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Real-world applications benefit greatly from aerial imagery. Various modern applications 

utilizing aerial images; however, these images are often low-contrast due to imperfect 

atmospheric conditions and limitations in the imaging systems.  Many methods exist to 

enhance the quality of aerial images, yet not all of them capable of producing desired results. 

Some may have high complexity, and others may require numerous inputs. On the other 

hand, it is observed that a low-contrast impact that is difficult to prevent throughout the data 

collection process degrades the quality of aerial images a lot. As a result, in this paper a 

novel method for improving aerial image contrast has been presented. Hence a two-phase 

approach for increasing contrast and remapping the intensities of an aerial image to its native 

dynamic range has been presented in this paper. Additionally, a regularization technique is 

provided using the two-step regularization and mapping procedures. For image quality 

assessment (IQA), two performance assessment metrics; measure of enhancement (EME) 

and Structural SIMilarity (SSIM) have been suggested to measure the quality of the results 

of the proposed algorithm. The experimental results indicate that the proposed approach 

increases the contrast of aerial image substantially as compared with other widely contrast 

enhancement methods.  
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1. INTRODUCTION

The images captured from the air using cameras mounted 

on drones, balloons, kites, and airplanes for the purpose of 

remote sensing are termed aerial images. Aerial images have 

very useful applications however these images are often low-

contrast due to imperfect atmospheric conditions and 

limitations in the imaging systems. Hence in this paper, we 

discuss ways for improving the aerial image quality.  

Aerial image restoration framework (IFAIR) was developed 

for ordinary images and subsequently used in aerial 

photographs. They fall into the category: dynamic fuzzy 

histogram equalization with brightness preservation 

(BPDFHE) [1], ESIAHE (exposure-based sub-image 

histogram equalization), MMSICHE (median-mean based 

sub-image clipped histogram equalization) [2], histogram 

equalization with maximum intensity coverage (HEMIC) [3], 

and histogram specification approach (HSA) [4]. 

For real-world applications, the quality of aerial images is 

critical. Although there are several strategies for improving the 

quality of aerial images, not all of them can give outcomes 

with high accuracy. Some may be quite sophisticated, while 

others may need many inputs. As a result, a novel method is 

suggested, which combines a two-phase strategy for boosting 

contrast and remapping the intensities of aerial images to their 

natural dynamic range, as well as a two-step regularization 

technique based on the two-step regularization and mapping 

processes. The suggested approach automatically improves 

the quality of aerial photographs to a satisfactory level. 

In the study by Lee et al. [5], a wavelet-based method that 

improves contrast nonlinearly was developed. There were 

three steps to this algorithm. The first and last phases were 

carried out in the spatial domain, while the second stage was 

carried out in the discrete wavelet domain. The initial stage 

entailed implementing histogram adjustments based on human 

visual behavior. The second stage in the wavelet domain 

involved local contrast correction and dynamic range 

compression. While, the last stage involves using a special 

color restoration procedure to enhance the hues of the final 

image. Singh et al. [6] proposed an enhancement method based 

on the ideas of singular value decomposition (SVD) and 

discrete wavelet transform (DWT). The DWT decomposes the 

supplied image into four frequency sub-bands, which is the 

first step in this method. Next, an estimate of the singular value 

matrix was produced at the low-low sub-band. Finally, the 

image sub-bands were reconstructed, and the final image was 

created using an inverse DWT. 

Furthermore, Samanta et al. [7] presented an integrated 

improvement framework with three phases. The first stage 

calculated the mean intensity for each color channel using a 

color balancing approach. The second phase involved 

employing shift and scale operations to achieve saturation 

improvement. The final stage involved applying contrast 

enhancement based on the information provided by the 
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identified edges. The outcome was determined by the output 

produced from this stage. For global contrast enhancement, 

Wong et al. [8] developed a method that used a regularized 

histogram version. Regularization was done by deriving a 

distribution function from the sigmoid function and histogram 

characteristics, which could then be utilized to generate a 

globally improved image using a particular lookup table. The 

discrete cosine transform coefficients for the globally 

improved image were then fine-tuned automatically to 

upgrade the image’s local features. The fuzzy histogram of the 

input image is used to begin a fuzzy-based technique [9]. The 

proposed method addresses the challenge of contrast 

enhancement in images with poor contrast by introducing an 

automatic two-stage process for enhancing natural color 

images. In the first stage, the lightness component in the YIQ 

color space is normalized using a sigmoid function after 

applying adaptive histogram equalization to the Y component. 

The second stage employs an automatic color contrast 

enhancement algorithm on the output from the first stage. The 

algorithm has been tested on various NASA color images and 

hyperspectral images, showing superior performance 

compared to existing methods [10]. 
Liu et al. [11] introduced an enhanced multi-scale Retinex 

(MSR) method for improving aerial images suffering from low 

visibility. Traditional MSR typically uses three scales, which 

limits its versatility. The authors propose an MSR approach 

that incorporates more than three scales to provide a more 

general enhancement method. They present a new explicit 

multi-scale representation that effectively balances image 

contrast and color consistency. Additionally, a histogram 

truncation technique is introduced for post-processing to 

remap the MSR output to the display's dynamic range.  

Saha et al. [12] presented a novel approach for enhancing 

the contrast of digital images using the Dragonfly Algorithm 

(DA). By treating image contrast enhancement as an 

optimization problem, we effectively mapped the grey-level 

intensity values of input images to new values that 

significantly improved visual quality. Our experimental 

results, based on a dataset of 24 grey-scale images from the 

Kodak collection, demonstrated the efficacy of the DA in 

producing high-quality images with improved Peak Signal-to-

Noise Ratio (PSNR), Visual Information Fidelity (VIF), and 

Structural SIMilarity Index Measure (SSIM) values of 30.87, 

0.7451, and 0.9523, respectively. Furthermore, the ablation 

study provided insights into the impact of various control 

parameters on image quality, revealing that careful tuning is 

essential for optimal outcomes. Our comparisons with state-

of-the-art techniques confirmed the superiority of the proposed 

DA-based method in enhancing image contrast. Another 

technique for enhancing low-contrast grayscale images was 

introduced by Rahman and Paul [13]. This method involves 

dividing the image into three sub-images to maintain the mean 

brightness. To manage contrast enhancement, a snipping 

procedure is applied to each histogram. Each of the three 

histograms is equalized separately, and then the resulting sub-

images are merged into a single image. The performance of 

this proposed technique outperforms traditional histogram 

equalization methods found in the literature across various 

image quality metrics. Zhang et al. [14] introduced a color 

correction and adaptive contrast enhancement algorithm 

specifically for underwater images. Initially, they developed 

dedicated fractions to address the deficiencies in lower color 

channels. The algorithm was then applied to each color 

channel, resulting in background-stretched and foreground-

stretched images. The contrast of the final output image was 

significantly enhanced by combining these two types of 

images. Meanwhile, Mukhopadhyay et al. [15] proposed a new 

grayscale contrast enhancement algorithm that does not rely 

on tuning the controlling parameters of the Incomplete Beta 

Function; instead, these parameters are computed using the 

Artificial Electric Field Algorithm to find near-optimal values. 

The illumination characteristics were then obtained, and the 

association between normal and low illumination was 

determined using a deep decomposition network and end-to-

end training. Finally, the result was obtained using a deep 

improvement network. As can be seen from the methods 

examined, several approaches to have been used to enhance 

contrast. The most difficult are those involving DL due to their 

high computational cost and the numerous variables involved, 

which are difficult to estimate accurately by the average user. 

Nonetheless, the odds of enhancing or developing new 

algorithms for aerial image augmentation are considerable, 

and the possibility of doing so is still open. As a result, based 

on a combination of various processing ideas of the S-curve 

mapping functions, logarithmic image processing, and 

normalization, this study offers a novel, completely automated 

multi-concept technique to increase the contrast of aerial 

images. For contrast enhancement, in the study by Demirel et 

al. [16], various S-curve functions can be employed. The pixel 

values of a particular image are adjusted using S-curve 

functions according to the X and Y connection provided by the 

function [17]. Furthermore, Talebi and Milanfar [18] 

demonstrated multiple S-curve functions, whereas a basic 

function may not be universally applicable to all image types. 

Furthermore, a single function may not be sufficient for 

adequate contrast augmentation. As a result, numerous S-

curve functions can be combined to produce outcomes with 

improved tonality. In addition, logarithmic image processing 

(LIP) techniques are widely employed in contrast 

enhancement, as demonstrated in the study by Sheet et al. [19]. 

Similarly, Singh and Kapoor [20] demonstrated that various 

LIP techniques can effectively fuse features from two images 

to produce an enhanced-quality output. Normalization is 

another systematic approach for fitting image intensities to the 

standard dynamic range. 

Our two-phase approach enhances aerial image contrast 

through a combination of computational simplicity, 

adaptability, and superior enhancement quality. Unlike 

traditional methods such as Histogram Equalization (HE) and 

Contrast Limited Adaptive Histogram Equalization (CLAHE), 

our method requires fewer computational resources, making it 

more efficient for real-time applications. Additionally, it is 

designed to adapt seamlessly to various image types, 

effectively handling diverse aerial imagery scenarios, from 

urban landscapes to natural terrains. In terms of enhancement 

quality, our approach demonstrates a significant improvement 

in preserving essential details and reducing artifacts, as 

evidenced by our quantitative and qualitative evaluations 

compared to widely used techniques.  

 
 

2. RELATED WORK 

 

Several studies in the domain of aerial images and 

applications, deal with images taken in uncontrolled 

environments. Min et al. [21] suggested "Dynamic Pixel 

Intensity Histogram Analysis (DHAs)" which utilized to 

improve the clarity and usefulness of photos taken in foggy 
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situations. There is an urgent need to assess and compare the 

many image DHAs now available. Real hazy photos are used 

to assess DHAs since there is no reference haze-free image. 

However, the reference haze-free images and full reference 

(FR) IQA processes may be used to evaluate hazy synthetic 

images quantitatively. The DHA assessment in this article is 

performed by applying this technique to hazy synthetic images. 

The authors have created a synthetic haze removal quality 

(SHRQ) to get started. Dazed images created from 45 and 30 

artificially foggy shots created 360 and 240 aerial and normal 

image subsets. Because aerial photography is a significant 

application area, they created a subset of aerial images. A 

subjective quality assessment study is conducted on the two 

subgroups. They suggested that DHA assessment should not 

be seen as an accurate Full reference (FR) IQA procedure, and 

current FR IQA methods are ineffective for evaluating DHA. 

This technique for evaluating DHA quality incorporates 

several dehazing-relevant aspects, such as image structure 

recovery and color reproduction, and the over-enhancement of 

low-contrast regions, into the assessment process [22]. As a 

result, they have improved their approach for aerial photos by 

putting their unique qualities into it. Results from two 

synthetic haze removing quality (SHRQ) dataset subsets show 

that the recommended measures are effective. 

Wang et al. [23] developed an image enhancement approach 

to improve low-illumination image quality for dependable 

unmanned aerial vehicle (UAV) pedestrian identification. A 

hyperbolic tangent curve is used to map the image brightness 

to a comfortable level. For YCbCr color filters, block-

matching and 3-D filtering algorithms are in the pipeline. A 

convolutional neural network model is used to identify 

pedestrians for surveillance purposes. With an increase in 

Minkowski distance measurement accuracy of 0.80%, F-

measure and confidence coefficient detection accuracy 

increased by 0.800%. Night-time UAV surveillance in smart 

cities could be improved using this technique. Pham et al. [24] 

proposed a fast adaptive stitching approach for dealing with 

many aerial photographs. Firstly, the geotag information of the 

UAV image footprints is used to assess their relative locations 

and overlapping areas. Analyzed images are suggested to be 

eliminated from the UAV photos using an adaptive selection 

technique. Fast feature extraction and matching are performed 

successively in the suggested technique. It is finally developed 

to lessen the blurring artifacts and produce precise image 

alignment with seamless overlapping areas. Images of huge 

regions may be created using various methods, including 

experiments. As a result, both the predicted reprojection error 

and the number of observed visual distortions may be reduced 

by using this proposed method. 

Kim et al. [25] presented Infrared Detection and Tracking. 

It is possible to monitor distant targets using infrared search 

and track (IRST) systems on unmanned aerial aircraft and 

battleships. Several IRST systems utilize contrast 

enhancement (CE) techniques to compensate for the limited 

dynamic range of sensor output and visual saturation. Infrared 

Image histogram equalization may cause saturation and 

enlargement of the low contrast histogram. Local area 

processing has been studied to decrease saturation and non-

uniformity. Cross fusion is combined with three counter-non-

uniformity approaches to boost adaptive contrast. Discrete 

entropy, PSNR, SSIM, root-mean-square error (RMSE), and 

computation time metrics were also examined as part of this 

evaluation. Images of different commodities from infrared and 

multispectral satellites and ordinary grayscale and color 

Images and video sequences were used in the experiments. 

The integrated image quality index shows that the suggested 

approach performs well on many degraded datasets. Megahed 

et al. [26] investigated a general registration method based on 

a computer model and a scene abstraction. It is possible to 

augment 3-D light detection and range points with radiometric 

information by registering aerial photos. Data from an 

aircraft’s LiDAR systems differ from photos collected aboard 

the same flight. It is possible to use indirect georeferencing if 

additional imaging data is available. However, in LiDAR and 

imaging datasets, automated detection of control primitives is 

a challenge, particularly if they were gathered at various times.  

Image moment values may be thresholded for potential 

candidate site identification. Control points are generated 

using a shape context description that pairs symmetric 

candidate points. Polynomial and direct linear transform 

models were used to estimate the coordinate transformation 

parameters across datasets. Different datasets from various 

metropolitan areas have been used to test the technique 

provided in this paper [27]. The root-mean-square error ranges 

between one and two pixels in terms of registration. With 

modest datasets, the suggested method is computationally 

efficient and versatile enough to be applied to a wide range of 

images and Light Detection and Ranging (LiDAR) point cloud 

registrations. 

Gao et al. [28] envisioned UAV Sensing Image Defogging 

Method. Unmanned aerial vehicle imaging is susceptible to 

haze, which reduces the quality of the needed remote sensing 

Images. Analyzing and processing the impact will be very 

difficult in the future. However, there are a few drawbacks due 

to its considerable progress, such as color distortion and lesser 

brightness in the defogging mage. New defogging techniques 

are presented in this article to address these disadvantages. 

Atmospheric scattering models are developed that use an 

adaptive variable technique to characterize atmospheric light 

better. An entirely new approach to ambient light and 

transmittance estimations is offered based on both dark and 

bright channels. Our next step is to use the color image as a 

guide to fine-tune the transmittance, which reduces time 

complexity even more. They have developed a new 

compensating mechanism to address the problem of poor 

transmittance and minimize color smearing [29]. In addition, 

a simple and effective approach for calculating compensation 

function parameters is provided. Finally, an enhanced air 

scattering model establishes the clear remote sensing image. 

Some real-world datasets show that the suggested technique is 

better in subjective and objective quality assessments than 

existing best practices.  

Using an enhanced haze optical model, Peng et al. [30] 

developed a unique image processing system with three 

modules: Airlight White Correction (AWC), Local Light Filter 

(LLF), and Aerial Perspective Prior (APP). When the airborne 

particles are dispersed and taken up, color distortion may 

occur when photographing in low-light settings like 

sandstorms or fog. Using AWC, you can identify and repair 

any color casts in your images. Improved ambient light 

estimation is achieved by deleting non-hazy bright pixels from 

the image using LLF (such as headlights and white objects). 

This method calculates scene transmission by subtracting the 

minimum and maximum channel values. In independent third-

party dehazing tests, the proposed method beats the present 

state of the art. When it comes to color restoration, we offer 

the most effective method for eliminating haze and color casts. 

GAN with Dual-Stream Representation Learning GAN was 
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suggested by Xi et al. [31] to categorize UAV photos. Ultralow 

resolution (LR) UAV-based remote sensing photos are 

difficult to recognize little items because of the lack of data in 

the object areas. Attempts to address this problem have been 

few and far between in recent times. Image classification aims 

to improve Image quality and representations that are 

presently missing. LR image classification performance 

improvement is substantially impacted by irregularity in 

information loss and learning priority for low-frequency and 

high-frequency components. An important presumption of this 

writer’s research is using images with a high resolution for 

both low and high-frequency (LF/HF) component monitoring 

(HR). GANs for LR image classification have been tested for 

DRL-ability using their technique. Our DRL-GAN has been 

demonstrated to improve classification performance by up to 

10% compared to prior research from HRSC and CIFAR-10. 

This can be seen in the "WIDERSHIP" dataset. 

Nomani et al. [32] proposed new approaches to 

approximation adder design that increase SWaP performance 

while maintaining acceptable accuracy requirements for 

FPGA-based systems. For years, intelligence, surveillance, 

and reconnaissance (ISR) systems have been using HD image 

processing and real-time analytics. The computing demands 

on HD ISR systems are expanding rapidly with optics and 

Image augmentation improvements. Moore’s Law has been 

slowing down recently, significantly constraining the amount 

of shrinkage that CPUs and storage units can now achieve. 

Programmable and quick prototyping FPGAs are intriguing 

for implementing ISR algorithms in unmanned aerial vehicles 

(UAVs) with few resources. FPGA applications that need a lot 

of processing power necessitate accurate calculations to bridge 

the gap between the host system and the FPGA It is possible 

to speed up video and image processing without 

compromising accuracy. Customizable overlap between sub-

adders in the carry chain ensures optimal accuracy and overall 

latency of a single LUT. For balancing SWaP and accuracy, 

this site says it has a wide range of alternatives to select from. 

In this study, the applicability of atomic arithmetic blocks is 

tested using analytical applications such as two-dimensional 

DCT, aerial self-localization, and moving object tracking. 

Zhang et al. [33] postulated a technique for identifying 

conductor breaks and surface flaws in transmission lines using 

unmanned aerial vehicle (UAV) inspection. If the aluminum 

strands break, there will be permanent damage to conductors 

and whole transmission lines, leading to power outages and 

other significant consequences discussed. Once a conductor 

Image has been captured, the conductor area is retrieved using 

an adaptive threshold segmentation approach, which 

normalizes the grey variance of an image (GVN). The 

grayscale distribution curves’ square wave transformation 

(SWT) is a basic and effective method for detecting a 

conductor break. The GVN Image of the conductor area is 

used to identify the conductor surface flaws. Several broken 

strands are counted to filter out the possible problems, and the 

final fault diagnostic findings may then be determined. A 

series of tests are used to evaluate the technology’s 

performance. The findings show that the suggested approach 

has an average accuracy of 90.45 % for measuring conductor 

break and 92.05 % for measuring defective surface faults. 

The proposed method effectively addresses the 

computational complexity associated with deep learning 

approaches by employing a two-phase enhancement strategy 

that prioritizes efficiency without sacrificing quality. Unlike 

traditional histogram equalization (HE), which often leads to 

over-enhancement and loss of detail, this method allows for 

controlled adjustments that preserve essential image features. 

By integrating adaptability to various image types, the 

proposed approach outperforms existing techniques in terms 

of both computational simplicity and enhancement quality. 

This relevance highlights the need for methods that balance 

performance with practicality, particularly in real-world aerial 

imaging applications. 

 

 

3. METHODOLOGY 

 

The contrast equalization method has been proposed as a 

processing step [34]. Its major objective was to precisely 

rescale the intensities of images to provide the processed 

images with adequate brightness and contrast. The insufficient 

image intensities are first regularized using a two-step 

procedure, and Eq. (1) and Eq. (2) are used to accomplish this 

operation.  

 

𝑘(𝑥, 𝑦) =
𝐼(𝑥,𝑦)

(𝑚𝑒𝑎𝑛(|𝐼(𝑥′,𝑦′)|𝑎))
1

𝑎⁄
  (1) 

 

𝐿(𝑥, 𝑦) =
𝑘(𝑥,𝑦)

(𝑚𝑒𝑎𝑛(𝑚𝑖𝑛 (𝛽,|𝑘(𝑥′,𝑦′)|𝑎))
1

𝑎⁄
  (2) 

 

where, 𝐼(𝑥, 𝑦) is the degraded input image, 𝑥 and 𝑦 are spatial 

coordinates, and 𝐼(𝑥′, 𝑦′)is the transposed form of 𝐼(𝑥, 𝑦) . 

The image 𝑘(𝑥, 𝑦) is the result of the first regularization stage. 

The transposed form image 𝑘(𝑥, 𝑦) is 𝑘(𝑥′, 𝑦′);  𝐿(𝑥, 𝑦) is the 

outcome of the second regularization step. High values are 

reduced by a compressive exponent, while a threshold is set at 

which high values are truncated after the first step of 

regularization. The default values for 𝛼 and 𝛽 are 𝛼 = 0.1 and 

𝛽 = 10. The two-step regularization produces an acceptable 

scale yet still allows for extreme values. As a result, a 

nonlinear mapping function based on hyperbolic tangents is 

used to reduce the impact of such extreme values, resulting in 

outcomes with appropriate brightness and contrast. Eq. (3) is 

used to calculate this value. 
 

𝑤(𝑥, 𝑦) = 𝛽 𝑡𝑎𝑛ℎ (
𝐿(𝑥,𝑦)

𝛽
)  (3) 

 

where, w(x,y) denotes the final image. This method was 

realistic to numerous aerial images, it revealed numerous 

drawbacks. First, the default settings will result in a 

completely black image and therefore cannot be used. Second, 

due to the varied nature of aerial images, these parameters 

need to be updated for each processed image. This process is 

time-consuming since determining the right α and β values for 

each input data. Furthermore, despite providing considerable 

contrast enhancement, this approach still raises the brightness 

of the overall image. Furthermore, it enhances the brightness 

in high-brightness locations, resulting in the loss of essential 

visual information. Improved techniques suited to the nature 

of aerial images are required for this approach to provide 

satisfactory results. Experimentally, this adjustment provides 

users with greater control over the boosting process. The 

outcome is altered in the two-step regularisation method when 

a single parameter is employed. When the two-step mapping 

method is used, the output is re-adjusted to offer the proper 

brightness and contrast. This parameter must meet (μ > 0) to 

adjust brightness and contrast, where value improves contrast 

and regularizes brightness. A lower number results in less-
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than-ideal brightness and contrast. After using a given number 

and seeing a little improvement, the value must be raised until 

acceptable results are achieved. The operator must perform 

this task manually. Eq. (4) and Eq. (5) are used to calculate the 

improved two-step regularization method. 

 

𝑘(𝑥, 𝑦) =
𝐼(𝑥,𝑦)

(𝑚𝑒𝑎𝑛(|𝐼(𝑥′,𝑦′)|𝜇))
1

𝜇⁄
  (4) 

 

𝐿(𝑥, 𝑦) =
𝑘(𝑥,𝑦)

(𝑚𝑒𝑎𝑛(𝑚𝑖𝑛 (𝜇,|𝑘(𝑥′,𝑦′)|𝜇))
1

𝜇⁄
  (5) 

 

Nonlinear and linear remapping techniques are used to 

achieve this goal instead of relying on Eq. (3) to reduce too 

large values in the regular image. The modified standard 

logistic function (MSLF), a nonlinear function, is used in the 

first phase. The conventional standard logistic function (CSLF) 

is computed using Eq. (6) [35]. 

 

𝐺(𝑥, 𝑦) =
𝑒𝑥𝑝(𝐿(𝑥,𝑦))

1+𝑒𝑥𝑝(𝐿(𝑥,𝑦))
  (6) 

 

where, 𝐺(𝑥, 𝑦) does the CSLF produce the image. An MSLF 

is employed in this investigation to give the researcher better 

control over the apparent brightness and contrast. As seen in 

Eq. (7), the adjustment entails boosting the CSLF to the power 

of μ. 

 

Ĝ(𝑥, 𝑦) = (
𝑒𝑥𝑝(𝐿(𝑥,𝑦))

1+𝑒𝑥𝑝(𝐿(𝑥,𝑦))
)

𝜇

  (7) 

 

where, Ĝ(𝑥, 𝑦) is the image produced by the MSLF. Image 

contrast has been altered and extreme values have been toned 

down because of this feature. 

Gamma correction can be applied on Eq. (8) as follows: 

 

�̂� = A�̂�i
𝛾
  (8) 

 

where, A and 𝛾 are positive constants, �̂�i
𝛾
is the non-negative 

real input value and Ĝ is the modified conventional standard 

logistic function. With 0 < 𝛾 < 1 and gamma correction, 

several modification levels can be done, and the histogram 

spikes can be efficiently smoothed. 

The modification scheme can be written as follows using Eq. 

(9): 

 

�̂�(𝑥, 𝑦) = 𝐴 ((
exp(𝐿(𝑥,𝑦))

1+exp(𝐿(𝑥,𝑦))
)

𝜇

)
𝛾

  (9) 

 

In the newly suggested two-step mapping technique, this is 

the second stage. Eq. (9) is used to remap the intensity values 

of the original image across a wider dynamic range. Eq. (10) 

can be utilized in the following manner [36]: 

 

𝑁(𝑥, 𝑦) =
�̂�(𝑥,𝑦)−min(�̂�(𝑥,𝑦))

max(�̂�(𝑥,𝑦))−min(�̂�(𝑥,𝑦))
  (10) 

 

where, 𝑁(𝑥, 𝑦) does proposed technique produce final image.  

 

 

4. EXPERIMENTS AND PERFORMANCE ANALYSIS 

 

This section reports the results of the achieved experiments 

and comparisons with different types of low-contrast aerial 

images. The aim was to deliver the required discussions 

regarding the findings of this research. Low-contrast images 

have been used to evaluate the proposed algorithm's 

processing skills utilizing a publicly accessible dataset [37]. 

This dataset consisted images that’s widely used in image 

processing task. Selected aerial Images representative of 

different environmental conditions. 

In addition, well-known contrast enhancement algorithms 

HE and CLAHE were used in the comparison process. 

“Histogram Equalization (HE)” is an image processing 

technique in computer science that enhances the contrast in 

images. It achieves this by distributing the most common 

intensity values, which extends the intensity range of the 

image. Typically, this technique heightens the overall contrast 

of images in situations where the usable data is depicted by 

nearby contrast values. Consequently, it enables regions with 

lower local contrast to obtain a greater contrast. “Contrast 

limited adaptive histogram equalization (CLAHE)” is used for 

improve the visibility level of foggy image or video. 

MATLAB 2018a and a machine with 8 GB of RAM and a 2.8 

GHz Intel Core-i5 CPU have been used to construct the 

suggested comparison methods. IQA measures have been used. 

EME and SSIM are the IQA measures employed to assess the 

suggested approach's image quality. Adopting the acronym 

EME, Agaian et al. [38] will be the first to propose this concept. 

Fechner's Law, which links contrast to perceived brightness, 

provides a score to each image. The "EME" is: 

 

𝐸𝑀𝐸(𝑒) =
1

𝑘1𝑘2
∑ ∑ 20 𝑙𝑛 (

𝐼𝑚𝑎𝑥, 𝑘,𝑙
𝑊

𝐼𝑚𝑖𝑛, 𝑘,𝑙
𝑊 )

𝑘1
𝑘=1

𝑘2
𝑙=1   (11) 

 

where, 𝐼𝑚𝑖𝑛;𝑘,𝑙
𝑤  and 𝐼𝑚𝑎𝑥,𝑘,𝑙

𝑤  are respectively minimum and 

maximum of the image 𝑋(𝑛, 𝑚) inside the block 𝑤𝑘,𝑙. 

SSIM was developed by Wang et al. [39]. It is a 

methodology for quality evaluation based on the deterioration 

of structural information under the premise that human visual 

perception is well suited to collecting structural information 

from a scene. SSIM is defined as the following: 

 

𝐸𝑀𝐸(𝑒) =
1

𝑘1𝑘2
∑ ∑ 20 𝑙𝑛 (

𝐼𝑚𝑎𝑥, 𝑘,𝑙
𝑊

𝐼𝑚𝑖𝑛, 𝑘,𝑙
𝑊 )

𝑘1
𝑘=1

𝑘2
𝑙=1   (12) 

 

where, 𝜇𝑥  and 𝜇𝑦  are the local means, 𝜎𝑥  and 𝜎𝑦  are the 

standard deviations and 𝜎𝑥𝑦 is the cross-covariance for images 

𝑥 and 𝑦 sequentially, 𝑐1  and 𝑐2  two variables to stabilize the 

division with a weak denominator. 
 

Table 1. Comparison of IQA scores for EME 
 

Image Proposed HE CLAHE 

1 24.3919 104.4621 62.8726 

2 32.0498 140.0044 90.1145 

3 39.4326 145.9599 117.1302 

4 41.5525 146.5350 137.8118 

5 41.1482 147.0174 123.8849 

6 31.7376 121.0559 77.2641 

7 33.2997 142.2255 90.0648 

8 33.5473 135.4575 88.4845 

9 38.9503 146.0272 124.6939 

10 29.0535 121.1223 102.9055 

Average 34.5163 134.987 101.523 

 

In EME, a lower score indicates an image with better 

contrast, while in SSIM, a higher score indicates better 

contrast. Table 1 and Table 2 present the EME scores and 

SSIM measures between original and enhanced images for the 
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proposed algorithm, HE and CLAHE, for the aerial images 

used in the experiment. The proposed approach obtained the 

highest EME score and the lowest SSIM score for all ten 

images. This indicates that the proposed approach outperforms 

HE and CLAHE for both IQA metrics. The scores also mean 

that the proposed approach produces images of better quality 

than that of HE and CLAHE.  

 

 
Figure 1. Illustrations of image 1: (a) Original woods image, 

(b) Proposed approach result, (c) HE approach result, and (d) 

CLAHE approach result 

 
Figure 2. Illustrations of image 2: (a) Original series image, 

(b) Proposed approach result, (c) HE approach result, and (d) 

CLAHE approach result 

 

Table 2. Comparison of IQA Scores for SSIM 

 
Image Proposed HE CLAHE 

1 0.9486 0.3667 0.6744 

2 0.8260 0.5997 0.7158 

3 0.9040 0.8136 0.7641 

4 0.8460 0.7979 0.7864 

5 0.8430 0.8263 0.7347 

6 0.9061 0.7328 0.7222 

7 0.8664 0.6990 0.7107 

8 0.9403 0.7531 0.7711 

9 0.8966 0.8716 0.8146 

10 0.9124 0.8704 0.7878 

Average 0.88894 0.73311 0.74818 

 
Figure 3. Illustrations of image 3: (a) Original school image, 

(b) Proposed approach result, (c) HE approach result, and (d) 

CLAHE approach result 

 

 
Figure 4. Illustrations of image 4: (a) Original pool tennis 

image, (b) Proposed approach result, (c) HE approach result, 

and (d) CLAHE approach result  

 

 
Figure 5. Illustrations of image 5: (a) Original main building 

image, (b) Proposed approach result, (c) HE approach result, 

and (d) CLAHE approach result 
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Figure 6. Illustrations of image 6: (a) Original large building 

image, (b) Proposed approach result, (c) HE approach result, 

and (d) CLAHE approach result 

 

 
Figure 7. Illustrations of image 7: (a) Original homes image, 

(b) Proposed approach result, (c) HE approach result, and (d) 

CLAHE approach result 

 

 
Figure 8. Illustrations of image 8: (a) Original baseball 

image, (b) Proposed approach result, (c) HE approach result, 

and (d) CLAHE approach result 

 
Figure 9. Illustrations of image 9: (a) Original buildings 

image, (b) Proposed approach result, (c) HE approach result, 

and (d) CLAHE approach result 

 

 
Figure 10. Illustrations of image 10: (a) Original airfield 

image, (b) Proposed approach result, (c) HE approach result, 

and (d) CLAHE approach result 

 

Figures 1–10 illustrate ten original images (subfigure (a) in 

each figure) and their processed outputs using the proposed 

approach (subfigure (b)), HE (subfigure (c)), and CLAHE 

(subfigure (d)), respectively. Compared to the original images 

in subfigure (a), the outputs in subfigure (b) are brighter, 

exhibit higher contrast, and better preserve details, while also 

containing less noise. Moreover, the proposed approach 

(subfigure (b)) produces results with better contrast and detail 

preservation than those generated by HE (subfigure (c)) and 

CLAHE (subfigure (d)). The modified conventional standard 

logistic function, as defined in Eq. (9), combined with gamma 

correction, allows for adjustable modification levels. 

Additionally, the histogram spikes are effectively smoothed, 

as demonstrated in subfigures (b)-(d) of Figures 1–10. 

The proposed method, while effective in enhancing aerial 

image contrast, does face certain limitations. Specifically, its 

performance may degrade in images with extreme noise, high 

dynamic range, or very low brightness, where the 

enhancement algorithms could struggle to yield satisfactory 
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results. Additionally, processing high-resolution images may 

introduce computational constraints, potentially leading to 

longer processing times or increased resource consumption. 

Acknowledging these challenges is essential for providing a 

balanced perspective on the method's applicability and guiding 

future research to address these issues. 

 

 

5. CONCLUSIONS 

 

Aerial imagery is highly beneficial for real-world 

applications. However, these images often suffer from low 

contrast caused by imperfect atmospheric conditions and 

limitations in imaging systems. The proposed method 

demonstrates significant potential for real-world applications, 

particularly in areas such as UAV-based monitoring, disaster 

management, and urban planning. Its ability to enhance the 

contrast of aerial images efficiently makes it a valuable tool 

for real-time analysis in these fields. For instance, in disaster 

management, improved image clarity can aid in assessing 

damage and coordinating response efforts. Similarly, urban 

planners can utilize enhanced imagery for better visualization 

of land use and infrastructure. These applications underscore 

the method's practical relevance, enabling stakeholders to 

make informed decisions based on high-quality aerial data. 

Although several methods exist to improve the quality of aerial 

images, not all of them are capable of producing satisfactory 

results. Some methods are complex, while others require 

multiple inputs. Moreover, the low-contrast impact, which is 

challenging to prevent during the data collection process, 

significantly degrades the quality of aerial images. A new 

approach for enhancing the contrast of aerial images has been 

suggested in this research by combining well-known image 

processing methods. The proposed algorithm was applied to 

several low-contrast aerial images and compared with two 

commonly used contrast enhancement algorithms, HE and 

CLAHE, using two advanced IQA metrics, EME and SSIM. 

The proposed algorithm produced good EME and SSIM scores 

when applied to various aerial images based on the 

experimental results. The images processed with the proposed 

algorithm are also visually better than the original image and 

those processed by HE and CLAHE. 
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