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This study presents an improved crack detection algorithm based on the YOLOv8 

architecture to address the challenges of high false positive rates and complex background 

interference in underground pipeline inspection under low-illumination conditions. Drawing 

inspiration from optical communication strategies used in unmanned underwater vehicles, 

the proposed method introduces two key innovations. The first is the Dysample-Upsample 

Module, which applies adaptive point sampling to refine grid-based upsampling. This 

approach reduces computational overhead by 37 percent while maintaining structural 

integrity. The second is the Switchable Atrous Convolution module, which replaces the 

conventional conditional random field layer with a dual-path framework that enhances 

multi-scale feature fusion and contextual understanding. The algorithm was tested on a 

dataset containing 2700 professionally annotated images. Experimental results show a 16.9 

percent improvement in recall, a 1.05 percent increase in mean average precision at 0.5 

threshold, and real-time processing capability at 58 frames per second on an NVIDIA RTX 

4090 GPU. In environments with illumination levels below 15 lux, the method achieved 92 

percent detection accuracy and demonstrated a 40 percent increase in robustness against 

concrete texture interference when compared with the baseline YOLOv8n model. These 

findings indicate that the proposed approach offers an efficient and deployable solution for 

intelligent urban infrastructure maintenance in visually degraded environments. 
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1. INTRODUCTION

Underground pipeline networks, spanning over 2.7 million 

kilometers globally, form the lifeline of modern urban 

infrastructure [1]. Recent statistics reveal that 23% of water 

supply pipelines exhibit aging-related cracks, leading to 

annual economic losses exceeding $7.2 billion. Conventional 

inspection methods, while serving historical needs, face three 

fundamental dilemmas in the era of smart city development [2]. 

Traditional approaches exhibit a trilemma: (1) Manual 

techniques (e.g., CCTV, visual inspection) achieve ≤68% 

accuracy under low-light conditions [3]; (2) Physical probes 

(X-ray, ultrasonic) require specialized operators, increasing 

operational costs by ≈40%; (3) Eddy current methods 

demonstrate limited applicability for non-metallic pipelines 

covering 65% of modern networks [4]. Recent advances in 

computer vision offer potential solutions, yet existing 

implementations like YOLOv8n show >35% miss rates in 

environments below 20 lux illumination. 

Three technical challenges persist in automated pipeline 

inspection: First, the average illuminance of 12.7 lux in 

underground environments severely degrades conventional 

vision algorithms optimized for >200 lux conditions. Second, 

concrete textures and cracks share 0.78±0.05 grayscale 

similarity (calculated via SSIM index), causing frequent false 

positives. Third, hardware constraints of inspection robots 

demand models under 4GB memory with <10 W power 

consumption. 
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where, C1=(0.01L)2, L=255 

Building upon our prior work in UUV optical 

communication, this paper presents three key innovations: 

• A Dysample-upsample reducing computational load

by 37% (2.1G FLOPs vs. 3.3G in YOLOv8n) 

• SAConv module enabling multi-scale feature fusion

through switchable dilation rates {1,3} 

• First open dataset with 2,700 low-light pipeline

images (5-25 lux) containing lux-level metadata 

The proposed architecture demonstrates 92% detection 

accuracy in sub-15 lux environments, outperforming existing 

methods by >16.9% recall rate while maintaining real-time 58 

FPS performance on embedded GPUs. 

2. RELATED WORK

Recent advancements in pipeline crack detection 

technologies have focused on integrating various modern 

technologies such as Internet-of-Things (IoT), robotics, neural 

networks, and machine learning to enhance the accuracy and 

efficiency of crack detection systems. The Pipeline Leak 

Identification Emergency Robot Swarm (PLIERS) system 
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exemplifies this integration by using a swarm of robots to 

inspect pipelines, collect images, and analyze them using a 

convolutional neural network (CNN) to detect and assess the 

severity of cracks [5]. 

Recent developments in pipeline crack detection 

technologies have shown significant advancements in both 

methodology and technology. Mysiuk et al. [6] developed a 

real-time damage assessment software that uses a camera to 

detect cracks in pipelines and visualizes the results by marking 

the damaged areas. This approach allows for immediate 

evaluation of pipeline integrity. 

Altabey et al. [7] proposed a crack detection method based 

on image processing that performs well in complex 

backgrounds, showing improved detection rates compared to 

existing algorithms. This method uses a semantic 

segmentation model to extract crack features from high-

resolution images, which is crucial for accurate detection in 

varied environments. 

On the technological front, Xin et al. [8] developed an ACM 

crack detection probe that enhances the magnetic field 

distortion signals caused by cracks, thereby improving the 

detection accuracy. This technology addresses the challenge 

of detecting small cracks that create weak magnetic field 

distortions. 

Moreover, the integration of machine learning models has 

been pivotal in advancing crack detection capabilities. 

Ibragimova [9] highlighted the use of a mobile robot equipped 

with a high-resolution camera and advanced image processing 

algorithms, which autonomously navigates pipelines to 

capture and analyze crack images using trained machine 

learning models. 

Ultrasonic Testing (UT) is a widely adopted non-destructive 

testing (NDT) method, particularly effective for internal defect 

detection in metallic pipelines. Shah et al. [10] demonstrated 

that guided wave UT achieves an internal crack detection 

accuracy exceeding 88% in polyethylene pipes under 

laboratory conditions. However, UT's performance is often 

operator-dependent and degrades in irregular geometries or 

non-metallic materials. 

Radiographic Testing (RT), encompassing X-ray and 

gamma-ray methods, offers high-resolution imaging for 

internal structural assessment. Jamshidi [11] reported that 

photon radiography can detect sub-millimeter defects, making 

it highly precise. Despite this, RT requires significant 

infrastructure, entails radiation hazards, and is cost-prohibitive 

for routine urban inspections. 

Infrared Thermography (IRT) detects surface temperature 

anomalies associated with underlying structural issues. Yang 

et al. [12] applied deep learning to enhance IRT and achieved 

detection rates above 90% for surface cracks on concrete under 

optimal lighting. However, IRT performance is susceptible to 

environmental fluctuations, such as ambient temperature and 

surface emissivity, which are difficult to control in 

underground settings. 

Magnetic Particle Testing (MT) is highly sensitive for 

surface-level defect detection on ferromagnetic materials. 

Zolfaghari [13] noted its strong reliability for weld inspection, 

but the method is inherently limited to surface cracks and 

ferrous pipelines. Eddy Current Testing (ECT) similarly 

provides non-contact inspection and has been miniaturized for 

embedded applications, yet it is confined to conductive 

materials and shallow defect penetration [14]. 

Mazleenda Mazni proposed a novel system presents for 

real-time classification and measurement of concrete surface 

cracks, vital for Structural Health Monitoring (SHM). By 

leveraging transfer learning in CNNs like MobileNetV2, 

EfficientNetV2, InceptionV3, and ResNet50, our model, 

especially TL MobileNetV2, achieves impressive accuracy 

(99.87%), recall (99.74%), precision (100%), and F1-score 

(99.87%). The system uses the Otsu method for image 

segmentation to assess crack sizes and combines Euclidean 

distance calculations with a 'pixel per inch' technique for 

millimeter-level width estimations. The precision is verified 

through manual experiments with a Mitutoyo Absolute Digital 

Caliper, ensuring high accuracy with an error margin of 

±0.2 mm to ±0.3 mm [15]. 

The YOLO (You Only Look Once) framework, particularly 

versions YOLOv3 through YOLOv8, has gained traction due 

to its balance between detection accuracy and inference speed. 

Li et al. [16] adapted YOLOv3-Lite for aircraft crack detection, 

emphasizing deployment feasibility in embedded systems. 

However, in underground pipeline conditions, where average 

illuminance is <15 lux and grayscale similarity between cracks 

and textures is high (SSIM ≈0.78), standard YOLO models 

exhibit >35% miss rates. These shortcomings necessitate 

architectural innovations to improve robustness against visual 

noise, reduce model size, and enhance adaptability to multi-

scale features. 

Thus, this study builds upon these insights by proposing two 

novel modules—Dysample and SAConv—designed to 

address the aforementioned challenges and improve detection 

efficacy under practical constraints. 

 

 
3. OUR METHODOLOGY 

 

3.1 Dysample up-sampler based on point sampling 

replaces the original kernel-based dynamic up-sampler 

 

The subsequent illustration depicts the sample-based 

dynamic upsampling and module design in Dysample [17]. 

 

 
 

Figure 1. Sampling based dynamic upsampling 
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Figure 2. Scope factor adjustments for pixel shuffling 

 

 
 

Figure 3. Enhanced network structure of Dysample upsampling 

 

The illustration comprises two principal components. 

The illustration depicts the process of sampling-based 

dynamic upsampling (Figure 1 Using a sample point generator, 

a sampling set (S) is created from the input features (X). The 

input features are then resampled using the grid_sample 

function, resulting in the generation of upsampled features (X'). 

The sample point generator in Dysample (Figure 2) shows 

the two techniques of creating sample points in detail: static 

range factor and dynamic range factor. 

The static range factor is defined as follows. A fixed range 

factor is paired with a linear layer and pixel shuffle to create 

an offset (O), which is then added to the original grid position 

(G) to produce a sample set (S). 

In contrast, the dynamic range factor adds a new element, a 

dynamic range factor, which is generated and then utilized to 

change the offset (O). The range factor is calculated using the 

Sigmoid function (σ). 

The enhanced network configuration is outlined below. 

In the proposed method, the traditional kernel-based 

dynamic upsampling method is replaced by a Dysample 
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upsampling technique, which utilizes point sampling to 

enhance feature alignment during the upsampling process. 

This modification reduces computational costs while 

maintaining structural integrity, particularly in low-light 

conditions. The Dysample module improves the resolution of 

fine crack details, which is crucial for detecting small-scale 

defects in underground pipeline inspections. 

The enhanced network structure incorporating the 

Dysample module is illustrated in Figure 3. This figure 

highlights the key components of the proposed upsampling 

mechanism, demonstrating how the point sampling technique 

is integrated to improve feature resolution and reduce 

computational overhead. 

 

3.2 The convolution layer SAConv replaces the original 

CRF convolution layer 

 

YOLOv8n demonstrates satisfactory performance in 

detecting conventional scale targets [18]. However, its model 

size and performance results still exhibit shortcomings when 

dealing with crack detection in underground pipelines, where 

the image brightness is low, the resolution is low, and the 

background color is monochromatic and prone to confusion. 

The objective of crack detection in underground pipelines is to 

identify a single target type, namely cracks, which may vary 

in size. Additionally, the pipeline environment is characterized 

by low light levels and a monochromatic background, which 

can potentially lead to confusion. The influence of multiple 

complex factors can readily result in the issue of leakage and 

misdetection. Accordingly, the YOLOv8n algorithm has been 

enhanced based on the YOLOv8n algorithm. The original CRF 

convolutional layer is replaced with the SAConv 

convolutional layer. This modification allows the network to 

adaptively learn from multi-scale features by applying varying 

dilation rates to the same input features, which enables the 

model to capture spatial dependencies more effectively. The 

introduction of this layer reduces the complexity of the model 

while improving its ability to process features across different 

scales, which is especially beneficial for detecting pipeline 

cracks with varying sizes and resolutions. 

The structure of the substituted network, incorporating the 

SAConv convolution layer, is illustrated in Figure 4. This 

figure demonstrates how the traditional convolution layers 

have been replaced by SAConv, which dynamically adjusts the 

receptive field to capture features from different scales. The 

flexibility of this architecture is crucial for handling diverse 

crack morphologies in low-light, complex backgrounds 

typically encountered in underground pipeline inspections. 

The fundamental concept of SAConv [19] is the application of 

varying null rates to identical input features for convolution, 

with the results of these distinct convolutions subsequently 

merged through the utilization of a bespoke switching function. 

This methodology enables the network to adapt with greater 

flexibility to features of varying scales, thereby facilitating 

more accurate object recognition and segmentation in images. 

The structure of the substituted network is illustrated below. 

 

 
 

Figure 4. Structure of the substituted network 
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Figure 5. Switch structure 

 

 
 

Figure 6. Implementation of Switchable Atrous Convolution (SAC) 

 

The architecture of SAConv comprises three principal 

components: two global context modules are situated before 

and after the SAConv component. These modules facilitate a 

more comprehensive understanding of the image content, 

thereby enabling the SAConv component to operate efficiently 

in a broader range of contexts. The introduction of additional 

space (i.e. voids) into the convolution kernel enables the model 

to expand the receptive field, thereby capturing features at 

different scales while maintaining a constant number of 

parameters. Furthermore, SAConv employs switching 

functions to combine the results of convolutions with varying 

void rates. The switching functions are spatially dependent, 

whereby each position of the feature map may have a different 

switch to control the output of SAConv. This flexibility with 

respect to the size and scale of the features is a key advantage 

of this approach. The Switchable Atrous Convolution (SAC) 

structure is illustrated in Figure 5, which demonstrates the 

process of switching between different dilation rates and how 

these features are combined. 

SAC achieves the conversion of traditional convolutional 

layers to SAConv layers by utilizing the same weights (with 

the exception of a trainable difference) for convolutional 

operations with varying nulling rates. The conversion 

mechanism comprises an average pooling layer and a 1×1 

convolutional layer, which implement the switching function. 

The switch structure is as follows: 

The following section outlines the various structural 

features that can be switched. 

1) Double Observation Mechanism: The SAC observes the 

input features on two occasions, utilizing disparate null rates. 

The same set of input features is processed by two distinct 

configurations of convolutional kernels, with each 

configuration corresponding to a specific null rate. This 

enables the capture of feature information at varying scales, 

thereby facilitating a more comprehensive understanding and 

analysis of the input data. 

2) Application of Switching Function: The outputs obtained 

from the different null rates are combined through a switching 

function. The switching function determines how the 

information from the two convolutions is selected or fused to 

generate the final output features. The double observation and 

combination strategy enables SAC to effectively handle 

complex feature patterns, thereby improving the flexibility and 

adaptability of feature extraction and enhancing the accuracy 

and efficiency in object detection and segmentation tasks. The 

implementation of Switchable Atreus Convolution (SAC) is as 

follows:  

Conversion of traditional convolutional layers to SAC: 

Each 3×3 convolutional layer in the ResNet backbone network 

is converted to SAC. This conversion enables the 

convolutional computation to switch between different null 

rates in a soft manner. 

Weight Sharing and Training Differences: SAC switches 

between different null rates, but all operations share the same 

weights with only one trainable difference. This reduces model 

complexity while maintaining flexibility. 

Global Context Module: The context module adds image-

level information to the features. The global context module 

helps the network to better understand and process the image 

as a whole, improving the quality and accuracy of feature 

extraction. 
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3.3 Switchable Atrous Convolution (SAC) implementation 

and analysis 
 

The implementation of Switchable Atrous Convolution 

(SAC) further improves feature extraction by enabling the 

network to adjust its receptive field adaptively based on the 

input features. The switching function ensures that the 

convolution operations can adapt to different scales and 

maintain the efficiency of the network. This module is crucial 

for distinguishing between cracks and background textures in 

underground pipeline images, where lighting conditions and 

textures often lead to misclassification. 

The implementation of Switchable Atrous Convolution 

(SAC) is visualized in Figure 6, which shows how the SAC 

mechanism is implemented within the network architecture. 

This figure illustrates the process of converting traditional 

convolutional layers to SAC and how the network processes 

multi-scale features effectively. 

In order to more effectively evaluate the performance of the 

proposed Dysample and SAConv modules in comparison to 

traditional upsampling and feature fusion methods, a 

comprehensive comparative analysis is conducted. The 

detailed results of this evaluation are presented and 

summarized in Tables 1 and 2. 

Compared to CARAFE [20] and fixed interpolation 

strategies, Dysample reduces computational cost while 

improving feature alignment, particularly beneficial under 

low-contrast and low-lux scenarios. 

SAConv dynamically fuses multi-scale features using 

spatially-dependent switching functions, eliminating the 

overhead of traditional CRF layers and improving 

generalization across variable crack widths and textures. 

These comparative results further validate the integration of 

Dysample and SAConv as both performance-enhancing and 

deployment-friendly solutions. 

Discussion: Comparative Strengths and Limitations of 

Proposed Modules 

To evaluate the technical strengths and potential trade-offs 

of the proposed improvements-namely the Dysample 

upsampling module and Switchable Atrous Convolution 

(SAConv)-we provide a comparative assessment against 

standard techniques. 

1. Dysample upsampling vs. traditional methods 

Dysample demonstrates clear benefits over CARAFE, 

bilinear interpolation, and nearest-neighbor approaches. As 

shown in Figure 7, it achieves the highest accuracy (mAP@0.5) 

while also incurring the lowest computational load (GFLOPs), 

making it ideal for embedded, low-power deployment 

scenarios. However, performance may degrade in highly 

uniform textures or under unclear contrast boundaries where 

sampling anchors become ambiguous. 

 

Table 1. Advantages and trade-offs of Dysample 
 

Upsampling Method 
Computational Load 

(GFLOPs) 

Accuracy 

(mAP@0.5) 

Adaptability to Low 

Light 

Suitability for Embedded 

Devices 

Dysample (proposed) 2.1 61.0% High High 

CARAFE 2.9 59.8% Medium Medium 

Bilinear Upsampling 3.3 58.3% Low Low 

Nearest Neighbor 3.1 57.6% Low High 

 

Table 2. Advantages and trade-offs of SAConv 

 
Feature Fusion Method mAP@0.5 Receptive Field Adaptation Post-Processing Required Multiscale Capability 

SAConv (proposed) 61.0% Adaptive (dilated) No Strong 

CRF Layer 59.1% Fixed Yes Medium 

ASPP 60.4% Semi-adaptive No Strong 

Standard Atrous Convolution 58.9% Fixed (d=2 or 3) No Weak 

 

 
 

Figure 7. Comparison of different upsampling methods in terms of accuracy and computational complexity 

792



 

 
 

Figure 8. Comparison of feature fusion methods by detection accuracy and complexity 

 

2. SAConv vs. existing fusion mechanisms 

SAConv dynamically fuses multi-scale features using 

spatially-dependent switching functions. Compared to CRF, 

ASPP [21], and standard Atrous convolution, it avoids heavy 

post-processing, generalizes better under low-illumination 

noise, and maintains a relatively moderate architectural 

complexity, as shown in Figure 8. Its added complexity is 

justified by its ability to flexibly adapt receptive fields based 

on content-aware modulation. 

In summary, while both modules provide measurable 

improvements over traditional components, their optimal 

performance depends on dataset properties and deployment 

constraints. These modules offer a promising direction for 

embedded, real-time crack detection in smart cities. 

 
3.4 Implementation details for reproducibility 

 
To facilitate replication and downstream optimization of the 

proposed framework, we provide detailed technical 

specifications as follows: 

1. Backbone Network Configuration 

• Base model: RT-DETR with HGNetv2 

• Input resolution: 640 × 640 pixels (zero-padded as 

needed) 

• Stages: 4 feature extraction stages with down 

sampling rates of {4×, 8×, 16×, 32×} 

• Cross-scale fusion: Combination of FPN and BiFPN-

inspired lateral connections 

• Transformer encoder: 6 layers, each with 8 attention 

heads and 512-dimensional hidden units 

2. Dysample Upsampling Module 

• Sampling strategy: Grid-based bilinear interpolation 

• Offset generation: 

• Static range factor = 0.2 × image width 

• Dynamic offset via 1×1 convolution → Sigmoid 

activation 

• Feature resolution: Upsampled 2× per level 

• Adaptive kernel re-alignment: Uses three-layer MLP 

to learn task-specific offsets 

3. SAConv Convolution Module 

• Dilated rates: {1, 3} dynamically selected per 

location 

• Switching function: 

• Composed of 3×3 convolution followed by global 

average pooling and a 1×1 projection 

• Softmax normalization applied to control 

contribution of each Atrous rate 

• Context integration: A global context module pre- 

and post-SAConv facilitates semantic aggregation, including 

global pooling and gating mechanisms 

4. Detection Head and Loss Functions 

• Detection structure: Anchor-free decoupled head 

• Losses: 

• Box regression: CIoU Loss 

• Classification: Focal Loss (α = 0.25, γ = 2) 

• Objectness: BCE With Logits Loss 

• Positive sample selection: Dynamic K-Matching as 

used in YOLOv5/6 

5. Training Settings 

• Optimizer: Stochastic Gradient Descent (SGD) 

• Momentum: 0.937 

• Weight decay: 5e-4 

• Initial learning rate: 0.01 with cosine decay 

• Batch size: 32 

• Epochs: 600 

• Warm-up: 3-epoch linear increase 

• Gradient clipping: Enabled (max norm = 5.0) 

6. Data Augmentation Strategy 

• Spatial augmentations: 

• Mosaic (p = 0.8), Random horizontal flip (p = 0.5) 

• Color space: 

• HSV jitter (hue ±0.015, saturation ±0.7, value ±0.4) 

• MixUp: Disabled to preserve low-light image 

integrity 

7. Environment Specifications 

• Hardware: NVIDIA RTX 4090, 24GB VRAM 

• Framework: PyTorch 2.0.1 with CUDA 11.8 

• OS: Windows 10×64 

• Language: Python 3.9 

These comprehensive implementation details are intended 

to ensure the reproducibility and scientific transparency of our 

proposed method. By disclosing all critical components and 

hyperparameters, we aim to facilitate further research and 

practical deployment of crack detection systems in low-

illumination underground pipeline environments. 
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4. EXPERIMENT AND RESULTS 
 

To rigorously evaluate the proposed algorithm, a 

specialized dataset of 2,700 professionally annotated low-

illumination underground pipeline images was constructed. 

The images were collected from real-world municipal 

underground inspection scenarios using a pipeline inspection 

robot equipped with a low-light CMOS imaging system [22] 

and supplementary lux-level sensors. The illumination range 

across the dataset spans from 5 to 25 lux, simulating 

challenging lighting conditions typically encountered in 

subterranean environments. 

Each image in the dataset was annotated by a team of 

domain experts with backgrounds in structural engineering 

and urban utility maintenance. The annotations were 

performed using a semi-automated labeling system that 

incorporated initial predictions from a baseline YOLOv8 

model, followed by manual refinement to ensure pixel-level 

precision. All annotations were cross-validated by a second 

annotator and reviewed through consensus when discrepancies 

arose. 

The dataset contains a single object category—pipeline 

cracks—but includes a wide variety of crack morphologies, 

such as: 

• Linear cracks: thin, elongated discontinuities often 

aligned with stress directions 

• Transverse cracks: perpendicular to the pipe's axis, 

often caused by ground movement 

• Mesh cracks: fine-grained, interconnected patterns 

due to concrete shrinkage 

• Block cracks: larger, rectangular crack segments 

formed by material fatigue 

Crack widths in the dataset range from approximately 0.3 

mm to 4.5 mm, as verified using high-precision caliper 

measurements during data acquisition. The dataset also 

accounts for environmental variability including surface 

texture noise, moisture levels, and partial occlusions, with 

SSIM (Structural Similarity Index) [23] values between cracks 

and background ranging from 0.70 to 0.85, confirming the 

visual ambiguity in low-lux scenarios. 

The dataset was divided into 1,890 training images, 540 

validation images, and 270 test images, as summarized in 

Table 3, which presents the image and instance distributions. 

All experiments were conducted using a workstation with an 

NVIDIA RTX 4090 GPU, PyTorch 2.0, CUDA 11.8, and 

Python 3.9. Training was performed for 600 epochs with 

consistent hyperparameters across comparative and ablation 

studies. 

 

Table 3. Database classification and quantity 

 

Category 
Training  

Samples 
Validation 

 Samples 
Test  

Samples 
Cracks 1,890 540 270 

 

4.1 Evaluation metrics 

 

Precision (P), Recall (R), Mean Average Precision (mAP), 

and mAP50-95 were used as evaluation criteria. A higher P 

suggests greater detection accuracy, resulting in fewer false 

positives. A higher R indicates that the system detects all 

targets as much as feasible, resulting in fewer false negatives. 

An increasing mAP value indicates greater algorithmic 

detection precision. These parameters can be determined using 

the formulas listed below [24]: 

 

TP
P

TP FP
=

+
 (2) 

 

TP
R

TP FN
=

+
 (3) 

 
1

0

( )AP P R dR=   (4) 

 

1

1 N

i

i

mAP AP
N =

=   (5) 

 

In the context of object detection, the above metrics are used 

to evaluate model performance. 

True Positives (TPs) are instances that have been 

appropriately identified as positive samples. It represents the 

model's ability to recognize positive specimens. 

False positives (FP) are negative specimens that were 

wrongly labeled as positive. In the context of autonomous 

driving, this may imply that the system incorrectly detects 

non-road things as road objects, resulting in false detections. 

False Negatives (FNs) are instances that should have been 

identified as positive but were wrongly identified as negative. 

These are actual positive samples that the model did not detect, 

suggesting missed detections. 

AP (Average Precision) is the average precision value over 

recall criteria.  

mAP (mean Average Precision): Average Correctness mean 

values across all classes. 

 

4.2 Algorithm comparison experiments 

 

The enhanced methodologies' efficacy in identifying 

subterranean pipe fissures is illustrated through the selection 

of an underground pipe crack dataset for experimental 

verification and its comparison with other prevalent target 

detection techniques in crack target visualization experiments, 

as shown in Table 4. This table compares the performance of 

various algorithms in terms of mAP50, mAP50-95, Precision 

(P), and Recall (R). Figure 9 illustrates the performance of 

each algorithm in the context of an underground pipeline. The 

red arrows in the figure demonstrate that cracks in the pipe are 

not identified in the presence of low light intensity and 

background interference. The figure demonstrates that the 

image detection algorithms SSD [25], Yolov5n, Yolov6n, 

Yolov7-tiny and Yolov8n are unable to detect the crack targets 

in situations characterized by low light intensity and a complex 

background. 

It is evident that only the algorithms that have been 

optimized for the network framework are capable of detecting 

the crack targets. As evidenced by the green arrows in the 

figure, other mainstream target detection methods exhibit a 

significant propensity for false detection in scenarios 

characterized by high levels of interference. The replacement 

of the original upsampler with Dysample and the original CRF 

convolutional layer with SAConv has resulted in a notable 

enhancement in the algorithm's capacity to detect cracks 

across a range of scales. Additionally, the background 

interference has been reduced, thereby making the algorithm 

more resilient. The enhanced method has demonstrated greater 
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accuracy in detecting crack targets, and the visualization 

experiments have substantiated its superiority in this regard, 

particularly in the context of underground pipeline detection. 

 

 
 

Figure 9. Comparison of results across models 

 

Table 4. Comparing the algorithms' performance 

 
Algorithm mAP50 mAP50-95 P% R% 

SSD 38.13 / 84.4 6.92 

Yolov5n 0.617 0.250 72.83 69.78 

Yolov6n 0.596 0.197 67.3 63.2 

Yolov7-tiny 0.654 0.226 72.28 70.87 

Yolov8n 0.599 0.231 73.14 63.47 

improved method 0.6097 0.2359 70.9 79.57 

 

4.3 Comparison of algorithm robustness 

 

The underground pipeline crack dataset is the optimal 

choice for robustness testing in this test result. The test results 

clearly show that the improved method has a significant 

optimization improvement in all key index parameters 

compared with the baseline algorithm YOLOv8n. The key 

index of accuracy P increased by 1.3%, while the key index of 

recall R increased significantly, by 7.88%. The key index of 

mAP50 increased significantly, by 7.3%. mAP50-90 increased 

by 5.9%. It also increased by 5.9% compared with other 

mainstream target detection algorithms. The key index of 

mAP50-90 increases by 5.9%. It also has clear advantages 

over other mainstream target detection algorithms. 

Experiments on the underground pipe crack target detection 

dataset prove the improved method is robust in target detection. 
 

4.4 Ablation study 
 

To ascertain the precise impact of the proposed 

improvement modules on the performance of the algorithms, 

we have conducted ablation experiments. These have involved 

embedding each improvement module into the original 

algorithm in turn, under the same experimental conditions and 

using the underground pipeline crack dataset. We have 

selected P%, recall%, mAP50, and mAP50-90 as our 

evaluation indexes to verify the effectiveness of the improved 

method. The results of the ablation experiments are shown in 

Table 5. Firstly, the original YOLOv8n algorithm is tested 

against the following benchmark values: P of 73.1%, R of 

63.47%, mAP50 of 59.9%, and mAP50-95 of 23.08%. Next, 

the point-sampling based Dysample upsampler replaces the 

original kernel-based dynamic upsampler, resulting in a 13.2% 

R improvement. The latter model replaces the original CRF 

convolutional layer with SAConv. Compared to the YOLOV8 

benchmark, each experimental result metric has risen 

significantly. Recall has improved by 16.08%, mAP50 by 

1.06%, and mAP50-95 by 0.5%. This proves that the improved 

model significantly improves the multi-scale feature 

extraction capability for crack targets. 

 

Table 5. Ablation experiment 

 
Group Yolov8n Dysample SAConv Recall mAP50 mAP50-95 P 

1 √   63.47% 59.9% 23.1% 73.1% 

2 √ √  76.96% 59.4% 22.11% 68.6% 

3 √ √ √ 79.6% 61.0% 23.6% 70.9% 

 

The ablation experiments prove that each of the improved 

modules markedly enhances the algorithm's performance, and 

they work even better in combination. These improvements 

not only bolster the algorithm's multi-scale feature extraction 

and integration capabilities, but also sharpen its focus on the 

target of cracks within the pipeline. 

The proposed algorithm demonstrated significant 

performance improvements, particularly in recall (↑16.08%) 

and mAP@0.5 (↑1.06%) compared to the baseline YOLOv8n, 

suggesting enhanced detection sensitivity and localization 
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accuracy in low-light underground environments. These 

results are not only quantitatively promising but also reflect a 

qualitative shift in the model’s ability to distinguish between 

crack features and background textures under challenging 

conditions. 

1. Performance Across Crack Types 

A qualitative review of the detection outputs reveals that the 

enhanced model performs particularly well in identifying: 

• Linear and transverse cracks: The use of the SAConv 

module, with its multiscale receptive field adaptation, 

improves the detection of elongated discontinuities, which 

typically suffer from partial occlusion or low edge contrast. 

• Mesh cracks: Despite their fine granularity and 

fragmented structure, these are better detected due to the 

Dysample upsampler, which improves feature alignment and 

resolution preservation in small-scale features. 

• Low-contrast cracks embedded in concrete textures: 

The model demonstrates resilience against grayscale similarity 

(SSIM ≈ 0.78), likely due to the integration of global context 

modules in SAConv, which guide the network towards 

semantic consistency. 

However, block cracks with irregular boundaries or 

significant occlusions remain partially challenging. While 

recall rates improved, some false positives persist where the 

crack edges fade into similar background textures. 

2. Algorithmic Contributions to Performance Gains 

The following architectural modifications underpin the 

observed gains: 

• Dysample Module: Enhances spatial granularity and 

spatial resolution alignment during upsampling, reducing the 

loss of fine crack details. 

• SAConv Module: Facilitates multiscale feature 

learning with spatially adaptive dilation, enabling better 

detection of both micro and macro-scale crack features. 

• RT-DETR Backbone with HGNetv2: Captures long-

range dependencies, especially useful in elongated structures 

like pipe cracks, which may extend beyond the receptive field 

of conventional CNNs. 

3. Areas for Future Improvement 

• Despite the promising results, several avenues remain 

for performance refinement: 

• Crack severity grading: The current framework 

focuses on binary detection. Future work could incorporate a 

regression branch to estimate crack width, depth, or severity, 

using annotated physical measurements. 

• Data augmentation under motion blur and water 

occlusion: Scenarios with flowing water or smear-induced blur 

still reduce detection confidence. Synthetic data augmentation 

using domain randomization may help improve robustness. 

• Lightweight deployment optimization: Although 

current performance is suitable for embedded GPU inference, 

further compression (e.g., quantization-aware training, 

knowledge distillation) can reduce memory footprint and 

power consumption for edge devices. 

• Temporal consistency modeling: Incorporating 

temporal information across video frames (e.g., via 

ConvLSTM or 3D CNNs [26]) could stabilize detection in 

dynamic environments, reducing false alarms due to transient 

lighting variations or sensor noise. 

 

 

5. CONCLUSION 

 

This study presents a novel crack detection framework for 

urban underground pipelines, leveraging two key modules—

Dysample and SAConv—built upon an RT-DETR-HGNetv2-

enhanced YOLOv8n architecture. The proposed method 

significantly improves recall and precision under low-light, 

texture-rich conditions, with a notable 16.08% recall gain and 

1.06% mAP@0.5 improvement compared to the baseline. 

These enhancements are attributed to adaptive multiscale 

feature learning and robust upsampling mechanisms that are 

resilient to grayscale similarity and contrast degradation. 

Given its robustness in low-illumination environments and 

real-time inference capability (58 FPS on RTX 4090), the 

algorithm is well-suited for a variety of practical applications, 

including: 

Municipal infrastructure inspection: Automated monitoring 

of sewer and drainage pipelines to detect early-stage cracks, 

thereby reducing manual inspection costs and improving 

maintenance schedules. Post-disaster pipeline assessment: 

Rapid screening of water, gas, or cable conduits following 

earthquakes, floods, or subsidence events, where structural 

damage may not be visible externally. Smart city IoT 

integration: Deployment on embedded systems within 

autonomous inspection robots, enabling real-time condition 

monitoring as part of a digital twin system. Industrial facility 

maintenance: Monitoring of in-factory piping networks in oil, 

chemical, and power plants, where internal corrosion-induced 

cracks could lead to safety hazards. 

Edge device limitations: While the algorithm is efficient on 

GPU platforms, embedded devices such as Jetson Nano or 

Raspberry Pi may require further model compression or 

pruning to meet power and memory constraints. 

Generalization under domain shift: The current dataset covers 

a specific urban underground pipeline texture domain. 

Performance may degrade when applied to different materials 

(e.g., metal vs. concrete), environmental noise, or lighting 

artifacts. Annotation cost: High-quality crack annotations are 

expensive and time-consuming, limiting dataset scalability. 

Weakly supervised or self-supervised approaches may offer 

alternative labeling strategies. Real-time occlusion: In 

dynamic environments with water flow, floating debris, or lens 

smudges, detection accuracy may decrease, necessitating 

temporal consistency modeling or filtering strategies. 

Model compression and quantization: Applying knowledge 

distillation, mixed-precision training, or neural architecture 

search (NAS) to create ultra-lightweight variants for 

deployment on low-power edge devices. Multimodal data 

fusion: Integrating thermal, acoustic, or LIDAR data with 

visual cues to improve crack detection in occluded or 

ambiguous regions. Crack severity estimation and 3D 

reconstruction: Extending the current detection system to 

estimate crack width, depth, and spatial extent, providing 

richer semantic information for maintenance decision-making. 

Continual learning and domain adaptation: Developing 

frameworks that adapt to new pipeline environments without 

retraining from scratch, thus reducing the burden of data 

recollection. Pipeline-level anomaly tracking: Incorporating 

temporal information from inspection videos to enhance 

stability and reduce false alarms using motion-aware neural 

modules (e.g., ConvLSTM, attention-based video 

transformers). 
 

 

REFERENCES  
 

[1] Tubb, R. (2017). P&GJ’s 2017 worldwide pipeline 

construction report. Pipeline & Gas Journal, 244(1): 16-

796



 

20.  

[2] Rayhana, R., Jiao, Y., Bahrami, Z., Liu, Z., Wu, A., Kong, 

X. (2021). Valve detection for autonomous water 

pipeline inspection platform. IEEE/ASME Transactions 

on Mechatronics, 27(2): 1070-1080. 

https://doi.org/10.1109/TMECH.2021.3079409 

[3] Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., 

Fieguth, P. (2015). A review on computer vision based 

defect detection and condition assessment of concrete 

and asphalt civil infrastructure. Advanced Engineering 

Informatics, 29(2): 196-210. 

https://doi.org/10.1016/j.aei.2015.01.008 

[4] Mohamad, A.J., Ali, K., Rifai, D., Salleh, Z., Othman, 

A.A.Z. (2023). Eddy current testing methods and design 

for pipeline inspection system: A review. Journal of 

Physics: Conference Series, 2467(1): 012030. 

https://doi.org/10.1088/1742-6596/2467/1/012030 

[5] Ravishankar, P. (2023). Increasing the oil and gas 

pipeline resiliency using image processing algorithms. 

Doctoral dissertation, Lamar University-Beaumont.  

[6] Mysiuk, R., Yuzevych, V., Mysiuk, I., Tyrkalo, Y., 

Pavlenchyk, A., Dalyk, V. (2023). Detection of surface 

defects inside concrete pipelines using trained model on 

JetRacer kit. In 2023 IEEE 13th International Conference 

on Electronics and Information Technologies (ELIT), 

Lviv, Ukraine, pp. 21-24. 

https://doi.org/10.1109/ELIT61488.2023.10310691 

[7] Altabey, W.A., Kouritem, S.A., Abouheaf, M.I., Nahas, 

N. (2022). A deep learning-based approach for pipeline 

cracks monitoring. In 2022 International Conference on 

Electrical, Computer, Communications and 

Mechatronics Engineering (ICECCME), Maldives, 

Maldives, pp. 1-6. 

https://doi.org/10.1109/ICECCME55909.2022.9987998 

[8] Xin, J., Zhang, W., Lu, R.K., Chen, J., Zhu, H., He, R. 

(2022). Numerical simulation of pipeline crack detection 

probe with poly-magnetic structure. Journal of Physics: 

Conference Series, 2383(1): 012031. 

https://doi.org/10.1088/1742-6596/2383/1/012031 

[9] Ibragimova, E. (2024). Design of a camera-enabled 

mobile robot for in-pipe inspection. Referred & 

Reviewed Journal, 23(5): 46.  

[10] Shah, J., El-Hawwat, S., Wang, H. (2023). Guided wave 

ultrasonic testing for crack detection in polyethylene 

pipes: laboratory experiments and numerical modeling. 

Sensors, 23(11): 5131.  

[11] Jamshidi, V. (2023). Simulation of sand particles 

detection inside a pipeline by photon radiography. 

Applied Radiation and Isotopes, 199: 110876. 

https://doi.org/10.1016/j.apradiso.2023.110876 

[12] Yang, J., Wang, W., Lin, G., Li, Q., Sun, Y., Sun, Y. 

(2019). Infrared thermal imaging-based crack detection 

using deep learning. IEEE Access, 7: 182060-182077. 

https://doi.org/10.1109/ACCESS.2019.2958264 

[13] Zolfaghari, A., Zolfaghari, A., Kolahan, F. (2018). 

Reliability and sensitivity of magnetic particle 

nondestructive testing in detecting the surface cracks of 

welded components. Nondestructive Testing and 

Evaluation, 33(3): 290-300. 

https://doi.org/10.1080/10589759.2018.1428322 

[14] Chu, Z., Jiang, Z., Mao, Z., Shen, Y., Gao, J., Dong, S. 

(2021). Low-power eddy current detection with 1-1 type 

magnetoelectric sensor for pipeline cracks monitoring. 

Sensors and Actuators A: Physical, 318: 112496. 

https://doi.org/10.1016/j.sna.2020.112496 

[15] Mazni, M., Husain, A.R., Shapiai, M.I., Ibrahim, I.S., 

Anggara, D.W., Zulkifli, R. (2024). An investigation into 

real-time surface crack classification and measurement 

for structural health monitoring using transfer learning 

convolutional neural networks and Otsu method. 

Alexandria Engineering Journal, 92: 310-320. 

https://doi.org/10.1016/j.aej.2024.02.052 

[16] Li, Y., Han, Z., Xu, H., Liu, L., Li, X., Zhang, K. (2019). 

YOLOv3-lite: A lightweight crack detection network for 

aircraft structure based on depthwise separable 

convolutions. Applied Sciences, 9(18): 3781. 

https://doi.org/10.3390/app9183781 

[17] Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Wei, 

X. (2022). YOLOv6: A single-stage object detection 

framework for industrial applications. arXiv preprint 

arXiv:2209.02976. 

https://doi.org/10.48550/arXiv.2209.02976 

[18] Wei, L., Tong, Y. (2024). Enhanced-YOLOv8: A new 

small target detection model. Digital Signal Processing, 

153: 104611. https://doi.org/10.1016/j.dsp.2024.104611 

[19] Qiao, S., Chen, L.C., Yuille, A. (2021). Detectors: 

Detecting objects with recursive feature pyramid and 

switchable atrous convolution. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, pp. 10213-10224. 

https://doi.org/10.1109/CVPR46437.2021.01008 

[20] Fu, R., Hu, Q., Dong, X., Gao, Y., Li, B., Zhong, P. 

(2024). Lighten CARAFE: Dynamic lightweight 

upsampling with guided reassemble kernels. In 

International Conference on Pattern Recognition, pp. 

383-399. https://doi.org/10.1007/978-3-031-78128-5_25 

[21] Liu, R., Tao, F., Liu, X., Na, J., Leng, H., Wu, J., Zhou, 

T. (2022). RAANet: A residual ASPP with attention 

framework for semantic segmentation of high-resolution 

remote sensing images. Remote Sensing, 14(13): 3109. 

https://doi.org/10.3390/rs14133109 

[22] Wang, F., Dai, M., Sun, Q., Ai, L. (2021). Design and 

implementation of CMOS-based low-light level night-

vision imaging system. Seventh Symposium on Novel 

Photoelectronic Detection Technology and Applications, 

11763: 1518-1529. https://doi.org/10.1117/12.2587259 

[23] Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., 

Vanneschi, L. (2022). Structural similarity index (SSIM) 

revisited: A data-driven approach. Expert Systems with 

Applications, 189: 116087. 

https://doi.org/10.1016/j.eswa.2021.116087 

[24] Mahasin, M., Dewi, I.A. (2022). Comparison of 

CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0 

backbones on YOLO v4 as object detector. International 

Journal of Engineering, Science and Information 

Technology, 2(3): 64-72. 

https://doi.org/10.52088/ijesty.v1i4.291 

[25] Sehwag, V., Chiang, M., Mittal, P. (2021). Ssd: A unified 

framework for self-supervised outlier detection. arXiv 

preprint arXiv:2103.12051. 

https://doi.org/10.48550/arXiv.2103.12051 

[26] Aravinda, C.V., Al-Shehari, T., Alsadhan, N.A., Shetty, 

S., Padmajadevi, G., Reddy, K.R. (2025). A novel hybrid 

architecture for video frame prediction: Combining 

convolutional LSTM and 3D CNN. Journal of Real-Time 

Image Processing, 22(1): 1-18. 

https://doi.org/10.1007/s11554-025-01626-w 

 

797




