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Generative Adversarial Networks (GANs) have demonstrated exceptional capabilities in 

signal processing tasks like noise reduction and feature enhancement, yet traditional 

implementations face limitations including mode collapse and restricted output diversity. To 

address these challenges, this study proposes the Entropy-Maximized Generative 

Adversarial Network (EM-GAN), a novel framework for signal denoising and feature 

enhancement. By integrating entropy maximization into adversarial training, EM-GAN 

enhances signal diversity, mitigates mode collapse, and improves training stability. The 

framework employs entropy-driven activation functions and loss functions to suppress noise 

while preserving critical signal features. We introduce an entropy-regularized objective 

function that incentivizes the generator to produce high-entropy outputs, enabling more 

comprehensive modeling of underlying signal distributions. Theoretical and experimental 

analyses confirm the model's stability improvements and superior performance over 

conventional GAN variants in output quality and diversity. These results highlight EM-

GAN's potential for robust noise suppression and feature preservation in modern signal 

processing applications, representing a significant methodological advancement in 

generative model design. 
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1. INTRODUCTION

Signal denoising and feature enhancement are fundamental 

challenges in signal processing, with broad implications for 

applications such as image restoration, audio enhancement, 

and Intelligent Logistics signal analysis. The core problem is 

how to recover clean, high-fidelity signals from noisy or 

degraded inputs while simultaneously preserving and 

enhancing important features in the data. Traditional filtering 

and reconstruction techniques often struggle to remove noise 

without blurring critical signal details. Recent advances in 

deep learning, particularly GANs, have shown promise in 

learning to produce high-quality signal reconstructions. 

However, standard GAN models suffer from limitations like 

mode collapse – where the generator produces overly narrow 

or average outputs – and training instability, which together 

hinder their effectiveness in denoising tasks that require 

capturing diverse signal characteristics. 

This paper addresses the above challenge by proposing a 

novel approach to improve signal denoising and feature 

preservation using generative modeling. We introduce the 

EM-GAN, a new GAN framework that explicitly integrates an 

entropy maximization principle to overcome the diversity and 

stability issues of conventional GANs. Inspired by the 

thermodynamic principle that systems evolve toward higher 

entropy (greater disorder and uncertainty), EM-GAN 

incorporates an entropy-based regularization into the 

generator’s training. By maximizing the entropy of the 

generator’s output distribution, the model is encouraged to 

explore a broader range of plausible outputs for a given input. 

This leads to richer and more diverse signal representations, 

ensuring that fine-grained features are not averaged out. In 

effect, EM-GAN produces denoised signals that retain 

important details, and it achieves more stable training 

convergence. The entropy-driven objective provides a strong 

regularization that mitigates mode collapse and delivers more 

consistent optimization, resulting in enhanced signal quality 

and reliability. 

The main contributions of this work are as follows: 

• Entropy-Maximized GAN Architecture: We 

develop a GAN architecture that embeds entropy 

maximization into its core. This includes a novel 

entropy-driven activation function and an entropy-

regularized loss term for the generator, which together 

encourage diverse and feature-rich signal outputs while 

effectively mitigating mode collapse in the generation 

process. 

• Improved Denoising and Feature Enhancement: By

leveraging the entropy-maximization strategy, EM-

GAN achieves superior signal denoising performance

without sacrificing important features. The generator

learns to produce clean signals with enhanced detail,
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demonstrating improved preservation of signal features 

compared to conventional GAN-based or filtering 

approaches. 

• Robust Training and Performance Gains: The

entropy regularization contributes to more stable GAN

training dynamics. We present comprehensive

experiments on multiple benchmark datasets, showing

that EM-GAN consistently outperforms state-of-the-art

GAN variants in terms of output quality, diversity, and

training stability. Notably, EM-GAN yields higher

fidelity reconstructions and more reliable convergence,

underscoring the effectiveness of the proposed

approach.

In summary, EM-GAN provides a significant

methodological advancement for signal processing. By

integrating the principle of entropy maximization into GAN

training, it offers a powerful solution for generating clean,

high-quality signals with enriched features. This work opens

up new possibilities for applying generative models to critical

signal processing tasks – from image and audio denoising to

data augmentation and beyond – where maintaining signal

integrity and diversity is paramount. The proposed framework

not only addresses a key limitation in GAN-based signal

reconstruction but also broadens the scope of GAN

applications in signal processing by combining

thermodynamic insights with deep learning for enhanced

signal processing performance.

2. RELATED WORK

2.1 Entropy maximization in GANs for signal processing

Entropy-based optimization has been increasingly 

incorporated into GAN training to enhance output diversity 

and training stability, which are critical for signal processing 

tasks. Traditional GANs frequently suffer from mode collapse, 

where the generator fails to produce diverse outputs, leading 

to limited applicability in tasks requiring variability in 

generated signals. To address this, researchers have proposed 

entropy-regularized approaches to ensure richer feature 

generation. For instance, Manifold-Preserving GAN (MP-

GAN) [1] integrates entropy maximization on the latent space 

distribution to maintain structural diversity in generated data, 

effectively mitigating mode collapse and enhancing learning 

stability. InfoMax-GAN [2], a model designed to maximize 

mutual information, indirectly promotes entropy 

maximization by ensuring that each generated sample retains 

distinct information characteristics, leading to more 

expressive and robust representations. Furthermore, 

Variational Entropy Regularization (VER-GAN) [3] directly 

optimizes the generator’s entropy to encourage output 

diversity, significantly improving stability in training and 

ensuring a more comprehensive reconstruction of signals. 

While these entropy-based methods have been explored in 

the context of image synthesis and classification, their 

adoption in signal processing remains limited. Signal 

processing applications, particularly denoising and feature 

enhancement, require models capable of preserving fine-

grained signal features while suppressing noise-induced 

distortions. The integration of entropy maximization in GANs 

offers a promising approach to solving these issues by 

enhancing diversity, improving feature retention, and 

stabilizing adversarial training. These motivations drive the 

development of the EM-GAN [4], which explicitly integrates 

entropy regularization into GAN training for signal denoising 

and enhancement. 

2.2 Traditional GAN-based signal denoising methods 

GANs have demonstrated strong potential in signal 

denoising by learning to map noisy inputs to clean outputs. 

Several studies have leveraged adversarial training to suppress 

noise in signals, including applications in EEG signal 

restoration, biomedical waveform processing, and sensor 

noise removal. For example, WGAN-based models have been 

employed for EEG artifact removal, showing promising 

results in extracting meaningful brainwave signals while 

filtering out physiological distortions [5]. Asymmetric GANs 

have also been developed for EEG denoising, allowing models 

to learn from unpaired noisy and clean data, avoiding explicit 

noise label dependency. 

Despite their effectiveness, traditional GAN-based 

denoisers face persistent limitations: 

• Mode collapse [6]: GANs frequently generate

repetitive or averaged signals, failing to capture the full

diversity of clean signals. This limitation leads to

oversmoothed reconstructions and loss of important

waveform variations.

• Feature distortion [7]: While reducing noise,

traditional GANs may inadvertently remove subtle

signal features, leading to degraded Signal-to-Noise

Ratio (SNR) and lower fidelity in denoised outputs.

• Training instability [8]: GANs rely on adversarial

optimization, which can result in unstable convergence,

oscillatory training dynamics, or failure to generalize

across different signal types.

To address these shortcomings, EM-GAN introduces 

entropy maximization as a key component of the training 

process. Unlike traditional GANs that optimize purely for 

adversarial loss, EM-GAN incorporates an entropy-based 

regularization term, which: 

• Encourages diverse feature retention [9], mitigating

mode collapse by broadening the generator’s output

distribution.

• Ensures stable GAN training [10], reducing

convergence instability by smoothing the optimization

landscape and preventing discriminator overpowering.

• Enhances denoising performance [11, 12], leading to

cleaner signal reconstructions while retaining fine-

grained details, as evidenced by improved SNR,

perceptual quality metrics, and reconstruction fidelity.

These contributions position EM-GAN as a significant 

improvement over existing GAN-based denoising approaches, 

offering a more stable, diverse, and robust solution for signal 

enhancement in real-time and high-fidelity applications. 

2.3 Real-time signal analysis 

Deep learning has made significant advancements in real-

time industrial signal analysis, playing a crucial role in 

applications such as Intelligent Logistics Management 

Systems (ILMS) by enabling the efficient processing of sensor 

data. In modern industrial settings, vast amounts of real-time 

signals—such as GPS tracking data, temperature fluctuations 

in storage environments, and vibration measurements from 

vehicles and equipment—are continuously generated. The 

effective analysis of these signals is essential for enhancing 

tracking accuracy, optimizing condition monitoring, and 
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improving predictive maintenance, ultimately leading to 

increased operational efficiency and system reliability. 

2.3.1 GPS signal analysis 

Recurrent neural networks (RNNs) [13] and their variants, 

such as LSTMs and Bi-LSTMs, have been widely applied to 

GPS trajectory modeling for route prediction and anomaly 

detection. By learning sequential dependencies in vehicle 

movement data, these models can forecast future routes and 

identify deviations from expected paths. Studies have 

demonstrated that LSTM-based models achieve over 96% 

accuracy in vehicle destination prediction by leveraging 

historical trajectory data [14]. These approaches have 

significantly enhanced industrial logistics efficiency by 

improving route optimization and anomaly detection in fleet 

management systems. 

2.3.2 Temperature monitoring in logistics 

Maintaining stable temperature conditions is crucial in 

logistics, particularly for cold-chain management in 

pharmaceutical and food industries. Deep learning techniques, 

such as autoencoders, have been employed to detect 

temperature anomalies in real time. Convolutional 

autoencoders have shown high effectiveness in reconstructing 

expected temperature profiles and flagging deviations, 

achieving over 92% fault detection accuracy in cold storage 

monitoring applications [15]. Such models help prevent 

product spoilage by enabling early detection of refrigeration 

failures or sensor faults. 

2.3.3 Vibration-based predictive maintenance 

Sensors embedded in industrial logistics vehicles and 

equipment continuously capture vibration data, which can be 

analyzed to predict mechanical failures. Hybrid CNN–LSTM 

architectures have been utilized for time-series vibration 

analysis, learning both spatial and temporal features indicative 

of system health. Research indicates that combining 

convolutional feature extraction with sequential modeling 

significantly improves fault detection accuracy, making 

predictive maintenance in industrial systems more reliable 

[16]. Such models enable early identification of mechanical 

degradation, allowing industrial logistics companies to reduce 

downtime and maintenance costs. 

2.4 Summary 

This section highlights the significance of entropy 

maximization in GANs, its role in addressing the limitations 

of traditional GAN-based denoising methods, and the 

expanding application of deep learning in intelligent industrial 

sensor analysis. EM-GAN builds on these advancements by 

incorporating entropy-driven optimization to enhance signal 

diversity, training stability, and feature retention, making it a 

robust solution for real-time signal enhancement in industrial 

applications and beyond. 

While recent studies have begun to apply entropy-based 

regularization in signal processing tasks—such as ECG 

denoising [17], speech enhancement [18], and wavelet-domain 

physiological signal filtering [19]—these efforts remain 

highly task-specific and rarely incorporate adversarial or 

generative mechanisms. Moreover, their applicability across 

diverse signal types and noise conditions is limited. This 

highlights a critical gap in current research and underscores 

the need for a unified generative framework with entropy-

aware mechanisms, motivating the design of EM-GAN. 

In contrast to existing entropy-regularized GANs such as 

InfoMax-GAN and VER-GAN—which primarily target 

image generation or representation learning—EM-GAN is 

specifically designed for signal denoising tasks. It introduces 

entropy regularization not only at the loss-function level but 

also within the network architecture via a novel Entropy-

Sensitive Activation (ESA) mechanism. By dynamically 

adjusting activations according to mini-batch entropy 

estimates, ESA enables EM-GAN to effectively preserve 

transient and fine-grained signal features, such as spikes and 

abrupt changes, while maintaining strong noise suppression. 

This dual integration of entropy principles makes EM-GAN 

particularly suitable for real-time signal processing scenarios 

where structural fidelity is critical. 

3. METHODOLOGY

The EM-GAN proposes an entropy-driven framework for 

signal denoising and feature enhancement, addressing key 

limitations of traditional GAN-based denoisers, such as mode 

collapse and training instability. By embedding entropy 

maximization into the loss function and network architecture, 

EM-GAN ensures diverse, high-fidelity signal reconstructions 

with improved feature preservation. 

This section outlines: 

(1): The theoretical basis and mathematical formulation of 

entropy maximization within GAN training. 

(2): The network architecture and processing pipeline 

optimized for retaining critical signal features. 

(3): The training strategy and stabilization mechanisms that 

underpin robust and consistent performance. 

3.1 Entropy-maximized GAN architecture 

Traditional GAN-based denoisers often encounter mode 

collapse, where the generator produces a limited range of 

outputs, resulting in the loss of fine signal details during 

reconstruction. Additionally, training instability can lead to 

divergence or degraded signal quality. To address these issues, 

the proposed EM-GAN incorporates entropy regularization 

into the training process. This approach enhances output 

diversity to mitigate mode collapse, stabilizes adversarial 

training dynamics, and improves the preservation of signal 

variations critical for high-fidelity denoising. 

3.1.1 Mathematical formulation 

To estimate the mini-batch entropy 𝐻𝑏𝑎𝑡𝑐ℎ(𝑥), we apply a

kernel density estimation (KDE) method with Gaussian 

kernels in the generator’s feature space. This provides an 

efficient approximation of entropy during training without 

directly operating in the high-dimensional signal domain. 

Although KDE may introduce bias due to bandwidth 

sensitivity and sample sparsity, we mitigate these effects by 

using adaptive bandwidth selection (via Silverman's rule) and 

averaging entropy across multiple mini-batches. This ensures 

that the entropy signal remains stable and meaningful for 

guiding both the entropy-regularized loss and the ESA. More 

advanced estimators such as k-nearest neighbor or plug-in 

entropy methods may be explored in future work. 

EM-GAN integrates entropy maximization in two key 

components:  

• An entropy-regularized loss function that encourages
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diverse signal reconstruction and prevents over-

smoothing. 

• A novel ESA mechanism that dynamically adjusts

activation strength based on batch-level entropy.

Together, these mechanisms help the generator produce 

denoised outputs that retain fine-grained details while 

effectively suppressing noise. 

The objective of a standard GAN is defined within a 

minimax framework: 

min
𝐺

max
𝐷

𝔼𝑥~𝑝𝑑𝑎𝑡𝑎
[log 𝐷(𝑥)] + 𝔼𝑧~𝑝(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]

To promote diversity in the generator’s outputs, EM-GAN 

augments this objective with an entropy regularization term, 

modifying the generator’s loss as follows: 

𝐿𝐺 = 𝐿𝐺𝑎𝑑𝑣
− 𝜆𝐻(𝑝𝑔)

where, 

• 𝐻(𝑝𝑔) = −𝔼𝑥~𝑝𝑔
[log 𝑝𝑔(𝑥)]  represents the Shannon

entropy of the generated signal distribution 𝑝𝑔.

• 𝐿𝐺𝑎𝑑𝑣
 is the adversarial loss from the standard GAN

formulation.

• 𝜆 is a dynamic weighting parameter that balances the

trade-off between output diversity and reconstruction

fidelity.

By maximizing 𝐻(𝑝𝑔), EM-GAN encourages the generator

to produce a broader range of plausible clean signals, 

preventing over-smoothing or repetitive outputs commonly 

observed in traditional GANs. 

3.1.2 ESA function 

In addition to the loss function, EM-GAN integrates entropy 

awareness into the network architecture through a novel ESA 

function, defined as: 

𝐸𝑆𝐴𝐻(𝑥) = 𝑥 ∙ 𝑒𝑥𝑝(𝛼𝐻batch(𝑥))

where, 

• 𝐻batch(𝑥)  denotes the estimated entropy of the

generator’s outputs within a mini-batch.

• 𝛼  is a scaling factor controlling the sensitivity to

entropy variations.

The ESA function dynamically adjusts activations based on 

entropy levels: higher entropy amplifies activations to 

preserve signal diversity and prevent excessive smoothing, 

while lower entropy attenuates activations to ensure effective 

noise suppression. This adaptive mechanism enables EM-

GAN to balance feature retention and denoising efficacy, 

particularly excelling in preserving subtle signal details 

essential for signal processing tasks. 

Unlike attention-based adaptive mechanisms that reweight 

features based on learned correlations, ESA modulates 

activation strength using entropy statistics. This design is 

specifically suited to preserving transient details in 1D signal 

denoising, without introducing additional learnable 

parameters. 

3.2 Entropy-driven signal denoising and feature 

preservation 

Effective signal denoising requires removing unwanted 

noise while preserving essential signal features such as 

frequency components, transient structures, and amplitude 

variations. Traditional filtering-based denoising methods, 

such as Wiener filtering and wavelet transforms, often 

introduce distortions or fail to adapt to varying noise 

distributions. Similarly, conventional GAN-based denoisers 

suffer from mode collapse, where the generator produces 

oversmoothed and repetitive outputs, leading to a loss of fine-

grained signal details. 

To address these limitations, EM-GAN introduces an 

entropy-regularized learning framework, dynamically 

balancing noise suppression and feature retention. By 

maximizing entropy, the generator avoids collapsing to a 

limited set of solutions and instead learns a diverse set of 

noise-free reconstructions, ensuring that the intrinsic 

characteristics of the signal are preserved. 

3.2.1 Algorithmic approach to entropy-driven signal denoising 

The fundamental challenge in signal denoising is ensuring 

that noise is effectively removed without degrading signal 

integrity. To achieve this, EM-GAN employs: 

• Entropy-Regularized Learning – Encourages diverse

yet realistic signal reconstructions, preventing mode

collapse.

• Feature-Preserving Generator Design – Incorporates

multi-scale feature extraction, skip connections, and

ESA functions to prevent loss of fine details.

• Denoising Consistency Loss – Regularizes the

denoising process by ensuring that the generated clean

signal remains close to the ground truth while allowing

variations for robustness.

The modified generator objective function is formulated as: 

𝐿𝐺 = 𝐿𝐺
adv − 𝜆𝐻(𝑝𝑔) + 𝛾‖𝐺(𝑥noisy) − 𝑥clean‖

1

where, 

• The 𝐿1 loss  reinforces similarity to the ground-truth

clean signal.

• 𝐿𝐺
adv is the adversarial loss, ensuring that the generated

signal is indistinguishable from real, clean signals.

• 𝐻(𝑝𝑔) represents Shannon entropy of the generator’s

output, encouraging diverse reconstructions.

• 𝜆  and 𝛾  are hyperparameters controlling the balance

between diversity and fidelity.

To control the trade-off between adversarial learning and 

entropy regularization, we define λ as a dynamic parameter 

that increases over training epochs. Specifically, we use a 

simple exponential schedule: 

𝜆(𝑡) = 𝜆₀ × (1 − 𝑒–𝛼𝑡)

where, 𝜆₀ is the maximum weight (set to 1.0), α is a growth 

rate constant (typically 0.05), and t denotes the current epoch. 

This design allows entropy regularization to gradually take 

effect as training stabilizes, avoiding early training instability 

while enhancing diversity in later stages. 

This formulation ensures that noise suppression does not 

lead to over-smoothing, preserving the temporal and spectral 

characteristics of the signal. 

3.2.2 Processing pipeline for EM-GAN signal denoising 

To effectively enhance and restore noisy signals, EM-GAN 

follows a structured four-step processing pipeline: 

Step 1: Preprocessing and Data Augmentation 
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• Normalization: Input signals are normalized to ensure

consistency in amplitude scaling.

• Data Augmentation: Introduces variability in training

data using:

 Time-domain transformations (random shifts,

amplitude modulation).

 Frequency-domain augmentations (Fourier filtering,

spectral distortions).

 Artificial noise addition (Gaussian, Poisson,

impulse noise) to improve robustness.

Step 2: Feature-Aware Signal Generation 

The generator 𝐺 in EM-GAN is designed to enhance noisy 

inputs while retaining important features: 

• Multi-Scale Feature Extractors: Extract signal

characteristics at different resolutions using varying

convolutional kernel sizes.

• Skip Connections: Ensure that low-level signal details

are preserved during reconstruction.

• ESA: Dynamically adjusts activation scaling based on

entropy estimates, ensuring signal diversity is

maintained.

Generator Processing Flow: 

• The noisy signal is fed into the generator’s feature

extractor, capturing multi-scale information.

• ESA regulates feature amplification, balancing

denoising strength dynamically.

• Skip connections transfer structural information,

preventing over-smoothing of fine details.

• The generator outputs a noise-free signal while

preserving sharp transitions and variations.

Step 3: Entropy-Driven Discriminator Evaluation 

The discriminator 𝐷  functions as an adaptive evaluator, 

ensuring that the denoised output maintains realism while 

removing noise. Unlike conventional discriminators, EM-

GAN’s 𝐷 integrates: 

• Entropy-Adjusted Leaky ReLU (EALReLU):

Modifies gradient flow based on entropy, improving

feature discrimination.

• Feature-Preserving Objective: Helps retain high-

frequency signal components that are often lost in

standard GAN-based denoising.

Discriminator Processing Flow: 

• 𝐷 receives both real clean signals and denoised outputs

for comparison.

• It analyzes the feature composition using entropy-

aware activation.

• It classifies signals as real (clean) or generated

(denoised output), providing feedback to improve 𝐺.

Step 4: Entropy-Optimized Training Update 

To prevent instability in GAN training, EM-GAN employs: 

• Entropy-Regularized Backpropagation: Encourages

the generator to maintain feature-rich outputs.

• Adaptive Entropy Scaling: Adjusts dynamically,

ensuring noise suppression does not degrade structural

integrity.

This adaptive training process ensures that EM-GAN 

achieves robust convergence while maintaining high-fidelity 

reconstructions. 

3.2.3 Visualizing EM-GAN signal denoising performance 

Figure 1 illustrates the denoising performance of EM-GAN, 

highlighting how the model reconstructs a clean signal from 

noisy input while retaining key features. 

Figure 1. EM-GAN signal denoising process 

Key Observations from Figure 1: 

• The noisy input signal (dotted line) exhibits high-

frequency distortions and undesired artifacts.

• The ground truth clean signal (solid line) represents the

ideal noise-free waveform.

• The EM-GAN denoised output (dash-dot line) closely

follows the clean signal, effectively removing noise

while preserving fine details.

This visualization confirms that EM-GAN’s entropy-driven 

approach enables high-fidelity signal restoration, 

outperforming both traditional filtering methods and standard 

GAN-based denoisers. 

3.2.4 Comparative analysis: EM-GAN vs. traditional 

denoising methods 

A direct comparison between EM-GAN and other denoising 

techniques is presented in Table 1, showcasing its superior 

performance in feature preservation, noise suppression, and 

training stability. 

To facilitate a clearer understanding of the architectural 

distinctions between EM-GAN and related entropy-

regularized GANs (e.g., InfoMax-GAN, VER-GAN), we have 

included a detailed comparison in Table 2, outlining 

differences in entropy regulation mechanisms, activation 

strategies, and signal denoising capabilities. 

3.2.5 Summary: How EM-GAN enhances signal denoising 

performance 

The EM-GAN employs entropy-regularized learning to 

achieve superior signal denoising while preserving structural 

integrity, effectively overcoming challenges such as mode 

collapse, feature loss, and training instability inherent in 

traditional GAN-based methods. The key mechanisms 

contributing to its performance are outlined below: 

 Entropy-Regularized Learning: By incorporating an

entropy term into the generator’s loss, EM-GAN

promotes a diverse distribution of reconstructed signals,

mitigating mode collapse and ensuring realistic output

variability.
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 Feature-Preserving Generator Design: The

architecture leverages multi-scale feature extraction

and skip connections to capture and retain fine-grained

signal structures, preventing over-smoothing and

maintaining critical details.

 ESA: This mechanism adjusts activation strengths

based on mini-batch entropy estimates, striking a

balance between noise suppression and feature

preservation to enhance reconstruction fidelity.

 Adaptive Training Strategy: Entropy-aware

backpropagation and dynamic entropy scaling stabilize

adversarial training, facilitating robust convergence

and improved generalization across diverse signal 

types. 

By integrating entropy maximization into the adversarial 

learning framework, EM-GAN achieves high-fidelity signal 

denoising that surpasses traditional filtering methods and 

conventional GAN-based approaches in both noise 

suppression and feature retention. This synergy of entropy-

driven regularization and architectural innovations positions 

EM-GAN as a robust and effective solution for real-world 

signal processing applications, with its efficacy further 

validated in subsequent experimental evaluations. 

Table 1. Comparison between EM-GAN and other denoising techniques 

Method Noise Reduction Feature Preservation Output Diversity Training Stability 

Wiener Filter Moderate Loss of fine details Limited Stable 

Wavelet Denoising Moderate Some feature retention Limited Stable 

Vanilla GAN High Often over-smooths Mode collapse Unstable 

EM-GAN High Strong feature retention High diversity Robust training 

Table 2. Architectural comparison between EM-GAN and other entropy-regularized GAN models 

Model 

Entropy 

Regularization 

Location 

Activation 

Function Type 
Target Application 

Feature Preservation 

Strategy 

Mode Collapse 

Mitigation 

InfoMax-

GAN 

Latent space (via 

mutual information) 

Standard ReLU / 

Leaky ReLU 

Image generation, 

classification 

Information maximization in 

latent code 

Partial (via mutual 

info) 

VER-GAN 
Generator loss (KL 

divergence) 

Standard 

activations 

Generic generation 

tasks 

Encourages sample diversity 

through entropy loss 
Yes 

EM-GAN 
Generator loss + 

activation layer 
ESA 

Signal denoising, 

feature enhancement 

Mini-batch entropy-driven 

activation to retain transient 

details 

Yes (adaptive 

entropy feedback) 

4. EXPERIMENTS AND RESULTS

This section presents a comprehensive evaluation of EM-

GAN’s signal denoising performance, comparing it against 

traditional filtering techniques and existing GAN-based 

denoising models. The experiments are conducted across 

multiple benchmark datasets, and the results are analyzed 

based on quantitative performance metrics, visual 

comparisons, computational efficiency, and an ablation study. 

4.1 Experimental setup 

4.1.1 Datasets 

The performance of EM-GAN is evaluated using multiple 

benchmark datasets containing diverse signal types with 

varying noise levels: 

 Synthetic Sine Wave Dataset: A controlled dataset

comprising sinusoidal waveforms with injected

Gaussian, impulse, and structured noise.

 ECG Signal Dataset: Electrocardiogram (ECG)

signals with natural noise artifacts, sourced from the

MIT-BIH Arrhythmia Database.

 Speech Signal Dataset: Noisy speech recordings

extracted from the TIMIT corpus, representing

practical applications in speech enhancement.

 Seismic Vibration Dataset: Structural health

monitoring signals affected by vibration-induced noise,

commonly encountered in industrial applications.

Each dataset includes both clean reference signals and their 

corresponding noisy versions, allowing precise evaluation of 

denoising quality. 

4.1.2 Baseline methods 

The performance of EM-GAN is compared against several 

widely used denoising methods, including traditional filtering 

techniques and deep learning models (Table 3). 

4.1.3 Evaluation metrics 

The performance of each denoising method is assessed 

using the following standard metrics: 

 Signal-to-Noise Ratio (SNR): Measures the ratio of

signal power to noise power, indicating the

effectiveness of noise suppression.

 Peak Signal-to-Noise Ratio (PSNR): Evaluates the

reconstruction accuracy of denoised signals, with

higher values indicating better performance.

 Structural Similarity Index (SSIM): Quantifies the

structural fidelity between the denoised and clean

signals.

 Mean Squared Error (MSE): Computes the average

squared difference between denoised and ground-truth

signals.

 Inference Time: Measures the computational

efficiency of each method, which is critical for real-

time applications.

While formal significance tests were not included, all 

reported metrics were averaged across multiple trials with 

fixed seeds to ensure consistency. Future studies will 

incorporate statistical testing to further validate 

performance differences. 
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Table 3. Comparison between EM-GAN and other denoising methods 

Method Type Description 

Wiener Filter Traditional Filtering Assumes stationary noise; effective at low SNR but struggles with nonstationary signals. 

Wavelet Denoising 
Transform-Based 

Filtering 

Decomposes signals into frequency components; effective for structured noise but may 

lead to feature loss. 

Denoising Autoencoder 

(DAE) 
Deep Learning 

Learns to reconstruct clean signals from noisy inputs but lacks adversarial training for 

high-fidelity restoration. 

Vanilla GAN GAN-Based Denoising 
Uses adversarial learning but often exhibits mode collapse, leading to oversmoothed 

outputs. 

EM-GAN (Proposed) 
Entropy-Regularized 

GAN 
Incorporates entropy maximization to enhance diversity, stability, and feature retention. 

Figure 2. Comparative performance analysis of denoising methods 
(SNR, PSNR, SSIM, and MSE comparison of different denoising methods.) 

4.2 Quantitative performance evaluation 

4.2.1 Comparative analysis of denoising performance 

The quantitative results for each method are summarized in 

Figure 2, which presents the average performance across all 

datasets. 

The results demonstrate that EM-GAN consistently 

achieves the highest SNR, PSNR, and SSIM scores while 

maintaining a low MSE, indicating improved denoising 

performance. 

4.2.2 Visual comparison of denoised signals 

A visual comparison of denoised outputs is provided in 

Figure 3. 

The visual analysis highlights that traditional filtering 

methods effectively suppress noise but introduce noticeable 

distortions. Deep learning-based methods such as DAE and 

Vanilla GAN provide improved denoising but tend to 

oversmooth the signals. The proposed EM-GAN method 

achieves superior noise reduction while preserving fine details, 

closely resembling the clean ground truth. 

4.3 Ablation study: Effect of entropy maximization 

An ablation study is conducted to evaluate the impact of 

entropy regularization in EM-GAN. The performance of the 

full model is compared to a variant without entropy loss, as 

illustrated in Figure 4. 

The results indicate that entropy maximization plays a 

crucial role in improving denoising performance. Without 

entropy regularization, the GAN-based model exhibits mode 

collapse and reduced structural fidelity, leading to increased 

distortion in the reconstructed signals. 
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Figure 3. Visual comparison of signal denoising methods 
(This figure presents a side-by-side comparison of noisy signals, clean ground-truth signals, and denoised outputs obtained from different methods) 

Figure 4. Impact of entropy regularization on denoising performance 

4.4 Computational efficiency and real-time feasibility 

The evaluation is conducted on a system with the following 

hardware specifications: 

 GPU: NVIDIA RTX 4090 (24GB VRAM).

 CPU: Intel i9-12900K.

 RAM: 32GB DDR5.

 Framework: PyTorch 2.0 with CUDA acceleration.

 Each experiment is repeated 50 times per signal length,

and the average inference time is reported to ensure

consistency.

To provide a meaningful analysis, EM-GAN’s inference 

time is compared against traditional filtering techniques and 

deep learning-based denoisers. The results are summarized in 

Figure 5, where inference time is plotted against signal length 

for different methods 

Key Observations: 

 Traditional methods (Wiener Filter, Wavelet Denoising)

maintain low and constant inference times due to their

deterministic nature.

 Deep learning-based models exhibit increased

inference times for longer signals, with Vanilla GAN
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being the slowest due to training instabilities. 

 EM-GAN maintains a balance between efficiency and

denoising performance, showing reasonable

computational overhead compared to other deep

learning methods.

This figure reinforces that EM-GAN is computationally 

feasible for real-time applications while outperforming other 

GAN-based models in terms of scalability and stability. 

Figure 5. Computational efficiency of EM-GAN 
(Computational Efficiency Comparison of Denoising Methods, comparing 

inference times for short (100ms) and long (5000ms) signals across different 
denoising techniques.) 

4.5 Discussion 

4.5.1 Comparison with baseline methods 

The experimental findings indicate that EM-GAN 

outperforms traditional filtering and deep learning-based 

denoising techniques in terms of both quantitative metrics and 

qualitative assessments. The high SNR and PSNR scores 

reflect the model’s ability to suppress noise while preserving 

critical signal features. The superior SSIM and lower MSE 

values further confirm the fidelity of the reconstructed signals. 

4.5.2 Role of entropy maximization 

The ablation study demonstrates that entropy regularization 

is a key factor in enhancing the performance of EM-GAN. 

Without this component, the model struggles with mode 

collapse, resulting in less diverse and lower-quality outputs. 

Entropy maximization ensures that the generator produces 

feature-rich, high-fidelity reconstructions, preserving both 

high- and low-frequency signal components. 

4.5.3 Practical implications and real-world applications 

The computational efficiency analysis suggests that EM-

GAN is capable of real-time operation, making it applicable in 

various domains, including: 

 Biomedical Signal Processing: ECG and EEG signal

denoising for improved clinical diagnosis.

 Speech Enhancement: Noise suppression in voice

communication systems and hearing aids.

 Structural Health Monitoring: Denoising of

vibration signals for fault detection in engineering

applications.

While our current real-time performance evaluation is 

conducted on high-performance hardware, the lightweight 

architecture of EM-GAN—featuring a shallow convolutional 

backbone and non-parametric entropy-based components—

indicates strong potential for deployment on edge or 

embedded platforms. With further optimization techniques 

such as model pruning, quantization, or hardware-specific 

acceleration, EM-GAN can be adapted to resource-

constrained environments. Future work will explore these 

deployment pathways to extend its practical applicability. 

4.5.4 Limitations and future work 

While EM-GAN demonstrates state-of-the-art performance 

in signal denoising, several limitations should be 

acknowledged. First, its generalization to unseen or complex 

noise types has not been fully evaluated. For instance, EM-

GAN may experience performance degradation when exposed 

to non-Gaussian noise distributions, such as heavy-tailed or 

temporally correlated interference, which are 

underrepresented in the current training datasets. This reflects 

the model’s sensitivity to the statistical characteristics of the 

input noise. 

Moreover, the current framework has not been tested on 

adversarial or non-stationary noise scenarios, including 

perturbations designed to exploit model vulnerabilities or 

environments exhibiting dynamic distribution shifts. These 

factors may pose significant challenges to the model's 

robustness in practical deployment. To mitigate these issues, 

future work will investigate domain adaptation techniques, 

such as adversarial adaptation, self-supervised fine-tuning 

using target-domain data, and meta-learning strategies for 

rapid adjustment to unfamiliar noise patterns. 

Second, the training process of EM-GAN is 

computationally demanding, which may limit its deployment 

in resource-constrained environments. Optimization strategies, 

such as model compression or hardware-aware acceleration, 

will be essential for enabling real-time performance on edge 

devices. 

Finally, the current design does not explicitly incorporate 

domain-specific priors or hybrid architectural elements. 

Future research could explore combining EM-GAN with 

adaptive filtering methods or physics-informed components to 

enhance robustness. Expanding the diversity of noise types 

during training will also be considered to improve 

generalization across a broader range of real-world scenarios. 

Recent developments in diffusion-based models [20, 21] have 

also shown promise in signal generation tasks, although their 

inference efficiency remains a challenge for real-time 

denoising applications. 

4.6 Summary of experimental results 

These results establish EM-GAN as an effective, stable, and 

computationally efficient solution for signal denoising, with 

promising applicability across multiple domains. Compared to 

both traditional filtering techniques and recent GAN-based 

models, EM-GAN consistently demonstrates superior 

performance in noise suppression and feature preservation. 

Entropy regularization emerges as a critical component in 

maintaining structural fidelity and mitigating mode collapse. 

Moreover, the model exhibits competitive inference efficiency, 

reinforcing its suitability for real-time deployment in 

biomedical signal processing, speech enhancement, and 

structural health monitoring scenarios.
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5. CONCLUSION

This work introduced EM-GAN, an entropy-maximized 

GAN designed for signal denoising and feature preservation. 

By integrating entropy regularization into adversarial learning, 

EM-GAN effectively mitigates mode collapse, enhances 

signal diversity, and preserves essential structural features 

while suppressing noise. Future work will focus on optimizing 

computational efficiency, extending the model to diverse noise 

environments, and exploring hybrid approaches that combine 

EM-GAN with adaptive filtering techniques to further enhance 

robustness and generalization. The findings demonstrate that 

EM-GAN is a high-performing, stable, and computationally 

efficient solution for real-time signal denoising, offering 

promising advancements in modern signal processing 

applications. 
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