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With the continuous advancement of remote sensing technology, the application of remote 

sensing images in fields such as environmental monitoring and urban planning has been 

significantly expanded. Accurate classification of remote sensing images is essential for 

effective image analysis and interpretation. However, traditional supervised classification 

methods rely heavily on large volumes of labeled data, which are often costly and difficult 

to obtain in practical scenarios. To address this challenge, unsupervised remote sensing 

image classification has attracted increasing research interest. Recently, the introduction of 

Generative Adversarial Networks (GANs) and transfer learning has provided new strategies 

and technical pathways for unsupervised classification tasks. GANs enhance feature 

representation by generating images that closely resemble the original data, while transfer 

learning enables existing knowledge to be leveraged for improved classification 

performance in target tasks. Although notable progress has been achieved, existing 

unsupervised classification methods still face considerable challenges. Traditional 

unsupervised learning approaches often exhibit low classification accuracy under complex 

environmental conditions, particularly in feature extraction and noise resistance. While deep 

learning-based methods have improved classification performance to some extent, their 

effectiveness remains limited by factors such as training data volume and network 

architecture design. Therefore, enhancing the classification accuracy and robustness of 

remote sensing images by combining the strengths of GANs and transfer learning remains a 

critical research problem. In this study, an unsupervised remote sensing image classification 

method based on GANs and transfer learning was proposed. Initially, remote sensing images 

were augmented using GANs to generate richer feature representations, thereby improving 

the effectiveness of subsequent classification. Subsequently, an unsupervised classification 

method that incorporates transfer learning was introduced, enabling the utilization of 

existing model knowledge to further enhance classification accuracy. Experimental results 

demonstrate that the proposed method achieved superior classification accuracy and 

robustness in remote sensing image classification tasks, offering a promising new direction 

for the development of unsupervised remote sensing image classification techniques. 
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1. INTRODUCTION

With the rapid development of remote sensing technology, 

the application of remote sensing images has been 

significantly expanded across various fields, including 

environmental monitoring, urban planning, and agricultural 

management [1-4]. The classification of remote sensing 

images is considered a critical component of remote sensing 

image processing [5, 6]. Traditional supervised classification 

methods typically rely on large volumes of labeled data; 

however, the labeling process is labor-intensive and incurs 

high costs [7, 8]. In practical applications, the difficulty of 

obtaining large-scale annotated datasets has driven the 

growing research interest in unsupervised remote sensing 

image classification, establishing it as a significant direction 

in the field of remote sensing image analysis. 

Unsupervised learning methods have enabled the learning 

of features from data autonomously, thereby avoiding the 

complexities associated with manual annotation and offering 

greater flexibility in addressing large-scale data processing 

challenges [9, 10]. In particular, the introduction of GANs and 

transfer learning has substantially promoted the application of 

unsupervised learning in remote sensing image classification. 

GANs have made it possible to enhance remote sensing 

images effectively by generating realistic images without the 

need for labeled data, thereby improving feature 

representation capabilities [11, 12]. Transfer learning has 

further facilitated the application of existing knowledge and 

models to achieve improved classification performance on 

target tasks [13]. These technologies have created new 
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opportunities and posed new challenges for the classification 

of remote sensing images. 

Despite the significant progress achieved by existing 

unsupervised learning-based remote sensing image 

classification methods, several limitations remain. Many 

approaches continue to encounter challenges in terms of 

classification accuracy and the effectiveness of feature 

extraction [9, 14, 15], particularly under complex 

environmental conditions, where the diversity and complexity 

of images hinder further improvements in classification 

performance. For example, the unsupervised method based on 

feature learning proposed by Li et al. [16] often relies on 

manually designed features, rendering it ineffective in 

adapting to the varied backgrounds and noise present in remote 

sensing images. Although the unsupervised method based on 

deep learning described by Suryawati et al. [17] enables end-

to-end learning through neural networks, its performance 

remains constrained by the volume of training data and the 

limitations of network architecture, making it difficult to 

address small-sample problems effectively. Furthermore, how 

to combine the advantages of GANs and transfer learning to 

further enhance classification accuracy and image 

enhancement remains an open and critical challenge in current 

research. 

In this study, an unsupervised remote sensing image 

classification approach based on the integration of GANs and 

transfer learning was proposed. First, to address the challenge 

of preliminary image enhancement, an unsupervised remote 

sensing image enhancement method based on GANs was 

introduced, capable of generating clearer and richer feature 

representations to provide improved data support for 

subsequent classification tasks. Subsequently, an 

unsupervised classification method combining GANs and 

transfer learning was proposed, in which the knowledge of 

existing models is transferred to strengthen the classification 

network's performance, and GANs were further employed to 

optimize the classification results. Experimental validation 

demonstrates that the proposed method achieved superior 

performance in both classification accuracy and robustness for 

remote sensing image classification tasks. This research not 

only provides a novel perspective for remote sensing image 

classification technology but also lays a foundation for the 

future development of advanced remote sensing image 

processing techniques. 

2. GAN-BASED UNSUPERVISED ENHANCEMENT

FOR REMOTE SENSING IMAGES

2.1 Assessing the importance of samples in model training 

Remote sensing images are typically characterized by 

complex spectral features, varying spatial resolutions, and 

significant background variations. During the training process, 

certain regions or classes of samples may dominate, 

potentially leading to model bias toward specific categories. 

Analyzing the importance of samples to the model training 

process is therefore crucial for identifying those samples that 

contribute significantly to the learning of the classifier, as well 

as those that exert minimal influence or introduce noise. 

To quantify the influence of each sample during training, 

the contribution of individual samples to the neural network's 

loss function must be evaluated. Given the high dimensionality 

and the complex spatial and spectral information inherent in 

remote sensing images, some samples may exhibit strong 

feature representations during training, while others may have 

limited impact due to the presence of noise, blurring, or low-

quality regions. In order to assess sample importance more 

precisely, a Model Correlation Index (MCI) was introduced. 

Samples with high MCI values are generally those that contain 

distinctive and highly discriminative features, effectively 

reflecting the differences among various land cover categories 

in remote sensing imagery. 

Specifically, the training sample set is denoted as 

T={(au,bu)}2
u=1, where the neural network output in the form 

of a probability vector is represented by o(q,a), the weights at 

the s-th iteration are denoted by Qs, and the loss function is 

indicated by loss(.). The gradient of the loss function with 

respect to the weights is represented by hs(a,b). The variation 

of the loss function with training iterations can thus be 

expressed as follows: 
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If any sample (ak,bk) is removed from T, the contribution of 

the training sample set to the variation in the loss function can 

be expressed as: 
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Assuming that the expected value of the gradient norm is 

denoted by Rqs||hs(a,b)||2, and substituting this into the 

activation function and error formulation of the neural network, 

the MCI can be represented as follows: 

( )
2

,sMCI R o q a b= − (3) 

MCI characterizes the influence of each sample on the 

parameter updates during the model training process. To 

facilitate a unified evaluation, the MCI values were 

normalized into a range of [0 100] for statistical analysis. The 

specific transformation formula is given by: 
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2.2 Assessing the correlation between samples and the 

classification boundary 

In remote sensing image classification, the classification 

boundary is typically defined by decision boundaries in a high-

dimensional feature space. In unsupervised learning, the 

absence of labeled data often results in unclear classification 
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boundaries, making it difficult to accurately separate different 

image regions. Therefore, assessing the correlation between 

each sample and the classification boundary is critical for 

identifying samples located near the classification boundary. 

Figure 1. Illustration of samples and the classification boundary 

Figure 1 illustrates the relationship between samples and the 

classification boundary. As shown in the figure, samples 

situated close to the boundary generally exert a significant 

influence on classifier training, as they represent regions with 

the highest uncertainty in classification decisions. The 

accuracy of the classifier is highly sensitive to these samples. 

By enhancing the representation of these boundary samples or 

applying appropriate weighting during training, the 

classification capability of the model near boundary regions 

can be substantially improved, thereby enhancing overall 

classification performance. Specifically, a Boundary 

Correlation Index (BCI) was introduced to describe the 

relationship between each sample and the classification 

boundary. Let the system's classification decision criteria be 

denoted by |UST|, then the following formulation is given: 
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For consistency in evaluation, the BCI values were 

normalized into the [0 100] range for statistical analysis. The 

specific transformation formula is provided as follows: 
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2.3 Sample importance index (SII) 

The calculation of the SII enables the contribution of each 

sample to classifier training to be quantified, allowing for a 

more precise identification of samples that exert a significant 

influence on the model. For instance, certain typical samples 

in remote sensing images, such as specific land cover types, 

may possess distinctive spectral or morphological features that 

render them highly important during training. In contrast, 

noisy or atypical samples may exert minimal impact on the 

learning process. By computing the SII, the model is capable 

of identifying the most representative and most challenging 

samples, thereby focusing on enhancing the learning of these 

samples.  

Based on the preceding analysis, it can be observed that the 

numerical distributions of the MCI and the BCI differ, 

particularly in regions near the classification boundary and the 

physical boundary. To comprehensively assess the 

contribution of samples to model training, an SII was defined 

by integrating information from both MCI and BCI. 

Specifically, MCI reflects the impact of a sample on the loss 

function, highlighting samples that significantly influence 

model learning, while BCI emphasizes the proximity of a 

sample to the actual physical boundary. Especially in remote 

sensing images, land cover boundaries are often key areas in 

classification. By combining MCI and BCI, SII enables the 

identification of key samples that are both highly relevant to 

the model and located near physical boundaries, thus 

providing a prioritized basis for image enhancement. The 

specific calculation formula is given by: 
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2.4 Key sample enhancement based on GANs 

The fundamental principle of preliminary unsupervised 

remote sensing image enhancement based on GANs is to 

generate additional synthetic samples that closely resemble the 

features of key samples, thereby expanding the training dataset 

and particularly enhancing those samples with high 

importance indices. The overall process is illustrated in Figure 

2. In unsupervised remote sensing image classification, certain

land cover boundary regions often exhibit ambiguous features,

making it difficult for the training process to adequately learn

and distinguish these areas. The generator within the GANs

continuously learns from real samples to produce synthetic

samples that closely approximate the original images in terms

of detail, texture, and structure. These synthetic samples enrich

the diversity of the training data provided to the model. The

discriminator is responsible for distinguishing between real

and generated samples and, through adversarial learning with

the generator, promotes the continuous optimization of the

generator to produce increasingly realistic outputs. This

dynamic adversarial process enables the generator to produce

remote sensing images that closely resemble real data,

particularly in regions with complex boundaries or ambiguous

features, thereby supplying more accurate and representative
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samples for subsequent classification tasks. Specifically, let 

the discriminator be denoted by F, the generator by H, the real 

sample data distribution by ODA, and the noise data distribution 

by oNO, with the noise data serving as input to the generator H. 

The objective function of the GANs can thus be expressed as: 
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Figure 2. Flowchart of the key sample enhancement scheme 

based on GANs 

3. UNSUPERVISED REMOTE SENSING 

CLASSIFICATION VIA GAN-TRANSFER LEARNING 

3.1 Model architecture 

In the proposed unsupervised remote sensing image 

classification model integrating GANs and transfer learning, 

the GAN module comprises a feature generator and a feature 

discriminator. The generator learns from real remote sensing 

images to produce synthetic images with similar attributes, 

while the discriminator is tasked with distinguishing between 

generated and real images. Through adversarial training, the 

generator is continuously optimized to produce increasingly 

realistic remote sensing images. During this process, the 

feature generator not only creates images beneficial for 

classification but also enhances complex land cover 

boundaries or transition zones within remote sensing images, 

particularly in regions that are ambiguous or difficult to 

identify. A general feature extractor and a specific feature 

extractor, based on the Visual Geometry Group (VGG)16 

model, are responsible for in-depth feature extraction from 

target domain images. The general feature extractor captures 

basic features such as texture and shape, whereas the specific 

feature extractor focuses on detailed features within remote 

sensing images, including land cover types and boundary 

information. 

The introduction of the transfer learning module, 

particularly the knowledge transfer between the source and 

target domains, constitutes a core component of the model. 

The source domain utilizes a large-scale image dataset to pre-

train the VGG16 model, during which the general feature 

extraction module, specific feature extraction module, and 

classification module undergo preliminary training. The task 

in the source domain involves learning a classification 

function from the source domain samples to provide 

foundational knowledge support for the target domain. In the 

target domain, transfer learning enables the model to fine-tune 

itself by leveraging the knowledge acquired from the source 

domain, thereby improving classification performance. 

During learning in the target domain, the feature extractor and 

classifier of the VGG16 model integrate the generated image 

features and transferred knowledge to facilitate the 

identification of land cover types within remote sensing 

images. Particularly in the unsupervised learning setting, 

where target domain remote sensing images typically lack 

labels, the transfer learning module plays a critical role by 

effectively transferring deep features learned from the source 

domain to the target domain, thereby enhancing the classifier's 

recognition capability. The model architecture is shown in 

Figure 3. 

Figure 3. Architecture of the unsupervised remote sensing 

image classification model combining GANs and transfer 

learning 

In the unsupervised remote sensing image classification 

model, the primary objective of the feature generator is to 

produce high-quality synthetic feature maps for evaluation by 

the feature discriminator. The inputs to the feature generator 

include random noise sampled from a uniform distribution and 

one-hot encoded class labels. The random noise introduces 

diversity, ensuring sufficient variability in the generated 

features, while the one-hot encoding provides category-

specific information to guide the generation of discriminative 

synthetic samples across different classes. These inputs are 

concatenated and passed through a fully connected layer and a 

reshaping layer to generate 512 small feature maps of size 4×4. 

These small feature maps pass through a series of transposed 

convolutional layers, batch normalization layers, and 

activation layers, gradually increasing in spatial size while 

reducing the number of channels, eventually producing feature 
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maps of size 64×64 with 128 channels. For unsupervised 

remote sensing images, this generator design enables the 

learning of not only basic textures and shapes but also complex 

land cover boundaries and transitional features. Particularly in 

regions with ambiguous or difficult-to-classify land features, 

the generator enhances the representation, providing richer 

training samples for subsequent classification tasks. 

The feature discriminator is designed to distinguish whether 

the input feature maps were generated by the feature generator 

or extracted from real remote sensing images. Its input consists 

of tensors with a size of 64×64 and 128 channels, identical to 

the output of the feature generator. The discriminator is 

responsible for extracting semantic information from the 

feature maps through convolutional layers, batch 

normalization layers, and activation layers, followed by fully 

connected layers that output a scalar as the discrimination 

score. This score represents the discriminator's judgment on 

whether the input features are true features. A higher score 

indicates a greater likelihood that the input features are real, 

while a lower score suggests that the features are more likely 

to have been generated. In the context of unsupervised remote 

sensing image classification, where land cover boundaries and 

transitional zones are often blurred and difficult to distinguish, 

the discriminator is progressively optimized during training to 

enhance its sensitivity to these complex regions, thereby 

encouraging the generator to produce more refined land cover 

boundary features. 

The general feature extractor is designed to extract 

fundamental features from the input real remote sensing 

images to assist in classification tasks. This extractor employs 

the first half of the VGG16 network architecture, consisting of 

four convolutional layers and corresponding max pooling 

layers, to extract low-level features such as textures, edges, 

and shapes from 256×256 three-channel color images. Given 

that remote sensing images typically contain abundant land 

cover information and complex background noise, the general 

feature extractor not only captures the basic structural 

characteristics of land objects but also assists the model in 

identifying regional differences and boundaries between 

different land cover types. By extracting these low-level 

features, the model can provide inputs with higher 

discriminative potential for the subsequent specific feature 

extractor, facilitating the further extraction of classification-

relevant features. Ultimately, the output of the general feature 

extractor is feature maps of size 64×64 with 128 channels, 

which are used for subsequent feature processing and 

classification tasks. 

The specific feature extractor is designed to extract higher-

level features that are more classification-focused from the 

real features generated by the general feature extractor or the 

synthetic features produced by the GAN. This module inherits 

the latter half of the VGG16 architecture, comprising nine 

convolutional layers and corresponding max-pooling layers, 

and processes the lower-level features through deeper feature 

extraction. The input to the specific feature extractor consists 

of feature maps of size 64×64 with 128 channels, which are 

progressively processed to reduce the spatial dimensions to 

8×8 while increasing the number of channels to 512. This 

design enables the specific feature extractor to deeply mine 

complex details in remote sensing images, such as the textural 

features of specific land cover types, inter-object relationships, 

and boundary features. In unsupervised remote sensing image 

classification, the specific feature extractor must not only 

process geometric and textural information but also address 

regions that are difficult to classify due to noise or occlusion, 

thereby providing high-quality inputs for subsequent 

classification tasks. 

The feature classifier is responsible for classifying the high-

level semantic features extracted by the specific feature 

extractor. Within the unsupervised learning framework, the 

role of the feature classifier is to recognize the categories of 

remote sensing images and accomplish land cover 

classification. The classifier adopts the classification module 

of the VGG16 model, which includes the final three fully 

connected layers, with appropriate parameter adjustments to 

ensure compatibility with remote sensing image features. 

Specifically, the number of neurons in the final fully 

connected layer is set to match the number of classes in the 

dataset, and activation is performed using a softmax function 

to output the probability distribution over the classes. In the 

context of unsupervised remote sensing images, the feature 

classifier determines the category of an image based on the 

deep semantic features obtained from the specific feature 

extractor. Given the complexity of land cover types and the 

broad spatial distribution often observed in remote sensing 

images, the classifier must possess strong discriminative 

capabilities to distinguish subtle land cover differences and 

accurately classify images from the target domain. By 

combining the features learned from the source domain with 

the specific features of the target domain, the feature classifier 

effectively performs land cover classification in the absence of 

labels, ultimately achieving the objective of unsupervised 

remote sensing image classification. 

In the proposed unsupervised remote sensing image 

classification model, the structures of the target domain 

general feature extractor, target domain specific feature 

extractor, and target domain feature classifier are identical to 

those of the general feature extractor, specific feature extractor, 

and feature classifier of the overall model. However, 

differences exist in the sources of their parameters and their 

training approaches. The target domain general feature 

extractor adopts parameters from the pre-trained VGG16 

model on the source domain through parameter sharing. This 

allows the target domain general feature extractor to leverage 

the feature extraction capabilities learned from the source 

domain, thereby facilitating rapid adaptation to the feature 

characteristics of remote sensing images in the target domain. 

Through this approach, the target domain general feature 

extractor can effectively extract low-level features such as 

textures, shapes, and boundary information from target 

domain remote sensing images, providing a solid foundation 

for subsequent classification tasks. In contrast, the general 

feature extractor of the model is trained from scratch without 

loading the pre-trained parameters from the source domain, 

which may result in the learning of more basic features in the 

target domain and a lack of utilization of source domain prior 

knowledge. Moreover, differences also exist in the training of 

the parameters for the target domain specific feature extractor 

and the target domain feature classifier. The target domain 

specific feature extractor obtains its parameters through fine-

tuning based on the pre-trained VGG16 model from the source 

domain. This fine-tuning enables slight adjustments to the 

source domain model to better fit the feature characteristics of 

the target domain remote sensing images. Through fine-tuning, 

the target domain specific feature extractor can capture more 

task-relevant features, particularly those related to complex 

land cover boundaries, transitional zones, and detailed land 

cover types in remote sensing images. In contrast, the specific 
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feature extractor of the model is entirely trained from scratch, 

without utilizing any pre-trained information from the source 

domain, which may lead to lower efficiency in feature 

extraction, especially when the amount of target domain data 

is limited. The target domain feature classifier acquires its 

parameters through parameter replacement, based on the 

VGG16 model pre-trained on the source domain. This means 

that the classification capability trained on the source domain 

can be directly adopted, with only the parameters of the final 

fully connected layer replaced to adapt to the class labels of 

the target domain. By comparison, the model’s feature 

classifier does not utilize pre-trained parameters from the 

source domain and therefore relies entirely on learning from 

the target domain data. This reliance may impose greater 

challenges on the training process and classification accuracy 

under unsupervised learning conditions. 

In the model, the source domain general feature extraction 

module, source domain specific feature extraction module, and 

source domain classification module are designed to fully 

leverage the pre-trained parameters from the source domain to 

enhance the feature extraction and classification capabilities of 

the target domain model. The source domain general feature 

extraction module shares the same structure as the target 

domain general feature extractor, both adopting the first half 

of the VGG16 model, which includes four convolutional 

layers and corresponding max-pooling layers. Through 

parameter sharing, the pre-trained network parameters from 

the source domain are directly copied into the target domain 

general feature extractor, and these parameters are kept frozen 

during training. This design ensures that the target domain 

general feature extractor can fully utilize the low-level feature 

extraction capabilities learned from the large-scale labeled 

dataset of the source domain, thereby effectively extracting 

basic features such as textures, edges, and shapes from target 

domain remote sensing images. Similarly, the source domain 

specific feature extraction module shares an identical structure 

with the target domain specific feature extractor, both based 

on the latter half of the VGG16 model, which consists of nine 

convolutional layers and corresponding max-pooling layers. 

However, unlike the general feature extraction module, the 

specific feature extraction module adopts a fine-tuning-based 

transfer learning strategy. The network parameters of the 

source domain specific feature extraction module are copied 

to the target domain specific feature extractor, and these 

parameters are allowed to be updated during training on the 

target domain. Through this approach, the specific feature 

extractor can be further adjusted and optimized based on the 

pre-trained parameters, better adapting to the feature 

characteristics of target domain remote sensing images. 

Additionally, although the source domain classification 

module and the target domain feature classifier differ 

structurally, the latter can use the classification capability of 

the source domain model through parameter replacement. By 

replacing the parameters of the final fully connected layer, the 

target domain feature classifier can be adapted to the 

classification tasks of the small-scale dataset in the target 

domain. 

3.2 Loss function 

In the model, the design principle of the feature generator 

follows that of a classical GAN, with the core objective of 

generating realistic synthetic features that deceive the feature 

discriminator, thereby promoting the learning of more 

discriminative and representative features for remote sensing 

images. Specifically, the input to the feature generator consists 

of a noise vector c sampled from a uniform distribution Oc and 

a class label bc. These inputs are transformed by the feature 

generator H into synthetic feature vectors. To achieve the 

objective of making the feature discriminator F unable to 

distinguish between real and synthetic features during training, 

a negative log-likelihood loss was employed for the feature 

generator’s loss function. This encourages the generation of 

increasingly realistic synthetic features such that the feature 

discriminator assigns high scores to them, as if they were 

extracted from real remote sensing images. The loss function 

for the feature generator is expressed as: 

( )( )~ ,
cH c O zM R F H c b = −   (9) 

The design of the feature discriminator's loss function aims 

to distinguish between real features extracted from remote 

sensing images and synthetic features generated by the feature 

generator, thereby driving the generation of more realistic and 

high-quality features. The feature discriminator's goal is to 

correctly classify the authenticity of the input features by 

assigning high scores to real features and low scores to 

synthetic ones. The loss function for the feature discriminator 

consists of three components. The first term, structurally 

similar to the feature generator’s loss function, uses a negative 

log-likelihood formulation to maximize the ability to 

distinguish real from synthetic features during training. Given 

the high diversity in land cover types, textures, shapes, and 

spectral characteristics in remote sensing images, the feature 

discriminator must effectively capture these complex feature 

differences to successfully distinguish between real and 

synthetic features. The second and third terms of the loss 

function correspond to the classification of real image samples 

and the application of a gradient penalty, respectively. In the 

second term, A represents real image samples drawn from the 

real data distribution ODA. The negative sign indicates that the 

feature discriminator should assign higher scores to real 

features during training, thereby strengthening its ability to 

recognize features from real remote sensing images. This 

component enhances the model's understanding of target 

domain features, particularly under unsupervised learning 

conditions, where it enables effective learning of critical 

feature information from remote sensing images. The third 

term introduces a gradient penalty coefficient, designed to 

constrain the gradient of the discriminator with respect to the 

input features, ensuring that the gradient norm is close to one. 

This mechanism is intended to prevent issues such as gradient 

vanishing or explosion, which may lead to instability during 

the training process of GANs, affecting the model’s 

convergence. 
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In the model, the design principle of the target domain 

feature classifier is to accurately predict the category of the 

input remote sensing image, thereby achieving efficient 

classification. The loss function for the target domain feature 

classifier is based on the cross-entropy loss, aiming to 

minimize the discrepancy between the predicted and actual 
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categories. Specifically, the input to the target domain feature 

classifier consists of the specific features d extracted by the 

target domain specific feature extractor. These features are 

classified by the feature classifier Z, and the cross-entropy loss 

is computed between the predictions and the true labels. The 

cross-entropy loss function MZ effectively measures the 

divergence between the predicted probability distribution and 

the actual class distribution, thereby guiding the model to 

adjust its parameters during training and improve 

classification accuracy. Due to the complex and diverse 

information contained in remote sensing images, such as 

varying land cover types, intricate textures, and spectral 

features, the classification model is required to possess strong 

feature extraction and discrimination capabilities. By 

employing the cross-entropy loss, the target domain feature 

classifier is continuously optimized during training to better 

capture these complex features and accurately classify remote 

sensing images into their respective categories. Assuming that 

the loss function of the target domain specific feature extractor 

is denoted by Mt, and the loss function of the target domain 

feature classifier is denoted by MZ, it leads to the following 

expression: 

( )( )~ log
DAT Z a O zM M R b Z T d = = −  (11)

In the model, a second loss function for the feature generator 

is designed not only to ensure that the generated synthetic 

features are realistic enough to confuse the feature 

discriminator but also to guarantee that these synthetic features 

can be correctly classified by the target domain feature 

classifier. The core objective of this design is to align the 

category information of synthetic features with that of real 

features, thereby minimizing the category discrepancy 

between synthetic and real features. The second loss function 

of the feature generator, MH2, is optimized by concatenating 

real features and synthetic features. Specifically, after 

concatenation, the combined features are input into the target 

domain feature classifier to compute the classification results, 

and the cross-entropy loss between the classifier’s output and 

the true labels is computed. Assuming that the concatenated 

features are denoted as d
⌒
 and the mathematical expectation is

represented by R, it leads to the following expression: 

( )( )2
ˆlogH zM R b Z T d = −

  
(12) 

The feature generator provides additional training data for 

the target domain specific feature extractor and the feature 

classifier by generating realistic synthetic features. These 

synthetic features are concatenated with real features to form 

new training samples. The second loss function of the target 

domain specific feature extractor comprises three components: 

the first focuses on the classification loss for synthetic features, 

the second addresses the classification loss for real features, 

and the third concerns the predicted classification loss for 

concatenated features. The combination of these three losses 

ensures that the target domain specific feature extractor is 

capable not only of extracting features from real images but 

also of effectively handling generated synthetic features. As a 

result, the feature extractor becomes more robust and is able 

to accurately extract target domain-specific features even 

under interference from various types of image features. In the 

context of unsupervised remote sensing image classification, 

such a data augmentation mechanism is particularly critical, as 

remote sensing images often contain complex textures, shapes, 

and spectral information. Introducing synthetic features into 

the training process significantly enhances the model's ability 

to learn these complex characteristics. The second loss 

function of the target domain feature classifier is closely tied 

to that of the loss function of the target domain specific feature 

extractor, with the aim of strengthening the classification 

ability by incorporating synthetic features.  

Specifically, the target domain feature classifier evaluates 

the classification results for synthetic features, real features, 

and concatenated features, computing the cross-entropy loss 

between the predicted outputs and the true class labels. The 

design principle behind these three losses is to ensure that the 

classifier can effectively distinguish among different feature 

categories, particularly under unsupervised learning 

conditions. By introducing synthetic features, the classifier’s 

discrimination ability for specific categories is enhanced. 

Furthermore, weight coefficients are assigned to the three 

losses to balance their contributions, adjusting the impact of 

real features, synthetic features, and concatenated features 

during classifier training. This design not only strengthens the 

target domain feature classifier’s ability to learn remote 

sensing image categories but also mitigates the potential 

negative effects of synthetic features on classification results, 

ensuring high classification accuracy even in a mixed 

environment of real and synthetic data. Ultimately, through the 

optimization of the loss functions for the target domain 

specific feature extractor and feature classifier, improved 

classification performance and generalization capability are 

achieved in the unsupervised remote sensing image 

classification task. Assuming that the concatenation of 

synthetic and real features is denoted by d
⌒
, the real features

by d, the synthetic features by d*, and the feature concatenation 

operation by ⊕, and that the corresponding loss weights are 

represented by ε1, ε2, and ε3, the second loss functions of the 

target domain specific feature extractor and the target domain 

feature classifier, denoted by MT2 and MZ2, are formulated as: 

( )( )( )

( )( )( )

( )( )

2 2 1 ~

2 ~

3 ~

log ,

log

log

c

DA

T Z c O z z

a O z

zd d

M M R b Z T H c b

R b Z T E a

R b Z T d







 = = −
 

 + −
 

 + −
 

(13) 

3.3 Training process 

The training process for the unsupervised remote sensing 

image classification model, which integrates GANs and 

transfer learning, is designed to progressively enhance the 

classification performance on the target domain through the 

alternating training of the feature generator, feature 

discriminator, target domain specific feature extractor, and 

target domain feature classifier, particularly under conditions 

where labeled data are scarce. The training process comprises 

multiple stages, each aimed at optimizing the relationship 

between the generated synthetic features and the real features, 

while ensuring that the final model can accurately classify 

different types of remote sensing images. At the beginning of 

training, the network parameters of the feature generator and 

feature discriminator were initialized. Subsequently, by 

applying transfer learning, the weights of the source domain 

general feature extraction module were transferred to the 
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target domain general feature extractor, and the weights of the 

source domain specific feature extraction module were 

transferred to the target domain specific feature extractor. In 

the initial phase, the feature generator was tasked with 

producing synthetic features, while the target domain general 

feature extractor extracted real features from target domain 

images. The feature discriminator was then trained using both 

real and synthetic features to enable it to distinguish between 

them during training. Initially, the feature discriminator 

possessed only limited discriminative capability; however, 

through continuous training and optimization, its ability to 

distinguish real from synthetic features was gradually 

improved. 

As training progresses, the weights of the feature 

discriminator were fixed, and the subsequent stage focused on 

training the feature generator to produce increasingly realistic 

synthetic features. During this stage, the feature generator was 

optimized to learn how to generate synthetic features from 

random noise inputs that are sufficiently realistic to pass the 

feature discriminator’s judgment. Meanwhile, the target 

domain general feature extractor continued to extract real 

features, and the target domain specific feature extractor and 

target domain feature classifier were trained to ensure correct 

classification of the extracted real features. 

Subsequently, the focus of training was shifted toward 

further improving the feature generator. After fixing the 

weights of the target domain feature classifier, the feature 

generator was required not only to produce realistic synthetic 

features but also to ensure that these synthetic features 

conform to the category distribution of the target domain. 

Through joint training with real features, synthetic features, 

and corresponding category labels, the feature generator was 

gradually optimized to produce synthetic data that match the 

characteristic attributes of the target classes. 

In the later stages of training, the parameters of the feature 

generator were periodically fixed after a certain number of 

iterations. The synthetic features generated by the feature 

generator, together with the real features extracted by the 

target domain general feature extractor, were then used to train 

the target domain specific feature extractor and the target 

domain feature classifier. The objective of this stage is to 

ensure that the target domain specific feature extractor and 

classifier are capable not only of correctly classifying real 

features but also of accurately handling synthetic features. 

This process enhances the robustness and classification 

accuracy of the classifier. By continuously repeating these 

training steps, the model progressively improved classification 

accuracy in the unsupervised remote sensing image 

classification task, ultimately achieving efficient and accurate 

classification performance even in the absence of labeled data. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

As shown in Table 1, the classification results on the test set 

demonstrate that, for the vegetation class, the baseline VGG16 

achieved an accuracy of 0.7652, which was improved to 

0.7785 after geometric augmentation. VGG16-Transformer 

achieved 0.8125, and VGG16+Squeeze-and-Excitation (SE) 

further increased performance to 0.9632. The proposed model 

achieved the highest performance at 0.9751. For the water 

body class, the baseline VGG16 and the geometrically 

augmented VGG16 both achieved 0.4236, while VGG16-

Transformer improved to 0.4426. VGG16+SE showed a 

substantial improvement to 0.7541, and the proposed model 

achieved the best result of 0.8562. In the artificial surface class, 

the baseline VGG16 achieved 0.1236, which slightly 

decreased to 0.1126 after geometric augmentation. VGG16-

Transformer improved to 0.1625, and VGG16+SE reached 

0.3326. The proposed model significantly outperformed all 

others, achieving 0.4236. It can be observed that the proposed 

model attained the best performance across all three land cover 

classes, while the other improved models also achieved 

varying degrees of enhancement compared to the baseline. The 

experimental results demonstrate that the unsupervised remote 

sensing image classification method, which combines GAN-

based image enhancement with transfer learning, is highly 

effective. The GAN-based image enhancement method 

provided higher-quality training data for classification. The 

classification method integrating transfer learning with GANs 

enhanced the network’s representational capability through 

knowledge transfer, and the results were optimized through 

GANs. This enabled the proposed model to outperform all 

comparative models in the classification of vegetation, water 

bodies, and artificial surfaces. Although VGG16+SE 

demonstrated the beneficial effect of feature enhancement, the 

proposed model, by leveraging both the data augmentation 

advantages of GANs and the knowledge transfer capabilities 

of transfer learning, achieved superior classification 

performance, validating the effectiveness and advancement of 

the proposed approach in unsupervised remote sensing image 

classification. 

Table 1. Summary of unsupervised remote sensing image classification results on the test set 

VGG16 

Dataset 
Baseline VGG16 Geometric Augmentation VGG16 VGG16-Transformer VGG16+SE Proposed Model 

Vegetation class 0.7652 0.7785 0.8125 0.9632 0.9751 

Water body class 0.4236 0.4236 0.4426 0.7541 0.8562 

Artificial surface class 0.1236 0.1126 0.1625 0.3326 0.4236 

As shown in the curves of Figure 4, the training set loss 

(blue line) for the vegetation and water body classes exhibited 

a clear decreasing trend with an increasing number of training 

epochs, while the test set loss (red line), although fluctuating, 

also showed an overall gradual decline. For the artificial 

surface class, the training set loss decreased rapidly during the 

early stages, and the test set loss, after a brief decline, tended 

to stabilize. These observations indicate that, as training 

progressed, the model’s fitting capability for the classification 

tasks across vegetation, water body, and artificial surface 

classes was continuously enhanced, and a certain degree of 

generalization ability was also demonstrated on the test data. 

Despite fluctuations during training, the overall trend in loss 

function values reflected continuous optimization. The results 

suggest that the proposed unsupervised remote sensing image 

enhancement method based on GANs effectively provided 

higher-quality data for the classification tasks, enabling the 

model to learn features more efficiently during training. The 
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continuous decrease in training set loss demonstrated the 

model’s adaptability to the enhanced data. Furthermore, the 

integration of transfer learning with GANs optimized the 

classification network. As reflected in the test set loss trends, 

under unsupervised conditions, the model was able to 

gradually enhance classification performance across different 

land cover classes by leveraging both transferred knowledge 

and the optimization capabilities of GANs. 

Figure 5 presents the variation in classification accuracy of 

unsupervised remote sensing image samples with respect to 

training epochs. For the vegetation and water body classes, the 

training set accuracy (blue line) continuously increased with 

additional training, rising from near zero to nearly one. 

Although the test set accuracy (red line) exhibited fluctuations, 

an overall upward trend was observed. For the artificial 

surface class, the training set accuracy rose rapidly during the 

early stages, while the test set accuracy experienced a 

significant initial improvement and then remained relatively 

stable, fluctuating between 0.6 and 0.8. These results indicate 

that, as the number of training epochs increased, the model's 

fitting capability on the training data was progressively 

enhanced, while a certain degree of generalization ability was 

also demonstrated on the test data. Despite the presence of 

fluctuations, the overall classification accuracy exhibited a 

positive optimization trend. Experimental results confirm that 

the unsupervised remote sensing image enhancement method 

based on GANs provided a high-quality data foundation for 

the classification tasks, enabling the model to effectively learn 

land cover features. The continuous rise in training set 

accuracy reflected the model’s strong adaptability to the 

enhanced data. In addition, the integration of transfer learning 

with GANs optimized the classification network. As indicated 

by the trends in test set accuracy, under unsupervised 

conditions, the model was able to gradually improve 

classification performance across different land cover classes 

by leveraging transferred knowledge and the optimization 

capabilities of GANs. 

a) Vegetation class b) Water body class

c) Artificial surface class

Figure 4. Variation curves of the unsupervised remote sensing image classification loss function with respect to training epochs 
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a) Vegetation class b) Water body class

c) Artificial surface class

Figure 5. Variation curves of classification accuracy for unsupervised remote sensing image samples with respect to training 

epochs 

a) Baseline VGG16                                b) Geometric augmentation VGG                                 c) Proposed model

Figure 6. t-SNE visualization of feature distributions of unsupervised remote sensing images on the test set 

Figure 6 presents the t-distributed Stochastic Neighbor 

Embedding (t-SNE) visualization results of unsupervised 

remote sensing image feature distributions on the test set. In 

the feature distribution of the baseline VGG16, the blue and 

orange points are highly intermixed, indicating low inter-class 

separability. Although the features of the geometric 

augmentation VGG exhibit partial separation, significant 

overlap remains. In contrast, the proposed model demonstrates 

highly compact clusters of blue and orange points, with 

minimal overlap, reflecting excellent class separability in the 

feature space. These results indicate that the proposed model 

possesses superior feature learning capabilities, effectively 
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distinguishing between different categories. It can be 

concluded that the proposed model provides clearer and more 

enriched image features, and that the newly developed 

unsupervised classification method—combining transfer 

learning with GANs—further optimizes both the feature 

extraction and the classification network. The high degree of 

feature separability achieved by the proposed model in low-

dimensional space validates its ability to significantly enhance 

feature discriminability, leading to improved classification 

performance. 

5. CONCLUSION

This study primarily focused on the development and 

implementation of an unsupervised remote sensing image 

classification method by integrating GANs and transfer 

learning techniques. The core objective was to address the 

challenges inherent in unsupervised remote sensing image 

classification, particularly in scenarios with limited labeled 

data, by enhancing feature representation and classification 

performance through the combination of two advanced deep 

learning approaches—GANs and transfer learning. This 

research holds significant theoretical and practical value. 

Theoretically, it provides a novel approach for unsupervised 

remote sensing image classification by leveraging GANs and 

transfer learning to overcome data scarcity and improve the 

model's learning capacity. From an application perspective, 

the proposed method is of great significance for the automated 

classification of remote sensing images, particularly in fields 

such as disaster monitoring, land cover change analysis, and 

environmental protection, where improvements in 

classification accuracy and efficiency are crucial. By 

integrating GANs with transfer learning, an innovative 

solution was presented in this study that substantially 

addresses the limitations of traditional unsupervised remote 

sensing image classification methods in terms of feature 

extraction and classification accuracy. 

However, despite the achievements attained in this study, 

several limitations remain. First, the training process of the 

GAN model may suffer from instability, particularly in the 

generation of synthetic features, where issues such as mode 

collapse may arise, adversely affecting the diversity and 

quality of generated images. Second, although transfer 

learning significantly enhances the performance of the 

classification network, the selection of an appropriate source 

domain model to ensure the effectiveness of transfer learning 

remains an open question requiring further investigation. 

Moreover, the proposed model was primarily optimized for 

remote sensing image data, and its generalizability and 

adaptability to other image classification tasks have yet to be 

validated. Future research directions could be pursued along 

the following lines: First, the training stability and generative 

quality of GANs could be further optimized, particularly 

through the design of more efficient adversarial frameworks to 

mitigate mode collapse. Second, the selection of source 

domain models warrants deeper exploration to achieve 

stronger domain adaptation during transfer learning, thereby 

enhancing classification accuracy on target domain data. 

Additionally, future studies could explore the integration of 

multi-modal remote sensing data, combining different data 

types such as optical images and radar images, to improve 

model diversity and applicability. Through these 

advancements, future unsupervised remote sensing image 

classification methods are expected to achieve improved 

performance and broader applicability in real-world scenarios. 
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