for deployment 

in cost-sensitive applications such as shared e-bikes and 

beyond. 

 

 

6. CONCLUSION 

 

This study addresses the issue of insufficient positioning 

accuracy of shared electric bicycles in complex urban 

environments. It proposes a low-cost, high-precision 

integrated navigation system based on BeiDou RTK (Real-

Time Kinematic) and INS (Inertial Navigation System) 

technologies. By integrating the absolute positioning 

capabilities of BeiDou RTK with the continuous navigation 

advantages of INS, and optimizing data fusion algorithms and 

low-cost sensor calibration techniques, the system 

demonstrates significant technological breakthroughs and 

application value in complex scenarios. 

By improving the Kalman filter and adaptive algorithms, 

the system achieves a tight coupling fusion of Beidou RTK 

and INS. It maintains meter-level positioning accuracy (with 

an average error of 1.17 meters) during GNSS signal outages. 

The eastward positioning accuracy is improved by 12.46%, 

and the northward positioning accuracy is also enhanced by 

9.92%. Additionally, the system employs dynamic error 

modelling to elevate the performance of low-cost MEMS 

sensors to a level that is suitable for large-scale deployment, 

reducing hardware costs. 

In actual urban canyon environment tests, the system 

achieves high-precision positioning (with 90% of errors less 

than 2 meters) when GNSS signals are continuously available. 

It also maintains meter-level stability (with a maximum error 

of 6.74 meters) when the signals are partially lost. The 

effectiveness of the adaptive algorithm in dynamic 

environments is verified through error distribution histograms 

and trajectory comparisons. The system shows superior 

performance to traditional GNSS in areas with weak GNSS 

signals. 

In a real-world urban canyon trial, the platform maintained 

sub-7 m worst-case error under partial signal loss and 

exhibited stable performance in dynamically changing 

environments. These characteristics enable precise fleet 

management of shared e-bikes—optimizing parking 

allocation, minimizing idle time through dispatch scheduling, 

and enforcing virtual geofences to prevent unauthorized usage. 

Beyond micro-mobility, the system’s low power draw and 

lightweight footprint support broader smart-city transport 

applications: sub-meter tracking for autonomous vehicles in 

congested streets, real-time parcel localization in urban 

logistics, and enhanced traffic-management analytics. 

In this case, the developed Beidou RTK/INS-based high-

precision positioning system would enable precise parking and 

optimized dispatching of shared electric bicycles, even though 

it needs optimization to enhance its interference resistance in 

complex occlusion scenarios. It also has potential applications 

in the fields of autonomous driving and smart cities, 

contributing to the promotion of green transportation. 

 

 

REFERENCES  

 

[1] Wang, L., Li, D., Chen, R., Fu, W., Shen, X., Hao, J. 

(2020). Low earth orbiter (LEO) navigation 

augmentation: Opportunities and challenges. Strategic 

Study of Chinese Academy of Engineering, 22(2): 144-

152. https://doi.org/10.15302/J-SSCAE-2020.02.018 

[2] Cai, W., Shen, Y., Chen, M., Zhou, W., Li, J., He, J., Jing, 

X. (2024). Application of variational bayesian filtering 

based on T-distribution in BDS dynamic ambiguity 

resolution. IEEE Access, 12: 54316-54327. 

https://doi.org/10.1109/ACCESS.2024.3388431 

[3] Weng, D., Hou, Z., Meng, Y., Cai, M., Chan, Y. (2023). 

Characterization and mitigation of urban GNSS 

multipath effects on smartphones. Measurement, 223: 

113766. 

https://doi.org/10.1016/j.measurement.2023.113766 

[4] Vagle, N., Broumandan, A., Jafarnia-Jahromi, A., 

Lachapelle, G. (2016). Performance analysis of GNSS 

multipath mitigation using antenna arrays. The Journal of 

Global Positioning Systems, 14(1): 4. 

https://doi.org/10.1186/s41445-016-0004-6 

[5] Groves, P.D. (2011). Shadow matching: A new GNSS 

positioning technique for urban canyons. The journal of 

Navigation, 64(3): 417-430. 

https://doi.org/10.1017/S0373463311000087 

[6] Hua, M., Chen, X., Chen, J., Jiang, Y. (2022). 

Minimizing fleet size and improving bike allocation of 

bike sharing under future uncertainty. arXiv preprint 

arXiv:2204.08603. 
https://doi.org/10.48550/arXiv.2204.08603 

[7] Helping Cities Accelerate E-Bike Adoption, RMI. 

https://rmi.org/helping-cities-accelerate-e-bike-

adoption/. 

[8] PGroves, D. (2013). Principles of GNSS, Inertial, and 

Multisensor Integrated Navigation Systems. 2nd ed. 

Artech House. 

[9] Zhang, J., Wen, W., Huang, F., Wang, Y., Chen, X., Hsu, 

L.T. (2022). GNSS-RTK adaptively integrated with 

LiDAR/IMU odometry for continuously global 

positioning in urban canyons. Applied Sciences, 12(10): 

5193. https://doi.org/10.3390/app12105193 

[10] Diouf, D., Sall, O.A., Gueye, I.K., Ndiaye, F. (2024). 

Performance evaluation of low-cost dual-frequency 

GNSS receivers for precise positioning in senegal: issues 

and challenges. Journal of Analytical Sciences, Methods 

and Instrumentation, 14(2): 23-37. 

https://doi.org/10.4236/jasmi.2024.142003 

[11] University of Cambridge. (2004). An introduction to 

inertial navigation. University of Cambridge Technical 

Reports. https://www.cl.cam.ac.uk/techreports/UCAM-

CL-TR-696.pdf. 

[12] Inertial Labs. (2024). Aided Inertial Navigation Systems: 

Enhancing Precision and Reliability. Inertial Labs. 

https://inertiallabs.com/aided-ins-enhancing-precision-

and-reliability/. 

644



 

[13] Quinchia, A.G., Falco, G., Falletti, E., Dovis, F., Ferrer, 

C. (2013). A comparison between different error 

modeling of MEMS applied to GPS/INS integrated 

systems. Sensors, 13(8): 9549-9588. 

https://doi.org/10.3390/s130809549 

[14] Li, T., Zhang, H., Niu, X., Gao, Z. (2017). Tightly-

coupled integration of multi-GNSS single-frequency 

RTK and MEMS-IMU for enhanced positioning 

performance. Sensors, 17(11): 2462. 

https://doi.org/10.3390/s17112462 

[15] Wen, W., Hsu, L.T. (2021). Towards robust GNSS 

positioning and real-time kinematic using factor graph 

optimization. arXiv preprint arXiv:2106.01594. 

https://doi.org/10.48550/arXiv.2106.01594 

[16] Liu, X., Wen, W., Huang, F., Gao, H., Wang, Y., Hsu, L.T. 

(2022). 3D LiDAR aided GNSS NLOS mitigation for 

reliable GNSS-RTK positioning in urban canyons. arXiv 

preprint arXiv:2212.05477. 
https://doi.org/10.48550/arXiv.2212.05477 

[17] Gou, C., Feng, C., Tan, S., Guo, M., Li, R., Zhao, F. 

(2025). Evaluating the impact of built environment on 

shared electric bicycle connectivity in Kunming’s public 

transport system. Scientific Reports, 15(1): 5156. 

https://doi.org/10.1038/s41598-025-87616-1 

[18] Zhu, H., Fan, J., Li, J., Li, B. (2024). Research on robust 

adaptive RTK positioning of low-cost smart terminals. 

Sensors, 24(5): 1477. https://doi.org/10.3390/s24051477 

[19] Wu, J., Jiang, J., Zhang, C., Li, Y., Yan, P., Meng, X. 

(2023). A novel optimal robust adaptive scheme for 

accurate GNSS RTK/INS tightly coupled integration in 

urban environments. Remote Sensing, 15(15): 3725. 

https://doi.org/10.3390/rs15153725 

[20] Zhang, L., Viktorovich, P.A., Selezneva, M.S., Neusypin, 

K.A. (2021). Adaptive estimation algorithm for 

correcting low-cost MEMS-SINS errors of unmanned 

vehicles under the conditions of abnormal measurements. 

Sensors, 21(2): 623. https://doi.org/10.3390/s21020623 

[21] Artese, G., Trecroci, A. (2008). Calibration of a low cost 

MEMS INS sensor for an integrated navigation system. 

The International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, 877-

882. 

[22] Nolan Betzner, How Much Does RTK GPS Cost? - 

Bench Mark USA. 

https://rtkgpssurveyequipment.com/how-much-does-

rtk-gps-cost/, accessed on Apr. 20, 2025. 

[23] ICOE, XWCM260R high-precision positioning module, 

Icoe-tech. https://www.icoe-tech.com/product.com. 

[24] InvenSense, ICM-42605 High-Performance Low-Power 

6-Axis MEMS Motion Sensor, InvenSense. 

https://invensense.tdk.com/products/motion-tracking/6-

axis/icm-42605/. 

[25] Xie, P., Petovello, M.G. (2014). Measuring GNSS 

multipath distributions in urban canyon environments. 

IEEE Transactions on Instrumentation and Measurement, 

64(2): 366-377. 

https://doi.org/10.1109/TIM.2014.2342452 

[26] Kinsey, J.C., Eustice, R.M., Whitcomb, LL. (2006). A 

survey of underwater vehicle navigation: Recent 

advances and new challenges. In IFAC Conference of 

Manoeuvering and Control of Marine Craft, pp. 1-12. 

[27] Hsu, L.T. (2018). Analysis and modeling GPS NLOS 

effect in highly urbanized area. GPS solutions, 22(1): 7. 

https://doi.org/10.1007/s10291-017-0667-9 

[28] Zhumu, F., Yuxuan, L., Pengju, S., Fazhan, T., Nan, W. 

(2023). A multisensor high-precision location method in 

urban environment. IEEE Systems Journal, 17(4): 6611-

6622. https://doi.org/10.1109/JSYST.2023.3316140 

[29] Verizon Connect, 2024 Fleet Technology Trends Report, 

Verizon, 2023. 

https://www.fleetmanagementweekly.com/wp-

content/uploads/2023/11/VZC-2077702-2024-Fleet-

Technology-Trends-R1_09292023.pdf. 

[30] Alaba, S.Y. (2024). GPS-IMU Sensor Fusion for Reliable 

Autonomous Vehicle Position Estimation. arXiv preprint 

arXiv:2405.08119. 

https://doi.org/10.48550/arXiv.2405.08119 

 

645




