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The field of robot control, particularly for multi-degree-of-freedom (DoF) robots, has been 

playing a crucial role not only in conventional control theory but also in diverse industrial 

applications. This study proposes an effective new control strategy for multi-DoF SCARA 

robots: Model-Based Adaptive Control (MBAC). The control object selected is a 4-DoF 

SCARA robot, a typical robotic arm model widely used in industry. The design concept 

of the MBAC strategy concentrates on building up a model that can adapt highly to 

variations in the robot's control parameters. The MBAC is considered an advanced control 

strategy developed to manage systems exhibiting uncertainties or time-varying 

parameters. Its fundamental principles center on the application of a system model to 

enable adaptive behavior. The research results are compared and evaluated with a classical 

PD-G (Proportional Derivative control with Gravity compensation) control method. With 

various simulations performed on MATLAB/Simulink software, the results show that the 

MBAC controller yields significantly better results than the PD-G controller. This 

confirms the feasibility and effectiveness of the multi-DoF robot control solution proposed 

in this research. 
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1. INTRODUCTION

Industrial robots play an essential role in modern 

automation, yielding substantial benefits across manufacturing 

and other sectors. They are engineered to execute repetitive, 

hazardous, or high-precision tasks that pose challenges for 

human workers [1]. These robots have found broad application 

in critical industries, including automotive and motorcycle 

manufacturing, electronics production, food processing, 

healthcare, and logistics [2-4]. The significant advantages 

offered by industrial robots have driven, are driving, and will 

continue to drive extensive research and development in the 

field of robotics [5-8]. 

The SCARA (Selective Compliance Assembly Robot Arm) 

robot is a prevalent industrial manipulator and serves as a 

fundamental platform for research in multi-degree-of-freedom 

robotics [9, 10]. A typical 4-DoF SCARA robot comprises 

four joints: three revolute (rotational) joints and one prismatic 

(translational) joint, as depicted in Figure 1. Its operation is 

primarily within a planar workspace, making it suitable for 

applications such as pick-and-place operations and the precise 

positioning of components on a production line [11, 12]. 

Robot trajectory control is a critical area of study within 

robotics, concerned with governing the motion of a robot 

manipulator along a prescribed spatial path or trajectory. The 

primary objective is to ensure the robot achieves the desired 

position and orientation at specific points in time, while 

maintaining accuracy and stability throughout the movement. 

Numerous studies have addressed the problem of robot 

trajectory control, employing methods ranging from 

elementary to sophisticated ones. These approaches can be 

broadly classified into two categories: adaptive and non-

adaptive control [13]. Non-adaptive control techniques are 

typically limited to basic position control and low-speed 

trajectory tracking, exhibiting relatively low accuracy. 

Conversely, adaptive control is better suited for complex 

robotic systems with time-varying payloads, high-speed 

operation, and demanding precision requirements [14-16]. 

This is because adaptive control offers robustness against 

parametric uncertainties and possesses self-tuning capabilities 

that accommodate system variations [17-20]. 

Obviously, the adaptive control is a control paradigm 

focused on developing flexible controllers capable of adjusting 

their structure or parameters to compensate for changes in the 

controlled system, thereby ensuring consistent performance 

[21]. The objective of adaptive controller design is to maintain 

system stability and performance despite external disturbances 

or unforeseen internal changes that alter the system model [22-

24]. The core principle is that the controller adapts in response 

to system variations to maintain a desired performance level 

[25, 26]. Furthermore, leveraging Lyapunov stability theory 

enables the design of control algorithms tailored to meet 

diverse operational requirements under varying conditions 

[27]. Within a model-based framework, adaptive control 

algorithms are designed based on the established system 

model. These algorithms compensate for system uncertainties, 

either directly or indirectly, while respecting the inherent 

characteristics of the model. A continuous nonlinear controller 

can then be synthesized to satisfy the specified system 

requirements [28].  
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The evolution of modern control theory has facilitated the 

implementation of control algorithms that integrate fuzzy logic 

and neural networks with Model – Based Adaptive Control 

(MBAC). The authors proposed a hybrid control framework 

that synergistically combines MBAC and fuzzy logic 

controllers [29]. This approach capitalizes on the inherent 

suitability of the conventional MBAC structure for object 

linearization while concurrently employing a fuzzy logic 

controller to address the object's nonlinear dynamics. The 

composite input control signal is generated by the summation 

of the individual output signals from the fuzzy logic and 

MBAC components. Yu and Sun [30] presented an adaptive 

control architecture predicated on a fuzzy logic model. This 

architecture tackles a class of continuous-time nonlinear 

dynamical systems. The structure incorporates two distinct 

fuzzy logic modules: one for linearization and the other for 

nonlinearity compensation, with the control performance 

evaluated using the Lyapunov stability criterion. Alternatively, 

conventional MBAC can be integrated with Artificial Neural 

Networks (ANNs). Leveraging the principles of adaptive 

control, a control strategy utilizing ANNs, augmented with a 

disturbance observer for noise attenuation, was designed, 

demonstrating promising outcomes [31]. Another innovative 

control paradigm involves the development of an ideal 

dynamic model based on the Lagrangian formalism. 

Subsequently, the control structure employs a Deep Neural 

Network (DNN) to predict the real-time state of the model [32]. 

This new control architecture has contributed to cost reduction 

and enhanced dynamic compensation capabilities through 

feedback-driven adjustments. 

This work proposes a new MBAC to a control plant class of 

multi-DoF robots, i.e., 4-DoF SCARA robots. Control design 

in step-by-step, together with theoretical analysis, will also be 

provided. The proposed control methodology is much simpler 

than several existing controllers. With better simulation results 

executed in MATLAB/Simulink software over other control 

methods, e.g., PD-G, the MBAC will be demonstrated a 

feasible solution for robot control in reality.  

Figure 1. A typical model of a 4-DoF industrial SCARA 

robot 

2. MODELLING AND MBAC STRATEGY FOR THE

SCARA ROBOT

2.1 Dynamics 

The robotic system comprises an n-joint manipulator, with 

each joint actuated to facilitate motion. During motion 

transitions, contact forces and sensor asynchrony can induce 

instability. The simultaneous operation of multiple joints 

introduces a range of complexities, including position and 

velocity deviations, estimation errors of unknown parameters, 

and matrix symmetry issues arising from force calculations. 

These forces, encompassing Coriolis and centrifugal forces, 

among other critical but imprecisely identified physical 

parameters, are incorporated within the controller's Lagrange 

equation. 

The robot's dynamics can be represented using the Lagrange 

equation, which incorporates the system's physical parameters, 

such as mass, link moments of inertia, and inter-joint distances. 

Within the framework of Lagrangian mechanics, these 

parameters are often expressed in a linearized form. However, 

precise estimation of these physical parameters is not always 

attainable. While some parameters, such as link lengths, inter-

joint distances, and the distance from a joint to the link's center 

of mass, can be estimated with relatively high accuracy, others 

remain subject to greater uncertainty. 

A robot with n DoFs is characterized by parameters such as 

mass and moment of inertia, which are expressed as 

coefficients of functions dependent on q, q̇, and q̈. By defining 

each parameter, the robot dynamic equation can be formulated 

as follows: 

( ) ( , ) ( ) ( , , )H q q C q q q g q Y q q q + + = = (1) 

where, the matrix 𝑌(𝑞, �̇�, �̈�) ∈ 𝑅𝑛𝑥𝑟  is a regression matrix,

while Θ ∈ 𝑅𝑟  is a vector of dynamic parameters, which are

unknown but must be constant. 

The matrix 𝑆(𝑞, �̇�) = �̇�(𝑞) − 2𝐶(𝑞, �̇�)  is a skew-

symmetric matrix (or an antisymmetric matrix), which 

satisfies the following condition:  

( )( ) 2 ( , ) 0T Tx Sx x H q C q q x= − = (2) 

2.2 MBAC strategy 

Adaptive control is a crucial field in control engineering, 

concerned with the design of control systems that can 

automatically adjust their parameters or structure to 

accommodate unforeseen changes in the system or operating 

environment. Some key characteristics of the adaptive control 

include: 

(i) Self-tuning capability: The control system automatically

modifies its parameters or structure to maintain desired 

performance despite variations in the system or environment. 

(ii) Robustness to uncertainty: The system can handle

uncertainties such as disturbances, model inaccuracies, and 

time-varying system parameters. 

(iii) Performance maintenance: Adaptive control systems

are designed to ensure stable operation and satisfy predefined 

performance criteria, even under changing system conditions. 

This study focuses on the application of model-based 

adaptive control (MBAC) to a 4-DoF SCARA robot model to 

evaluate its efficacy and suitability for the given control 

problem. The system dynamics are characterized by the 

parameter vector Θ, as represented in the following equation 

[14, 18]: 

0

1
( , , ). ( ). ( ) ( , ) .

2

( )

Y q q q H q q B H q S q q q

g q

 
 = + + + 

 

+

(3) 
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During the robot’s operating process, the estimated matrix 

Θ̂(0)  of Θ should be continuously updated following a law 

below: 

 

( )1

0

ˆ ˆ( ) (0) . ( ), ( ), ( ) . ( )
t

T

d d dt Y q q q y dt   − = −   (4) 

 

where, Θ̂(0) is the estimated value of Θ when t = 0. Γ is a mxm 

positive defined matrix. 

Estimating the unknown parameter Θ̂(𝑡) will be converged 

to a real value Θ  when 𝑡 → ∞  and it will track the desired 

trajectory. 

It should be obvious that the output response y(t) of the 

system is uncertain, we can employ a real-time adaptive 

control law based on the established robot model: 

 

1 1
ˆ( , , , )r ru A q B z Y q q q q= −  − +   (5) 

 

The model-based adaptive control law and the system's 

parameter update law will result in trajectory convergence 

Δ𝑞(𝑡) → 0 𝑎𝑛𝑑 ∆�̇�𝑡 → 0  when 𝑡 → ∞  in accordance with 

Lyapunov's stability criteria. The objective of controller 

design is to endow the closed-loop system, comprising both 

the controlled object and the controller, with desired 

performance characteristics. This design is predicated on 

Lyapunov's stability theory.  

Based on the MBAC and Lyapunov’s theory, the following 

steps should be implemented: 

Step 1: Build up the control law 

From Eq. (5), according to the MBAC theory, it is possible 

to deduce the following control law: 

 

1 1
ˆ( , , , )r rM A q B z Y q q q q= −  − +   (6) 

 

where, 

Θ is a vector which denotes physical parameters such as 

mass, inertia, etc. 

 

Θ = (I1, m1 ,…, In, mn)T 

 

Let: {
𝑞𝑟 = �̇�𝑑 − 𝛾𝛥𝑞
𝑧 = �̇� − 𝑞𝑟 = 𝛥�̇� + 𝛾𝛥𝑞

 with γ > 0. 

The parameter update rule is: 

 

1

0

ˆ ˆ( ) (0) ( ( ), ( ), ( ), ( )) ( )
t

T

r rt Y q q q q z d     − = −   (7) 

 

and: 

 

1( , , , ) ( , , , ) 0r rY q q z z Y q q q q A q− +  =  (8) 

 

where, 

 

1
( , , , ) ( ) ( ) ( , )

2
r rY q q q q H q z B H q S q q z

 
 = + + + 

 
 (9) 

 

Select a Lyapunov candidate as: 

 

1

1 1 1

2 2 2

T T TV z Hz q A q= +   +    (10) 

The Lyapunov function V in Eq. (10) is positive definite. 

Decomposing V into V₀ and a component dependent on the 

parameter update law, as shown in Eq. (11), allows for analysis 

of the time derivative of V. 

 

0

1

1
( , )

2

1

2

T

T T T T

d
V z q

dt

z Hz z Hz q A q

 
 +   

 

= + +  + 

 (11) 

 

From Eq. (1), in combination with the result 

1ˆ ˆ Y− = −  deduced from Eq. (7), and by substituting Eq. 

(11), the following can be obtained: 

 

1

[ ]

1

2

T

T T T

V z M Cq G H q

z Hz q A q Y

= − − + 

+ +   +
 (12) 

 

1

[ ]

1

2

T T

r

T T T

V z M Cq G H q z Cz

z Hz q A q Y

= − − + −

+ +  +
 (13) 

 

According to the properties of system dynamics, �̇� − 2𝐶 =
0, substitute Eq. (4) and 𝑧 = �̇� − 𝑞𝑟 = 𝛥�̇� + 𝛾𝛥𝑞 into Eq. (13), 

the following derivative can be yielded: 

 

1 1

T TV z B z q A q Y= − −   +   (14) 

 

With 𝑌. �̄�  denotes the estimation of robot’s parameters 

deduced from Eq. (7). 

Combining Eq. (11) and Eq. (14) yields the following 

equation: 

 

0

1
( , ) ( , )

2

Td
V z q W z q

dt

 
 +   = −  

 
 (15) 

 

where: 

0 1

0 1

1 1
( , ) ( ) ,

2 2

( , )

T T

T T

V z q z H q z q A q

W z q z Bz q A q

 = +

 = +  

 

 

1

1

( , ) ( , )

1

2

T

T T

W z q zB z qh z q q H q

q A q q H S q h



 

 = +  −  

  
+   +  − +  +  

  

 (16) 

 

Besides, 

 

1

1

1
( , )

2

1

2

T T

n
T

i i

i

V z q z Hz q H q

q A q b q




=

 = +  

+   + 
 

( ) 

  ( )

4 6

1 1 3 5

( , ) .T

T

W z q z B c c I z

q A D c I q c c q z



 

   − +

+  −  − + 
 

(17) 

 

With D as a diagonal matrix, when 2𝑎𝑏 ≤
𝑎2

𝜉
+ 𝑏2𝜉  with 

𝜉 > 0 holds, Eq. (17) can be rewritten as follows: 
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( )  

( ) 

1

4 2 6 5 3

1 1 5 3

1
,

2

1
2 (2( ) )

2

2
2

T T

T

T

W z q z Bz q A D q

z B c c c c c I z

q A D c c c I q











  +  

   
+ − + + + +  

    

+  − + + 

 (18) 

 

where, γ is a positive arbitrary number, and the function V can 

be rewritten as: 

 

( ) ( )

 

1

2

1

1 1
,

4 2

( )

T T

n

i i M i i

i

V q z z H q z q A q

b c s q 
=

  +  

+ − 
 (19) 

 

To summarise, with α > 0, two matrices A1 and B1 are 

chosen to satisfy the following condition: 
 

1

0 MB C −  (20) 

 

13
1 1 52

c
A c c D



−
 

 + +  
 

 

( )( )1 4 2 6 5 32 2B c c c c c I





  
 + + + + 
  

 

(21) 

 

When C is a diagonal matrix with elements cᵢ and γ are given 

by appropriate constants. 

With B = B₀ + B₁, inequalities Eq. (20) and Eq. (21) imply 

the positive definiteness of V and W with respect to the 

variables z. From this, it is reasonable to yield Eq. (22): 
 

( ) 

( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

0

0

2

0

, 0 , 0

,

0 , 0

t
T

t

q q d

V q t z t V q z

W q z d

V q z

  

  



 +  

=  − 

+ 

 −  = −





 (22) 

 

With factors �̄�𝑖(𝑖 = 1, . . . ,6) are chosen to be positive and 

dependent on the desired values. Combining the conditions 

from Eq. (20) and Eq. (21), with 𝑊(𝑧, 𝛥𝑞) = 𝑊0(𝑧, 𝛥𝑞) +
𝑊1(𝑧, 𝛥𝑞). 

So, 
 

 

1

4 2 6 5 3

1 1 5 3

( , )

1
2 (2( ) )

2

(2 )
2

T

T

W z q

z B c c c c c I z

q A D c c c I q











   
 − + + + +  

    

+  − + + 

 
(23) 

 

It is clear that the right site of Eq. (23) is always positive, 

and the function 𝑊(𝑧, 𝛥𝑞)  is a positive matrix, then –

𝑊(𝑧, 𝛥𝑞) < 0.  
Based on the Lyapunov stability criterion, the MBAC rule 

mentioned above will treat the closed-loop control to be stable. 

Some of advantages of this approach include: 

(i) High accuracy without requiring precise knowledge of 

the robot's parameters. 

(ii) Compensation for inter-joint nonlinearities. 

This control methodology may have slight disadvantages. 

High computational cost, as the controller design is predicated 

on the robot's dynamics and necessitates direct parameter 

identification and updating. Besides, the selection of external 

parameters for the identification matrix significantly 

influences both system stability and transient response. The 

MBAC control law block diagram is presented in Figure 2. 

 

 
 

Figure 2. A schematic diagram of the MBAC algorithm to 

control a 4-DoF industrial SCARA robot 

 

 

3. SIMULATION AND DISCUSSIONS 

 

It is clear simulation is an initialization step which is highly 

significant to examine the effectiveness of a control strategy. 

Also, applying an efficient simulation tool plays a crucial role 

to verify precisely controlling the performance of the systems 

under study. This work employs MATLAB/Simulink for such 

a simulation process. The capability to construct visual models 

via Simulink's graphical user interface facilitates the 

simulation of complex systems by engineers, thereby enabling 

the evaluation and optimization of control parameters prior to 

physical implementation. Therefore, simulation with 

MATLAB/Simulink contributes to the reduction of time and 

cost, while concurrently enhancing the reliability and efficacy 

of control systems. 

To execute the simulation process, let us consider the 

parameters of a 4-DoF robot given in Table 1. 

 

Table 1. Simulation parameters for the 4-DoF robot model 

 
No. Parameter Value Unit 

1 Main arm (lengh) 0.25 [m] 

2 Main movement (θ1) 200 [degree] 

3 Fore arm (lengh) 0.15 [m] 

4 Fore arm movement (θ2) 250 [degree] 

5 Arm up-down (d3) (lengh) 0.75 [m] 

6 Arm up-down (d3) (lengh) 0.75 [m] 

7 Wrist rotation (θ4) 450 [degree] 

8 Moment of inertia of the 1st joint (J1) 0.098 [kg.m2] 

9 
Moment of inertia of the 2nd joint 

(J2) 
0.0115 [kg.m2] 

10 
Moment of inertia of the 4th joint 

(J4) 
0.005 [kg.m2] 

11 Mass of the 1st joint (m1) 1.9 [kg] 

12 Mass of the 2nd joint (m2) 0.93 [kg] 

13 Mass of the 4th joint (m4) 0.3 [kg] 
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To emphasize the dominant performance of the proposed 

MBAC, the robotic system also executes the simulation with a 

PD-G (Proportional-Derivative plus Gravity compensation) 

control algorithm [33-35]. 

Figure 3. Simulation results for all joints in case 1 with no load 

Figure 4. Simulation results for all joints in case 1 with load 2 kg 
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Figure 5. Simulation results for all joints in case 1 with load 6 kg 

 

 
 

Figure 6. Simulation results for all joints in case 2 with no load 
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Figure 7. Simulation results for all joints in case 2 with load 4 kg 

 

 
 

Figure 8. Simulation results for all joints in case 2 with load 6 kg 
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This study investigates two distinct simulation scenarios, 

each employing varying payloads, specifically 0 kg, 2 kg, 4 kg, 

and 6 kg, to assess system performance under load variations 

ranging from no-load to a maximum of 6 kg. 

(i) Case 1: The desired trajectories for joints 1 and 2 are 

presented in Figures 3-5 (a) and (b), respectively. The 

corresponding trajectory tracking responses for joints 3 and 4 

are illustrated in Figures 3-5 (c) and (d). Within these figures, 

the desired trajectory is denoted by a red dashed line, the PD-

G controller's response by a black dashed-dot line, and the 

proposed MBAC controller's response by a solid blue line. 

(ii) Case 2: Sinusoidal desired trajectories for joints 1 and 2 

are depicted in Figures 6-8 (a) and (b). Similarly, the tracking 

responses for joints 3 and 4 are shown in Figures 6-8 (c) and 

(d). 

The simulation results reveal a diverse spectrum of 

trajectory tracking responses, clearly demonstrating the 

superior control performance of the MBAC method compared 

to the PD-G approach. Across all simulation cases, the MBAC 

controller exhibited responses characterized by minimal 

overshoot, short settling times, rapid rise times, and negligible 

steady-state errors. Conversely, the PD-G controller displayed 

significant overshoot and suboptimal performance across 

other metrics, including substantial steady-state errors. 

Notably, the PD-G controller's performance is highly 

susceptible to payload variations, with significant degradation 

observed under both no-load and maximum-load conditions. 

In contrast, the proposed MBAC controller demonstrated 

robust performance, largely unaffected by payload changes, 

thereby underscoring a key advantage of the proposed control 

strategy. 

Some of the other comments on the MBAC algorithm are as 

follows: 

• Advantages: The MBAC law exhibits stability as required, 

with a rapid response time. It satisfies the technological 

requirements for design position, velocity, and torque 

applied to the joints. It does not require precise knowledge 

of system parameters, utilizing estimations for 

computation and subsequently converging to actual 

values. 

• Disadvantages: The computational burden is substantial 

and complex. Stability is dependent on the selected 

parameters. 

The MBAC law fulfills the accuracy requirements and 

ensures timely response, thus rendering it a suitable control 

law for the SCARA robot manipulator. 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

Simulation results demonstrate that the 4-DoF robotic arm, 

under model-based adaptive control, accurately tracks 

predefined trajectories. The steady-state and dynamic angular 

displacement errors are minimal. Under varying load 

conditions, while angular and velocity errors do exhibit 

changes, they remain within a narrow tolerance. Comparative 

simulations between non-adaptive (PD-G) and model-based 

adaptive control (MBAC) reveal that MBAC outperforms PD-

G. System performance, in terms of quality and settling time, 

is assessed through simulations involving variations in both 

the desired trajectory and the robot's load during motion. The 

findings indicate that with MBAC, the system exhibits rapid 

response while maintaining precise trajectory tracking with 

minimal deviation. 

The MBAC, even obtaining a lot of dominant performances, 

still has limitations as presented below: 

• The computational demand is substantial and intricate. A 

recognized characteristic of adaptive control strategies, 

including the MBAC algorithm proposed in this work, is 

their inherent computational complexity. This complexity 

is particularly pronounced in robotic systems, which 

exhibit inherently nonlinear, multivariable, and highly 

complex control dynamics. Consequently, the practical 

implementation of MBAC algorithms becomes 

significantly challenging when the number of joints 

increases substantially, such as exceeding six. In such 

scenarios, a high-performance computing infrastructure is 

essential for both simulation studies and real-time system 

execution. 

• System stability is dependent on parameter selection, e.g., 

parameter initiation. 

• The controller design, based on dynamic principles, relies 

on parameters derived from direct identification, thus 

requiring iterative updates of the robot's specific 

parameters. 

Future research will focus on evaluating the MBAC 

algorithm in conjunction with intelligent techniques, such as 

fuzzy logic and neural networks. Furthermore, robotic arms 

with higher degrees of freedom (e.g., 6-DOF) may serve as 

target platforms for the proposed control algorithm. Given the 

expanding range of industrial applications, the integration of 

AI-powered recognition and quality classification 

functionalities into industrial robotic arms warrants 

consideration in future research endeavors. 
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