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Determining the risk of rupture in cases of unruptured cerebral aneurysms is critical for the 

treatment process. Certain morphological and hemodynamic parameters have been 

investigated to discover their effects on the risk of rupture. The present study aimed to 

determine the rupture risk rate of unruptured cerebral aneurysms by examining age, sex, 

location, width, length, type, and comorbidity parameters. For this purpose, the data were 

categorized using different classifiers with supervised machine learning for 220 patients 

diagnosed with cerebral aneurysms between the years 2011 and 2022. Of the patients, 127 

had unruptured aneurysms, while 93 had experienced ruptured aneurysms. The training was 

conducted by applying the Narrow Neural Network classifier algorithm. This algorithm was 

preferred for its capability to deliver satisfactory performance in learning and classification 

tasks using limited datasets. Based on the results of the analysis, the rupture risk for the 

training network was classified with 75% accuracy, and the validation accuracy in the testing 

process was calculated with 81.8% success. The close values of the validation rates in the 

training and test scenarios indicate the high level of success at which this study was 

conducted. Although no ruptures were noted in the radiology reports for three of the patients, 

the machine learning classification algorithm predicted that ruptures would occur in these 

patients over time. Upon examination of the disease history of these patients, which included 

the results recorded in radiology reports completed at later dates, the aneurysms of all three 

were observed to have ruptured. This model revealed with great accuracy that for ruptured 

cerebral aneurysms, middle cerebral artery location and a size of 2-10 mm constitute the 

primary morphological factors, while heart and hypertension comorbidities represent the 

major hemodynamic parameters. These findings highlight the potential of the NNN 

algorithm model to evaluate aneurysms of all sizes with high accuracy, without the need for 

exclusion criteria. This is the first known study to incorporate such a diverse range of 

comorbidity parameters, along with detailed information on the aneurysm’s laterality (right-

left) and segment location, in determining rupture status.  
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1. INTRODUCTION

With recent advances in technology, the number of fields 

suitable for the application of machine learning has gradually 

increased. This topic has frequently been addressed by 

researchers, especially in the field of medicine for the 

diagnosis of diseases [1-4]. Two main categories of machine 

learning have been studied in the literature: supervised and 

unsupervised learning methods. In supervised learning, the 

data set is divided into training and testing sets. The program 

is derived from the training set and an algorithm is developed, 

the accuracy of which is then evaluated using the test set. The 

purpose of the algorithm is to employ the developed algorithm 

to predict the outcome of new data [5]. Unsupervised learning 

aims to find the desired hidden structure in the data set without 

the use of accuracy data to predict the results [6]. 

 Brain aneurysms are protrusion-shaped enlargements of 

cerebral arteries [7]. Although unruptured aneurysms have 

been reported to occur in 3% of the population, recent studies 

have projected that the actual rate may be as high as 11% [8]. 

This condition affects the population and poses a potential risk 

of rupture [9]. Rupture of brain aneurysms causes 

subarachnoid hemorrhage, an adverse outcome known as 

hemorrhagic stroke [7]. Researchers have determined that 

small-sized intracranial aneurysms constitute 35-47% of 

ruptured aneurysms [8, 10, 11]. As there is currently no 

consensus on whether to intervene in an unruptured aneurysm, 

evaluating the risk of rupture constitutes a critically important 

parameter for disease treatment and follow-up [10-13]. In 

unruptured aneurysms, the risk of rupture can be prevented by 

microsurgery or endovascular treatment [13, 14]. In recent 

years, numerous studies in the literature have emphasized that 

the detection of intracranial aneurysms can be achieved with 

high accuracy using machine learning algorithms [1, 11, 15, 

16]. The effect of hemodynamic factors on the rupture of 

Middle Cerebral Artery (MCA) aneurysms under different 
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operating conditions has been investigated. The effects of 

mean wall shear stress, velocity in pressure distribution, and 

blood viscosity were examined. As a result, the average wall 

shear stress was observed to increase proportionally with the 

blood flow rate, and exceeding a value of 0.6 increased the risk 

of aneurysm rupture. In addition, another study demonstrated 

that an increase in blood velocity increases the risk of rupture 

in aneurysms [17]. In a study based on automatic detection of 

brain aneurysms, training was conducted by cross-validating 

TOF-MRA image data containing information on 284 patients 

using a deep learning model. 3D U-Net learning was 

performed with a total of 198 aneurysms in the data set 

consisting of 157 images with aneurysms and 127 without. 

Aneurysm location, such as ACA, MCA, and ICA (Anterior, 

Middle, and Interior Cerebral Artery, respectively), size (≤ 7 

mm, 7-9 mm, 10-19 mm, and ≥ 20 mm), and age of the patient 

were also included in the study. The model was trained and 

evaluated on a GeForce RTX 2080 Ti GPU (11GB GDDR6) 

with TensorFlow 2.4.0. Performance metrics for the best 

model achieved a false positive rate of 0.8 per patient and a 

sensitivity of 83%. In addition, the PHASES scores for 

aneurysms were calculated and categorized as low, medium, 

or high-risk groups. Low-risk aneurysms were determined to 

require monitoring, while medium and high-risk aneurysms 

require treatment. The size and location of the aneurysm were 

observed not to present significant effects in terms of 

sensitivity to rupture [18]. For the PHASES score calculations, 

age, hypertension, history of subarachnoid hemorrhage, 

aneurysm size, and site predictors were evaluated in 230 

patients and compared with populations from North America 

and Europe (excluding Finland). The risk of aneurysm rupture 

was found to be 3.6 times higher in Finnish people and 2.8 

times higher in Japanese people [19]. In addition, prediction of 

sugarcane disease and early diagnosis of Alzheimer's disease 

can be made by using Convolutional Neural Network (CNN) 

models [20, 21]. In a study, the efficacy of deep learning 

methods was evaluated in the early, intermediate and advanced 

stages of Diabetic Retinopathy diagnosis using fundus images 

[22]. Additionally, an effective image segmentation approach 

and classification techniques have been devised for the 

detection and classification of Alzheimer’s and Parkinson’s 

disease [23]. 

Many hemodynamic parameters have been considered in 

determining the rupture risk status of aneurysms. However, 

separate evaluations have not been performed for each of these 

risk factors. In terms of morphological features, they are 

associated with the rupture risk status of the aneurysm, but the 

extent of the effect has yet to be clarified [24, 25], constituting 

a significant gap in the literature. Another major deficiency in 

the literature is the limited number of studies examining 

comorbidities. In order to address this issue, the present study 

examined morphological and hemodynamic characteristics 

and their relationships in 220 patients with aneurysms aged 22-

94 years to determine the rupture risk of cerebral aneurysms. 

These relationships were evaluated using machine learning 

classification algorithms and then tested with the data of 33 

external patients to assess the classifications. An additional 

gap in the literature is the partial lack of information regarding 

aneurysm location. In this study, this deficiency was 

eliminated by including right-left and segment (M1, M2, M3, 

M4) information for each aneurysm. Studies in the literature 

examining morphological and hemodynamic features for 

identifying and automatically detecting rupture risk by means 

of machine learning methodologies are shown in Table 1. 

 

Table 1. Literature review 

 

Ref. 
Morphological 

Parameter 
Hemodynamic Parameter Risk Aneurysm Diagnosis Sensitivity Accuracy Method 

[17] Location 
Blood flow velocity, Wall shear 

stress 

Blood flow 

velocity >0.6 risk of 

aneurysm rupture 

    CFD 

[26] 
Location 

Size 
 Low, Medium, High 198 MRA 83  U-Net 

[19] 
Location 

Size 

Comorbidity (Hypertension), 

History of hemorrhage, Ethnicity 

European 

countries >3.6*Finni

sh >2.8*Japanese 

230    PHASES 

[27] 
Location 

Size 

Sex, Age, Comorbidity 

(Hypertension, Diabetes, 

Hyperlipidemia, Ischemic 

Cerebrovascular Disease), 

Smoking, Blood flow velocity, 

History of hemorrhage) 

 649  84  MAPN 

[28] 
Location 

Size 

Age, Comorbidity (Hypertension, 

Epilepsy, Depression, Kidney 

disease), Smoking, History of 

hemorrhage, Ethnicity 

Growth, Risk of 

rupture (Low-High) 
277  80  UIATS 

[1] 
Location 

Size 

Sex, Age, Wall shear stress, Blood 

flow velocity, Arterial 

pressure/Aneurysm neck, 

Ethnicity 

 226   78.1 

Machine 

Learning 

(Random 

Forest) 

[29] 
Location 

Size 

Sex, Age, Comorbidity, 

(Hypertension, Diabetes, 

Hyperlipidemia), Smoking, 

History of hemorrhage 

Low, Medium, High 615  85  

Machine 

Learning 

(SVM) 

Our 

Location 

Size 

Type 

Sex, Age, Comorbidity (39 

comorbidity are given in Table 2) 
Percentage risk 253 CTA 93.75 81.8 

Machine 

Learning 

(Neural 

Network) 
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The major risk for patients with cerebral aneurysms is 

rupture of the aneurysm and resulting fatal subarachnoid 

hemorrhage. Therefore, treatment should be initiated prior to 

any rupture that may occur in people with cerebral aneurysms. 

The objective of the present study was to determine the risk 

of rupture as a percentage by examining the morphological 

structure and hemodynamic factors of all cerebral aneurysms, 

whether rupture or not. Accuracy is of critical importance 

when determining the risk status, as the possibility of rupture 

for existing aneurysms was evaluated using machine learning 

classification algorithms. For this purpose, a detailed data set 

that had not been used previously was created. This data set 

contains information on the width, length, location, and type 

of aneurysm, which constitute morphological characteristics. 

Additionally, patient-specific age, sex, and comorbidity 

parameters were included in the data set as they represent 

predictors affecting the risk of rupture. In order to increase the 

transparency of this study, the numerical and categorical data 

sets incorporating these seven predictors are presented in 

Appendix 1. 

This study is comprised of three stages. First, an updated 

data set was created by examining the medical records of 

patients with cerebral aneurysms. In the second stage, 

classification was performed using machine learning 

algorithms for each morphological and hemodynamic 

parameter that may affect the risk of rupture in the aneurysm. 

Performance analysis results were obtained by analyzing the 

accuracy, specificity, precision, and sensitivity parameter 

values of the system. The final stage consisted of testing the 

trained classification network. For this purpose, the risk 

percentages of rupture in patients with cerebral aneurysms 

were determined using the external data set. 

When evaluated in terms of innovation and contribution to 

scientific knowledge, our research can be considered to have 

yielded important results. In this section, we will present the 

innovations generated by our study. First, seven parameters, 

consisting of hemodynamic and morphological features, as 

well as rupture status for 39 different comorbidities were 

examined. To date, the impact of this variety of rupture status 

for different comorbidity parameters has not been examined in 

the literature. Since this situation directly affects the risk of 

rupture, it highlights a significant gap in the literature. Another 

innovation of our study involves the fact that heretofore no 

research has been conducted incorporating right-left and 

segment information regarding the location of the aneurysm; 

this represents yet another major deficiency in the literature. 

More importantly, in the present study aneurysms of all sizes 

were evaluated, without any exclusion criteria. As this also 

directly affects the risk of rupture, another gap in the literature 

is revealed. In addition to eliminating these deficiencies, the 

present study compared 23 different machine learning 

classification methods and determined rupture status using the 

Narrow Neural Network (NNN) classifier for the first time. In 

achieving this, for the first time, the risk of rupture could be 

expressed as a percentage. The disease histories of three 

patients with aneurysms were examined, and from the 

radiology reports rupture was determined to have occurred at 

later dates. With the machine learning classification performed 

in this study, the risk status expressed as a percentage was 

compared with the time at which rupture would occur for the 

first time in these three patients, and a 100% accurate result 

was obtained.  

The present study contributes to the literature by providing 

guidance for neurosurgeons in determining the treatment 

stages for patients with aneurysms. Furthermore, using NNN, 

a machine learning classifier algorithm, the rupture risk status 

was estimated for patients with aneurysms with a success rate 

of 81.8%. Additionally, in patients with saccular aneurysms, 

while the location of the MCA, a size of 2-10 mm, and the 

presence of heart disease and hypertension exerted major 

effects on the rupture status, other characteristics were 

observed to have a lesser effect. 

 

 

2. DATA SET INFORMATION 

 

The data set used in this study was obtained following 

approval from the Elazığ Fırat University Ethics Committee. 

A random sample of recent and current (2011-2022) medical 

records of 220 patients diagnosed with cerebral aneurysms and 

suffering from subarachnoid hemorrhage was evaluated. A 

total of 93 ruptured and 127 unruptured aneurysms were 

detected in the 220 patients. Seven risk factors for the rupture 

of cerebral aneurysms were assessed in terms of their 

morphological and hemodynamic properties. 

Registered patient data were obtained from the database of 

Fırat University Hospital neurosurgery outpatient clinic 

follow-ups. A total of 220 patients with aneurysms were 

classified as ruptured or non-ruptured by three neurosurgeons 

with approximately 20 years of experience. Images of ruptured 

aneurysms taken from registered sample patients are shown in 

Figures 1(a) and (b), while an image of a non-ruptured 

aneurysm is depicted in Figure 1(c). 

 

   
(a) (b) (c) 

 

Figure 1. Data used for training: (a) and (b) ruptured 

aneurysms; (c) non-ruptured aneurysm 

 

As an example, in Figure 1(a), a 15×12 mm ruptured 

saccular aneurysm was observed in the right MCA of a 61-

year-old male patient with no comorbidities. Figure 1(b) 

shows the image of a 26×20 mm saccular ruptured aneurysm 

in the right ICA of a 68-year-old female patient with 

hypertension. Figure 1(c) depicts a 9.8×9.6 mm non-ruptured 

saccular aneurysm in the left ICA of a 44-year-old with 

ischemic cerebrovascular disease. 

Documentation for the patient group represented in the data 

set includes morphological and hemodynamic characteristics. 

Morphological properties are defined as the characteristic 

features of an aneurysm, including its location, type, width, 

and length, whereas hemodynamic characteristics are specific 

to the patient and involve parameters such as age, sex, and 

comorbidities. Taking these features into account, the rupture 

(or non-rupture) statuses of an aneurysm for each parameter in 

the data set are presented in Table 2. The data for the age, 

width, and length parameters presented in the table represent 

average values. 

A data set was created based on the medical records of 220 

male and female patients with saccular and fusiform cerebral 

aneurysms, aged 22-94, in different locations and of various 

sizes. Among these patients, 93 had experienced ruptures 
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while 127 had not. In addition, 39 different comorbidities, 

including hypertension, diabetes, goiter, and depression were 

evaluated in the data set. 

 

 

Table 2. Morphological and hemodynamic parameters of cerebral aneurysms 

 
Parameter Rupture (93) Non-Ruptur (127) 

Hemodynamic 

Age 62.05 62.04 

Sex 

Female 57 78 

Male 36 49 

Comorbidity 

Diabetes 1 10  

Depression 1  0  

Goiter 1  0 

Hypertension 22 21 

Ischemic cerebrovascular disease 0 16 

Cirrhosis 0 1 

Restless leg 2 0 

Ischemic heart disease 3 8 

Hyperlipidemia 0 3 

Chronic renal failure 3 0 

Breast cancer 0 1 

Coronary artery preparation 5 0 

Heart failure 2 3 

None 40 37 

Lung cancer 0 2 

Anxiety disorder 1 0 

Atherosclerosis 0 1 

Atrial fibrillation 0 1 

History of embolism 1 0 

Epilepsy 2 1 

Essential hypertension 1 3 

Gastritis 0 1 

Gastroesophageal reflux 0 1 

Pituitary adenoma 0 1 

Chronic viral hepatitis 2 0 

Bladder cancer 2 0 

Multiple myeloma 1 0 

Osteomyelitis 0 1 

Parkinson’s 2 0 

Rheumatoid arthritis 0 2 

Takayasu arteritis 0 2 

Tremor 0 1 

Trigeminal neuralgia 0 1 

Vasculitis 0 1 

Venous embolism 0 2 

Kidney failure 0 1 

Chronic ischemic heart disease 0 3 

Chronic heart disease 1 1 

Heart failure 0 1 

Morphology 

Width 7.35 7.41 

Length 6.44 6.51 

Location 

AComA 22 25 

ACA 

Rigth 

Left 

7 

6 

1 

11 

5 

6 

ICA 

Rigth 

Left 

19 

13 

6 

32 

9 

23 

MCA 

Rigth 

Left 

28 

13 

15 

49 

31 

18 

Other (BA, PCA, VA) 17 10 

Type 

Saccular 90 113 

Fusiform 3 14 

Note: Data are average values. 
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3. MATERIALS AND METHODS 

 

In this study, a machine learning algorithm was modeled 

utilizing the morphological and hemodynamic characteristics 

of cerebral aneurysms. A data set was created by grouping the 

parameters for these features. These data were then applied as 

input to the neural network algorithm, a machine learning 

classifier, to determine the risk of rupture and non-rupture of 

cerebral aneurysms, referencing 220 cases with seven 

predictors. In instances of ruptured aneurysms, the connection 

with these features was examined and the importance 

emphasized. The architecture of the developed classification 

model proposed to determine the risk of rupture is shown in 

Figure 2. 

 

Data Store

(from patient 

history)

Rupture

Non-Rupture

Machine

Learning

Narrow

Neural

Network

Classifier

Hemodynamic

features

Morphological

features

 
 

Figure 2. Machine learning classifier 

 

The data set created in this study was applied as input to 

machine learning algorithms, with the desired output being the 

determination of the rupture status as a percentage. Since the 

neural network classification algorithm generated the best 

results in terms of accuracy during the classification process, 

it was used as a reference in the subsequent stages. 

 

Dataset (from patient 

clinical features)

Training set

5-fold cross validation

Feature selection

PCA1

Train Neural Network 

Classifier

Performance analysis

Response (ruptur or 

non-rupture)

Advanced tree options

Testing set

 
 

Figure 3. The proposed algorithm of the study 

The neural network classifier is a proposed model-

supervised machine learning algorithm. This algorithm was 

implemented with classifiers employed in the MatLAB 

R2023a classifiers application. These classifiers consist of 

decision trees, support vector machines, ensemble learning, 

logistic regression, and Bayesian classifier methods. In this 

study, the NNN classifier was used because its accuracy rate 

yielded the best results, while support vector machines are 

next in terms of high accuracy ranking. Neural network 

models are utilized for multi-class classification and enjoy 

high predictive accuracy, although difficult to interpret. As the 

size and number of fully connected layers in the neural 

network increase, the flexibility of the model increases. The 

MatLAB “fitcenet” function was employed in the training 

model for the neural network classifier. The highest accuracy 

for this data set was obtained with the NNN classifier. 

Additionally, the area under the Receiver Operator 

Characteristic curve (AU-ROC), accuracy, sensitivity, and 

specificity parameters were also included when conducting 

performance analysis for the machine learning classifiers. The 

machine learning algorithm used in this study is given in 

Figure 3. 

 

3.1 NNN classification 

 

The Narrow Neural Network classifier algorithm relies on a 

neural network structure with a limited number of layers and 

neurons. Compared to larger neural networks, narrow 

networks contain fewer parameters and are computationally 

lighter. This approach is ideal for small datasets or systems 

with limited computational resources. Unlike traditional deep 

learning models, it employs a narrow structure to reduce the 

number of parameters and mitigate issues like overfitting. This 

classifier algorithm accelerates data processing by providing a 

simpler and more efficient learning model. The Narrow Neural 

Network algorithm is preferred for its ability to quickly learn 

from limited datasets and perform satisfactorily in 

classification tasks. Additionally, they are generally preferred 

when the dataset is small or when there is a risk of model 

overfitting. However, it may be inadequate for complex and 

large data sets. 

 

3.2 The operating of NNN 

 

Input layer: The input layer receives features from the 

dataset. 

Hidden layers: These networks consist of only a few layers 

(typically 1-2), each containing a limited number of neurons. 

Activation functions are applied within these layers to process 

the input data. 

Output layer: As a classification problem, the output layer 

returns the predicted class. Activation functions such as 

softmax or sigmoid are typically used in this layer. 

 

3.3 Mathematical models and parameters 

 

The following general equations are used in narrow neural 

networks: 

Weights and biases: Each neuron is associated with a weight 

(w) and a bias (b) that apply to the input features. 

 

z=w⋅ x+b 

 

where, x denotes the input data. The z value is then passed 
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through an activation function. 

Activation functions: Activation functions such as ReLU or 

tanh are used in the hidden layers, while softmax or sigmoid 

functions are typically used in the output layer for 

classification tasks. 

For example, a ReLU activation function is defined as: 

 

f(z)=max(0, z) 

 

Loss function: To evaluate model performance, loss 

functions such as cross-entropy or mean squared error are 

applied. The loss function is critical in the backpropagation 

algorithm, where it facilitates updates to the weights and 

biases. 

The model’s optimization involved several key parameters: 

a learning rate of 0.1, which controlled the step size for weight 

updates during training, and a total of 30 learners, indicating 

the number of base models in the ensemble. Additionally, the 

estimator count was set to 7, defining the number of predictors 

used per estimation. A 5-fold cross-validation was conducted 

to enhance model generalizability and reduce overfitting risk 

by systematically partitioning the dataset for training and 

validation. Finally, the total misclassification cost was set to 

160, imposing penalties on incorrect classifications to 

prioritize model accuracy. These parameters collectively 

contribute to balancing model accuracy, computational 

efficiency, and generalization. 

 

 

4. EXPERIMENTAL FINDINGS 

 

The NNN classifier, a supervised machine learning 

classification algorithm, was chosen for this study, based on 

the fact that this particular algorithm yields the highest 

accuracy rate during classification. With this method, 

hemodynamic and morphological parameters constitute the 

input to the network while rupture or non-rupture status forms 

the output. A split occurs for each node in the decision tree. 

Gini’s diversity index was employed to ensure that the division 

occurred with zero error; the equation model for Gini's 

diversity index is given in Eq. (1). 

 

1 − ∑ 𝑝2(𝑖)
𝑖

 (1) 

 

where the sum is over the classes i at the node, and p(i) is the 

observed fraction of classes with class i that reach the node. A 

node with just one class (a pure node) has Gini index 0; 

otherwise, the Gini index is positive. So, the Gini index is a 

measure of node impurity. 

High-performance GPU or CPU is a requirement for 

network training. For the present study, training was 

conducted using 16 GB RAM and an Intel Core i7 processor 

CPU. A data set consisting of the medical records of 220 

cerebral aneurysm patients was used in the network training of 

the neural network algorithm, a machine learning classifier in 

the MatLAB programming language. In the training, the 

learning rate was 0.1, the number of learners was 30, the 

estimator count was 7, and a 5-fold cross-validation was 

performed. In addition, the total misclassification cost was 

160, the prediction speed was 1800 obs/sec, and the training 

time was 3.38 sec. The model type was defined as NNN, the 

number of fully-connected layers was set at 1 and the first 

layer size was 10, with a Rectified Linear Unit (ReLU) 

activation and an iteration limit of 1000. When selecting 

features, all characteristics were incorporated into the model 

prior to Principal Component Analysis (PCA1). The training 

results consisted of binary output data: rupture or non-rupture. 

The location, type, and size of the aneurysms, along with the 

age, sex, and comorbidities of the patients were evaluated by 

neurosurgeons with approximately 20 years of experience, 

who determined the rupture status of the aneurysms. Their 

results were subsequently compared with those of the machine 

learning analysis. 

In the experimental study, the medical records of 33 

patients, 16 with ruptured and 17 with non-ruptured 

aneurysms, were used to perform external testing of the 

classification network. The trained network generated 27 

correct and 6 incorrect predictions. While the trained network 

yielded an accuracy rate of 75%, the success of the study was 

further supported by the 81.8% accuracy calculated during the 

testing process. When the incorrectly detected data were 

evaluated, different parameters were observed for the seven 

predictors. Predictor variables that were not previously trained 

in the network were estimated incorrectly because they had 

been used in the testing process. The confusion matrix created 

during the testing process is shown in Figure 4. 

 

 
 

Figure 4. Test outcome confusion matrix 

 

To evaluate the performance of the machine learning model, 

Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), 

Precision (PRC), and F-score parameters were used as criteria 

for estimating the area under the Receiver Operating 

Characteristic (ROC) curve and aneurysm rupture risk. The 

equation models for these parameters are expressed as follows: 

 

𝐴𝐶𝐶 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (2) 

 

𝑆𝐸𝑁 =
𝑡𝑛

𝑡𝑛 + 𝑓𝑛
 𝑆𝐸𝑁 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (3) 

𝑆𝑃𝐸 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 𝑆𝑃𝐸 =

𝑡𝑛

𝑡𝑛 + 𝑓𝑛
 (4) 

 

𝑃𝑅𝐶 =
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 𝑃𝑅𝐶 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (5) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑡𝑝

2 ∗ 𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
 (6) 

 

where, true positive (tp), true negative (tn), false positive (fp), 

and false negative (fn) represent the coefficients of the 

confusion matrix. 
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Table 3. NNN classifier performance metrics 

 

Machine Learning Class Sensitivity Specificity Precision F-score Accuracy (%) 

Narrow Neural Network (NNN) 
Rupture 

Non-rupture 

0.613333 

0.851485 

0.851485 

0.613333 

0.754098 

0.747826 

0.676471 

0.796296 
75 

Testing process 
Rupture 

Non-rupture 

0.9375 

0.705882 

0.705882 

0.9375 

0.75 

0.923077 

0.833333 

0.8 
81.8 

 

Table 4. Data set created to predict rupture 

 
Age Width Length Location Type Sex Comorbidity 

59 8.5 5.5 LEFT MCA M2 Saccular Male None 

45 7 8 RİGTH MCA M1 Saccular Female Hypertension 

68 7 6 RİGTH MCA M2 Saccular Female None 

 

Table 5. Classification results 

 
Real Rupture Condition Prediction-Yes Prediction-No 

No After 1 month 1 0 

No After 6 years 0.5920 0.4080 

No After 3 months 1 0 

 

 
 

Figure 5. ROC curve 

 

The ROC curve depicting the relationship between the true 

positive and false positive rates in the model is shown in 

Figure 5. The true positive rate used in the classifier is 

expressed as the positive prediction rate for “positive 

observation” while the false positive rate is expressed as the 

positive prediction rate for “negative observation”. The ROC 

curve is employed in conjunction with cross-validation to 

evaluate the model’s performance on test data. A 5-fold cross-

validation was performed in this study. The performance 

metrics for the NNN classifier are shown in Table 3. 

In the data set used for experimental purposes, prepared 

with regard to hemodynamic and morphological 

characteristics, subarachnoid hemorrhage was determined to 

have occurred at later dates in three patients with aneurysms 

who had not previously experienced rupture. Thus, for 

aneurysms not currently rupture, the risk of life-threatening 

subarachnoid hemorrhage will be mitigated by accelerating the 

treatment steps in the event of future rupture. In this study, 

rupture was predicted utilizing the proposed machine learning 

neural network classifier. Information from the patients’ 

radiology reports is presented in Table 4. 

The rupture risk rates in the classification algorithms of 

three patients with aneurysms who experienced subsequent 

rupture are presented in Table 5 as a percentage. 

Although there were no records of ruptures in the original 

radiology reports of the three patients, according to the NNN 

classifier model, the chance of ruptures occurring in these 

patients was predicted to be 100%, 59.2%, and 100%. Upon 

further examination of the patients’ disease histories, which 

included radiology results from later dates, their aneurysms 

were found to have ruptured after one month in the first 

patient, after 6 years in the second patient, and after 3 months 

in the third patient. According to hospital medical records, 

aneurysms were previously identified in three patients; 

however, these patients were not treated due to either patient 

preference or the inability to predict the likelihood of rupture. 

In the dataset, these three cases were identified, and their 

aneurysms ruptured after varying periods following the initial 

diagnosis. The NNN model was applied to test the seven 

parameters recorded at the time of the initial aneurysm 

diagnosis for these patients. The test results, detailing the risk 

percentages for the aneurysms, are presented in Table 5. 

Accordingly, two patients with a high-risk score (classified as 

1) experienced ruptures 1 and 3 months after the initial 

diagnosis. In the third patient, whose risk score was 0.5920, a 

rupture occurred 6 months later. 

 

 

5. RESULTS AND DISCUSSION 

 

The data set used, incorporating the morphological and 

hemodynamic features obtained from the medical records of 

patients with ruptured and non-ruptured aneurysms, appears in 

Table 2. Raw data values for variable groups related to the 

various parameters are included in Appendix 1, while the 

graphic results generated by the training that affect rupture 

status are presented in Appendix 2. Accuracy rates and 

training times in determining rupture status for the different 

classification models are shown in Figure 6. 

Among the 23 models that underwent training, the highest 

accuracy value, at 73.29%, was obtained with the neural 

network classifier, depicted as orange in the graph. In this 

decision tree, PCA1 was used to reduce the dimensionality of 

the prediction space. As a result, a new variable set was created 

by removing unnecessary dimensions. The model was 

developed by selecting features for the seven parameters 

determined in the study. The final result for the maximum 

accuracy rate of 75% in training is shown in purple in Figure 

7, for model 17, which had a training time of 3.38 seconds. 
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Figure 6. Training time and accuracy values of the different 

classification models 

 

 
 

Figure 7. Training times and accuracy values for the 

proposed NNN classifiers 

 

The improved NNN classifier used in this study, wherein 

morphological and hemodynamic features were considered in 

tandem, yielded the greatest accuracy with respect to rupture 

status. In this connection, training for the model was 

performed using the neural network classifier. The model 

results obtained for the NNN classifier, developed by applying 

PCA1, with the number of learners set to 30 and a learning rate 

of 0.1, are presented in Figure 8. Positive Predictive Value 

(PPV) represents the proportion of correctly classified 

observations for a given predicted class. Conversely, the False 

Discovery Rate (FDR) indicates the proportion of incorrectly 

classified observations within the predicted class. PPV is 

shown in blue for correctly predicted points in each class, 

while FDR is displayed in orange for incorrectly predicted 

points in each class. The relationship between PPV and FDR 

in model training is presented in Figure 8(b). The TPR (True 

Positive Rate) and FNR (False Negative Rate) metrics are 

fundamental measures used to evaluate a model’s 

classification performance: 

TPR (True Positive Rate): This is the rate at which positive 

instances are correctly classified as positive. Also known as 

"Sensitivity" or "Recall," this metric indicates the model’s 

ability to identify true positive cases and is calculated as 

follows: 

 

TPR=TP/TP+FN 

 

FNR (False Negative Rate): This represents the rate at 

which true positive instances are incorrectly classified as 

negative. This metric indicates the model's tendency to miss 

cases that belong to the positive class and is calculated as: 

 

FNR=FN/TP+FN 

 

Here, 

TP (True Positive): The number of instances that are truly 

positive and correctly classified as positive by the model, 

FN (False Negative): The number of instances that are truly 

positive but incorrectly classified as negative by the model. 

TPR and FNR help evaluate the model’s performance in 

correctly identifying positive class instances. High TPR and 

low FNR values indicate strong model performance in 

accurately recognizing instances belonging to the positive 

class. The relationship between TPR and FNR in model 

training is presented in Figure 8(a).   
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Figure 8. True positive-false negative rates of the NNN 

classifier 
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Here, the false negatives are shown in pink while true 

positives are depicted in blue. The highest accuracy value was 

calculated as 75%, with 46 true positives (tp) and 29 false 

positives (fp) for patient data indicating ruptures, and 86 true 

negatives (tn) and 15 false negatives (fn) for images without 

ruptures. The true positive rate (TPR) varied between 61.3%-

85.1%, the false negative rate (FNR) ranged from 14.9%-

38.7%, positive predictive values (PPV) were 75.4% and 

74.8%, and false discovery rates (FDR) were calculated to be 

24.6% and 25.2%. 

Since rupture from cerebral aneurysms constitutes a major 

life-threatening risk, parameters that may cause rupture should 

be carefully considered. In this study, the classification of risk 

factors was performed incorporating such parameters. Graphs 

of the data on rupture in cerebral aneurysms for each risk 

factor are shown in Appendix 2. By applying the improved 

NNN classification algorithm, which yielded the best results 

in terms of accuracy, rupture was predicted to be detected in 

advance with an accuracy of 81.8% in the external testing 

process. This rate represents a level of accuracy that can 

prevent permanent damage and death in serious life-

threatening illnesses. As a result of the machine learning 

classification process applied to the seven risk factors 

determined based on the medical records of patients diagnosed 

with cerebral aneurysms, rupture can now be predicted with 

great accuracy. 

Ruptures, affected by morphological and hemodynamic 

parameters, induce subarachnoid hemorrhage. Such rupture 

can also occur in cases of head injury. Determining whether 

rupture is caused by an aneurysm or is a result of trauma 

presents difficulties. If rupture status can be established with 

high accuracy using machine learning, risky aneurysm 

surgeries can be avoided [1]. The machine learning classifier 

model employed in the present study incorporated the 

morphological and hemodynamic parameters of cerebral 

aneurysms in its analysis. Based on the resulting classification, 

the major risk factors triggering the rupture of saccular 

aneurysms were identified as MCA location and the 

comorbidities of heart disease and hypertension. Representing 

the estimated risk of rupture for cerebral aneurysms as a 

percentage demonstrates the applicability of this system, as do 

the relevant performance metrics obtained in this study. 

In the future, the number of data points will be increased 

and information regarding the parameters of this data set will 

be expanded. With the use of different classification 

methodologies, it is anticipated that more general results can 

be obtained. 

 

 

6. CONCLUSIONS 

 

In this study, a highly accurate machine learning algorithm 

model was developed to assist neurosurgeons in determining 

the rupture risk of cerebral aneurysms. Rupture risk status was 

estimated using this improved classification algorithm 

utilizing a data set created by evaluating the medical records 

of patients with cerebral aneurysms. The training accuracy of 

the proposed model was 75%, the highest yielded accuracy. 

The classification results of the trained network exhibited a 

true positive rate of 85.1% and a false negative rate of 14.9% 

for patients who had experienced ruptures, with a positive 

predictive value of 75% and a false discovery rate of 24.6%. 

In patients whose aneurysms did not rupture, the true positive 

rate and false negative rates were 61.3% and 38.7%, 

respectively. For such cases, a positive predictive value of 

74.8% was calculated, with a false discovery rate of 25.2%. 

An external test set was prepared and the medical records of 

33 patients were evaluated to test this improved network. A 

value of 81.8% was obtained for the validation accuracy of this 

classification resulting from the testing performed on this 

network. The close similarity in the values of the validation 

rates obtained in the training and test scenarios attests to the 

success of this study. This proposed model is anticipated to 

provide support for diagnosis and detection by examining the 

various risk factors for a wide variety of diseases. In the 

present study, the data of patients whose aneurysms had not 

previously ruptured but did rupture at subsequent follow-ups 

were collected. Patients who had not actually experienced 

rupture but whose data indicated future rupture also underwent 

follow-up. Based on the machine learning classifiers 

developed in this study, it was concluded that the aneurysms 

in these patients would eventually rupture. The probability of 

rupture in previously non-ruptured aneurysms can thus be 

calculated as a percentage, a result that is expected to have a 

guiding effect on the treatment of patients with cerebral 

aneurysms and to support neurosurgeons. 

 

6.1 Limitations 

 

Classification accuracy generally increases with an increase 

in the number of samples. In this context, the need to increase 

the number of patients for the optimal development of the 

model constitutes the main limitation of this study. 

Another limitation is the fact that the data set used in this 

study included only the medical records of patients diagnosed 

with cerebral aneurysms. In order to detect other diseases and 

compare classification accuracy using machine learning, the 

risk factors of different diseases must also be considered. 

Since the data used in this study were obtained from a single 

institution, data from different institutions should also be 

included, in order to generalize the classification. 

Additionally, data inaccuracies caused by human error when 

creating parameters represent an important variable impacting 

classification accuracy. 

 

6.2 Future directions 

 

The number of real patient records in the dataset will be 

increased. 

The parameters WSS, velocity, OSI, and pressure are not 

currently included among the hemodynamic factors. These 

parameter values will also be incorporated into the dataset and 

evaluated in addition to the existing seven input variables. 

Data from patients with different medical conditions will be 

collected, and more generalized results will be obtained using 

the applied classification methodologies. 
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NOMENCLATURE 

 

AComA Anterior Communicating Artery 

ACA Anterior Cerebral Artery 

ICA Interior Cerebral Artery 

MCA Middle Cerebral Artery 

PCA Posterior Cerebral Artery 

BA Basilar Artery 

VA Vertebral Artery 

SAK Subarachnoid Hemorrhage 

CTA Computerized Tomography Angiography 

MRA Magnetic Resonance Angiography 

TOF-

MRA 

Time-of-Flight Magnetic Resonance 

Angiography 

PHASES Population, Hypertension, Age, Size, History 

of hemorrage, Location 

UIATS Unruptured Intracranial Aneurysm Treatment 

Score 

MAPN Field Factor 

CPU Central Processing Unit 

GPU Graphics Processing Unit 

ReLU Rectified Linear Unit 

AUC Area Under the Curve 

AUROC Receiver Operator Characteristic Curve 

TPR True Positive Rate 

FPR False Positive Rate 

FNR False Negative Rate 

PPV Positive Predictive Value 

FDR False Discovery Rate 

PCA1 Principal Component Analysis 

CVD Cerebrovascular Disease 
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