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Population growth and technological development are fueling the increasing demand for 

electricity in Indonesia. By 2023, electricity consumption in Indonesia has reached 1,285 

KWH, mostly met by non-renewable energy. This condition raises concerns about the 

sustainability of energy supply. On the other hand, Indonesia has great potential to utilize 

ocean wave energy as a source of electricity. The novelty of this research lies in the 

Generalized Linear Model-based Gamma Regression modelling approach to evaluate the 

electrical energy potential of ocean wave energy in 175 Indonesian waters. The focus of 

this research lies on the specific analysis of the impact of wave type on power potential, 

while wind speed and weather factors have no significant influence. In addition, the 

selection of the best model was conducted using the Root Mean Square Error (RMSE) 

approach, which shows that the model predictions are getting closer to the actual values. 

The results show that low and medium wave types significantly reduce the power potential 

compared to calm waves, by 0.0000083% and 0.0000113%, respectively. These findings 

make an important contribution to understanding the potential of ocean wave energy as a 

renewable energy source in Indonesia. 
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1. INTRODUCTION

Energy is a fundamental necessity that supports a wide 

range of human activities across the globe. As the population 

grows and economic activities become more complex in the 

modern era, the demand for energy continues to rise steadily 

[1]. Population growth and national economic development 

are key drivers of rising energy consumption in Indonesia [2]. 

Most homes and facilities used daily require electrical 

equipment. 

Figure 1. Energy sources for electricity generation 
Source: Ministry of Energy and Mineral Resources, 2022. 

As a result, electricity use in Indonesia is increasing in line 

with population growth and advances in information and 

technology. Figure 1 is a pie chart of the wave type variable. 

Data from the Ministry of Energy and Mineral Resources 

(ESDM) shows that electricity consumption in 2023 rose to 

1,337 kWh per capita, marking a 13.s98% increase from 

2022’s figure of 1,173 kWh per capita [3]. Energy sources for 

electricity generation consists of new renewable energy 

sources 1.8% (Ministry of Energy and Mineral Resources).  

Indonesia’s energy consumption remains heavily reliant on 

non-renewable sources, particularly fossil fuels, which still 

surpass renewable energy usage [4, 5]. This is a severe concern 

for the sustainability of energy supply in the future.  

The ocean is renewable energy source, and innovations in 

current ocean [6-8] energy technology offer the potential to 

reduce carbon dioxide emissions from electricity generation. 

This makes it a viable option for long-term, sustainable energy 

solutions [6, 9].  

Indonesia, an archipelago nation with over 17,000 islands 

and about 65% ocean coverage, has more ocean than land. 

This provides a substantial opportunity to harness wave energy 

as tidal energy [10].  

A notable advantage of Indonesia's unique geographical 

characteristics is its extensive coastline of approximately 

81,000 km, consistent wave height patterns, and locations with 

gently sloping seabed topographies, which make it an ideal 
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case for Oscillating Water Column (OWC) technology. A key 

strength of the region lies in the untapped wave energy 

potential, which could be efficiently extracted in areas such as 

East Nusa Tenggara, Central Sulawesi, and other coastal zones, 

using advanced technologies like OWC. It is now well 

established that Indonesia's position within the Pacific Ring of 

Fire and monsoonal wind patterns contributes to a predictable 

and renewable source of ocean wave energy, offering a 

sustainable energy solution. 

The abundance of ocean area underscores the critical role of 

wind-driven wave data, which is essential for supporting 

maritime operations such as determining shipping routes, 

forecasting ocean hazards, and conducting scientific studies on 

ocean mixing and air-sea interactions. Additionally, wave 

energy from Indonesia’s oceans holds promising potential as a 

renewable energy source for the nation [11].  

In economic perspective, the utilization of OWC technology 

can reduce dependence on fossil fuels, decrease carbon 

emissions, and provide cost-effective solutions for energy 

generation in remote and underdeveloped regions, where grid 

connectivity is limited but wave energy is abundant. 

Ocean energy in Indonesia is seen as a promising form of 

renewable energy [6, 12-15] with the potential to significantly 

contribute to the global energy mix [6, 16]. 

Currently, various technologies have been developed for 

ocean wave power plants, including buoy systems, 

overtopping devices, and OWC technology [10, 17-22]. OWC 

technology is well-suited for coastal areas with gently sloping 

seabed topography and consistent wave height [23]. The 

suitability of OWC technology for Indonesian waters has been 

proven through studies in areas such as East Nusa Tenggara, 

Central Sulawesi, Pantai Baron in Yogyakarta, and Binongko 

Island in Wakatobi, Southeast Sulawesi. These studies show 

that OWC technology can efficiently harness wave energy in 

a variety of environmental conditions. 

Previous research conducted in regions such as East Nusa 

Tenggara [23], Central Sulawesi, Pantai Baron, Gunung Kidul 

DI Yogyakarya [24], and Binongko Island, Wakatobi, 

Southeast Sulawesi [25], the OWC technology has been 

utilized to analyze ocean wave energy potential, leading us to 

select this technology for analyzing Indonesian waters.  

There is a growing body of literature that recognizes the 

importance of identifying the specific factors influencing the 

potential power of ocean waves in Indonesia. However, a 

comprehensive statistical framework is still needed to 

accurately model this potential and understand the relationship 

between wave power potential and its determining factors. 

This study uses data that is secondary data obtained from 

the official website of the Indonesian Maritime Meteorology, 

Climatology, and Geophysics Agency (BMKG) in 2024. Then 

in this study using the Generalized Linear Model, this is 

because based on the results of the Cullen and Frey graph, it 

can be concluded that greenhouse gas emissions are not 

normally-distributed but are exponentially distributed, tending 

to the gamma or beta distribution. If the data is not normally 

distributed, one of the capitals that are robust against data that 

is not normally distributed is the Generalized Linear Model, 

besides that the GLM is also robust to estimate parameters 

with a relatively very small number of samples [26]. 

The secondary data from the Indonesian Maritime 

Meteorology, Climatology, and Geophysics Agency (BMKG), 

which includes wave type, average wind speed, and weather is 

incorporated as key predictors in the GLM. This data is 

analyzed to understand its impact on the ocean wave power 

potential, especially considering its exponential distribution 

nature, as indicated by the Cullen and Frey graph. The GLM 

was selected because it effectively handles non-normally 

distributed data, such as the gamma distribution, making it a 

robust approach for analyzing energy potential in datasets with 

small sample sizes or skewed distributions. By using this 

model, the study identifies significant factors influencing 

ocean wave power potential and evaluates their predictive 

power through maximum likelihood estimation and RMSE-

based validation. Figure 2 is the weather variable. 

 

 
 

Figure 2. Cullen and Frey plot 

 

The objectives of this research are to determine whether 

ocean wave power potential in Indonesian waters can be 

effectively analyzed using statistical modeling techniques, to 

identify and quantify the factors influencing wave energy 

potential through regression analysis, and to evaluate the 

suitability of OWC technology in the context of Indonesia's 

diverse marine topography and wave characteristics. This 

study seeks to obtain data which will help to address these 

research gaps and enhance understanding of the untapped 

potential of ocean wave energy as a renewable energy source 

for Indonesia.  

This article presents a novel approach by focusing on the 

impact of wave types on the potential power generation in 

Indonesia's unique maritime conditions. Unlike previous 

studies that broadly assess wave energy potential, this study 

employs a Gamma Regression model to capture the non-linear 

relationship between wave types and power potential. 

Additionally, the analysis incorporates detailed local data on 

wave types and weather conditions, providing a more tailored 

model for coastal areas in Indonesia. This research not only 

contributes to theoretical advancements in wave energy 

modeling but also offers practical recommendations for 

optimizing OWC systems in regions with diverse wave 

climates. 

 

 

2. LITERATURE REVIEW 

 

Wave energy has great potential to meet the growing energy 

demand worldwide as it is a sustainable renewable energy 

source. The kinetic energy of ocean waves can be converted 

into electricity [27], which is an environmentally friendly 
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alternative that is ideal for coastal countries like Indonesia. In 

the future, harnessing wave energy can help diversify clean 

energy sources. Technologies such as OWC are one such 

example, OWC plays an important role in maximizing wave 

energy in technologies such as OWC [28]. 

The OWC device is a new technology that converts wave 

energy into electric power by utilizing the oscillation of a 

water column to drive a turbine. The device captures the air 

movement generated by wave changes, which then drives a 

turbine connected to a generator. Using numerical and multi-

domain simulation methods, recent advances in floating 

OWCs have improved their efficiency and hydrodynamic 

performance and can address issues such as the coupling effect 

between water column oscillations and air movement in space 

[29]. 

Southeast Asia, including Indonesia, has significant 

geographic potential for the development of ocean energy 

technologies such as OWC due to its extensive coastline and 

dense coastal areas. OWC technology can improve the 

efficiency of ocean wave energy utilization in Indonesia. 

OWC technology has the potential to be an energy solution 

that can be adapted to various maritime climate conditions, 

especially for Indonesia's coastal areas and small islands that 

face electricity problems. In addition, to become a competitive 

and sustainable source of clean energy in Indonesia's energy 

market, OWC development requires investment support, like 

other ocean technologies in Southeast Asia [30]. 

With seas area of 70% larger than land, Indonesia 

encourages the potential for marine energy as an alternative to 

renewable energy. The OWC method can convert ocean wave 

energy by using oscillation column directing wave energy 

through the OWC door opening to generate electricity. OWCs 

are built to function in various water conditions with varying 

wave characteristics, making them flexible to changes in 

waves and weather. To increase efficiency, the special design 

of OWCs utilizes the air pressure generated by ocean 

oscillations to drive the turbine.  

To adapt to various wave conditions in Indonesian waters, 

OWCs are equipped with features such as adjustable air 

chamber dimensions, turbine designs optimized for fluctuating 

air pressure, and modular structures that can accommodate 

varying seabed morphologies. For example, resonant 

chambers in OWCs installed along the southern coast of Java, 

where wave heights are higher due to direct exposure to the 

Indian Ocean, have been specifically designed with thicker 

walls and narrower outlets to handle the increased wave 

energy. Meanwhile, in calmer regions such as the northern 

coast of Sulawesi, the chambers utilize wider outlets and 

thinner walls to maximize energy capture from lower-energy 

waves. The outlet for airflow is also adjusted to optimize 

energy conversion in mild, medium, or storm conditions. This 

flexibility allows OWCs to remain effective in diverse wave 

conditions, from small seasonal waves influenced by 

monsoonal patterns to more energetic storm-driven waves 

during the rainy season. 

Numerical simulations and experimental studies conducted 

in East Nusa Tenggara have shown that wave energy 

conversion efficiency improves significantly when OWCs are 

deployed in locations with consistent wave heights and gentle 

slopes, characteristics commonly found in the region. These 

findings emphasize the importance of localized designs that 

account for Indonesian coastal topography and climate 

variability. For example, deploying OWCs on straight beaches, 

such as those in Sumba Island, or near areas with steady wind-

driven wave patterns, like the southern coast of Bali, has been 

shown to enhance their energy conversion efficiency. 

Simulations have also demonstrated how variations in seabed 

morphology, such as post-storm sediment redistribution near 

Flores Island, can impact OWC performance. In such cases, 

smaller initial wave heights show a higher energy conversion 

rate in mild wave conditions, making localized adaptations 

essential for optimizing efficiency in Indonesian waters. 

The focus of OWC technology research is twofold: 

improving the energy conversion efficiency of the device and 

reducing device damage. By combining these two perspectives, 

this research can improve the overall cost-effectiveness of 

OWC devices and promote their launch in the market. In terms 

of improving efficiency [31], it is shown through experimental 

research and numerical simulations that, based on the focusing 

principle of the parabolic reflector, the upper efficiency limit 

can be significantly improved by combining the OWC wave 

energy converter with a parabolic breaker [32]. Evaluated 

various shore scenarios on the wave energy extraction 

efficiency of the OWC array. The results show that mounting 

the array on a straight beach gives the best results. 

Several studies have highlighted the importance of 

optimizing chamber dimensions and airflow management to 

enhance the efficiency of OWC systems. For instance, 

adjustments to chamber width and outlet design have been 

shown to improve air pressure consistency, thereby increasing 

turbine performance. Specifically, prototypes such as the one 

deployed in Pantai Baron, Yogyakarta, Indonesia, 

demonstrated that a chamber width of 2.4 meters achieved an 

energy conversion efficiency of approximately 8% under 

optimal wave conditions. These findings underscore the 

critical role of chamber design in maximizing the potential of 

OWC systems, especially in diverse wave climates like those 

found in Indonesia. 

A resonant chamber with wall thickness, width and height 

consists of the main device, as well as an outlet for airflow 

with diameter. Many investigations have investigated the front 

wall of the device receiving the incident wave [33]. Simulation 

on varying waves condition and seabed morphologies 

conducted to examine their impact on performance on OWC 

wave energy converters. It specifically analyzes: (1) storm 

wave climates over seabeds that have evolved under low- and 

medium-energy conditions, and (2) low- and medium-energy 

wave conditions over a seabed modified by storm events, 

representing onset-storm and post-storm scenarios [34]. 

Results indicate that wave height decreases as the seabed 

evolves in both mild and highly energetic wave climates, with 

milder conditions being more affected by these changes. 

Additionally, as waves approach the OWC, smaller initial 

wave heights show a higher growth rate, enhancing energy 

conversion in milder conditions [34]. 

There is limited research conducted in Indonesia on the 

efficiency and effectiveness of OWCs, so additional research 

is needed to determine appropriate design parameters. A 

feasibility analysis that considers environmental factors such 

as wave type, wind speed, and weather patterns is expected to 

produce an optimal and sustainable OWC device for 

Indonesia's coastal areas.  
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3. METHODS 

 

3.1 Ocean wave power potential  

 

The sea wave power plant (PLTGL) OWC method 

generates electricity by using seawater wave power. MWPP 

has a working principle: converting sea wave energy 

(mechanical energy) into electrical energy. The collected sea 

wave energy rotates the turbine connected to the generator, 

thus producing electrical energy. 

The potential power generated by ocean waves is obtained 

from mathematical calculations involving several main factors, 

namely wave height (H), wave period (T), and wavelength (λ). 

The wave period (T) value can be calculated using the 

following formula:  

 

𝑇 = 3.55√𝐻 (1) 

 

Calculations are carried out to find the wavelength value 

after obtaining the wave period value. The earth’s gravity 

value is 9.81 m/𝑠2. 

 

𝜆 =
𝑔

2𝜋
𝑇2 (2) 

 

To obtain the total energy value generated by ocean waves, 

the following formula is used: 

 

𝐸 =
1

2
× 𝑤 × 𝜌 × 𝑔 × 𝑎2 × 𝜆 (3) 

 

In this equation, 𝐸 represent the total energy (in joules), 𝑤 

is the angular frequency of the wave measured in radians per 

second (rad/s), and 𝜌 denotes the density of seawater, typically 

in kilograms per cubic meter (kg/m3). The variable 𝑔 stands 

for gravitational accelation, approximately, while 𝑎 represents 

the wave amplitude, which is the maximum height of the wave 

from its equilibrium point (in meters). Lastly, 𝜆  is the 

wavelength, defined as the distance between two consecutive 

wave crests. 

The total efficiency of the OWC system is the product 

efficiency of the chamber, the efficiency of the generator 

system. The efficiency of the chamber is the potential for 

ocean wave power that can be absorbed by the chamber in the 

OWC system [24]. Following the prototype used in Pantai 

Baron, Gunung Kidul, DI Yogyakarta Indonesia [24], the 

chamber width of the OWC was set at 2.4 meters. With an 

efficiency of 8%, this dimension was chosen to reflect the 

optimal conditions expected from the prototype. 

With a seawater density of 1,030 Kg/𝑚2. After obtaining 

the total energy value generated, the power can be calculated 

using the following formula: 

 

𝑃 =
𝐸

𝑇
 (4) 

 

The potential power generated by the MWPP OWC method 

has a unit of Watts. The value of the potential power generated 

by this MWPP is the response variable in statistical analysis.  

 

3.2 Types of waves  

 

Waves are the movement of the rise and fall of seawater in 

a direction perpendicular to the sea surface that forms a 

sinusoidal movement. According to the Meteorology, 

Climatology, and Geophysics Agency, there are seven 

categories of waves, namely calm waves with a height of 

0.01m – 0.5m; low waves with a height of 0.5m – 1.25m; 

medium waves with a height of 1.25m – 2.5m; high waves 

with a height of 2.5m – 4m; very high waves with a height of 

4m – 6m; and extreme waves with a height of 6m – 9m [35]. 

Two main types of waves are generated by seismic activity: 

pressure waves traveling at five km/s, and shear waves 

traveling at one km/s [36]. 

 

3.3 Wind speed 

 

Wind speed is a unit that measures the pressure of air flow 

speed from high pressure to low pressure. It is measured using 

an anemometer or can be classified using the Beaufort scale 

based on observations of the specific effects of certain wind 

speeds. Wind speed is critical for generating energy from wind 

turbines, both onshore and offshore. Since differences in wind 

speed affect the efficiency of energy production, it is crucial 

to monitor and predict wind speed to run wind turbines in the 

best possible way [37]. Wind speed is critical to support 

renewable energy, especially in hybrid energy systems that 

combine wind and solar power. This study shows that the wind 

speed of traffic flow on a highway increases the energy 

potential by 22% compared to natural wind, generating a total 

power of 552.11 watts. This potential shows that wind speeds 

from both natural and artificial sources can help improve the 

efficiency of renewable energy production [38]. Wind speed is 

often used in wind power generation to generate sustainable 

energy, as the wind moves from an area of high pressure to an 

area of low pressure. It is affected by differences in air pressure 

and temperature in different places [39]. 

 

3.4 Weather 

 

Weather is the current condition of the atmosphere in a 

relatively short time in a narrow area. The Meteorology, 

Climatology, and Geophysics Agency state in its weather 

forecasts that there are ten types of weather in Indonesia, 

namely, sunny, partly cloudy, cloudy, light rain, moderate rain, 

heavy rain, thunder rain, heavy cloudy, local rain, and fog. 

Weather patterns consist of various atmospheric conditions, 

such as temperature, humidity, wind speed, and air pressure; 

the interaction between these conditions causes phenomena 

such as storms, droughts, and seasonal climate change. Natural 

processes and, significantly more, human activities alter 

atmospheric composition and temperature [40]. 

 

3.5 Generalized Linear Model (GLM) 

 

The Generalized Linear Model is a development of linear 

regression models in which the distribution of the response 

variable belongs to the exponential distribution family [41]. In 

GLM the distribution form of the response variable is not 

required to be in the form of a symmetrical bell curve or 

normally distributed, but distributions that belong to the 

exponential family distribution, including the Poisson, gamma, 

binomial, inverse Gaussian, normal, and binomial negative 

distributions [42]. The assumption that the response has an 

exponential family distribution is used in this linear model [43]. 

GLM chosen for the flexibility in handling mixed predictor 

variables, including category variables coded as dummies. In 

this study, ability to handle both continuous and categorical 

134



 

predictors, including dummy variables allows GLM to capture 

the influence of specific categories in the model, which cannot 

be handled directly by ordinary linear regression 

Data variables such as wave type, average wind speed, and 

weather derived from BMKG are incorporated into the model 

as predictors. This integration allows the exploration of their 

relationship with ocean wave power potential while addressing 

the challenges of data skewness and limited sample size 

through the gamma regression approach. 

 

3.6 Gamma regression model 

 

Testing the distribution of the data using Cullen and Frey 

plots, the ocean wave potential energy variable follows a 

Gamma distribution. Gamma regression is a component of the 

Generalized Linear Model. This ensures that the model can 

accurately identify complex relationship in the data. The 

gamma distribution is a continuous distribution introduced by 

Stacy in 1962, applicable to positive random variables with 

variable values (Yi) in the range (0, ∞). It is widely used in 

various medical fields [14, 44]. When the random variable (y) 

follows a two-parameter gamma distribution [44]. 

 

𝑓(𝑦; 𝜃, 𝜏) =
𝜃𝜏

Γ𝜏  
𝑦𝜏−1 exp exp(−𝜃𝑦) 𝐼0,∞𝑦    𝜏, 𝜃 > 0 (5) 

 

In other terms, Eq. (1) can be rewritten as follows [44]: 

 

𝑓(𝑦; 𝜃, 𝜏) =
𝜃

Γ𝜏  
(𝜃𝑦)𝜏−1 exp exp(−𝜃𝑦) 𝐼0,∞𝑦 (6) 

 

where, 𝜏 represents the shape parameter, and 𝛤(.) denotes the 

gamma function. With 𝐸(𝑌𝑖 ) = 
𝜏

𝜃
 and 𝑉(𝑌𝑖 ) =

𝜏

𝜃2 = 𝜇2 (
1

𝜏
) =

𝜎2(𝐸(𝑌𝑖))
2

. The cumulative distribution function (CDF) is 

expressed as: 

 

𝐹(𝑦) =
1

Γτ

∫ 𝑢𝜏−1𝑒−𝑢𝑑𝑢
𝑦

0

 (7) 

 

When the shape parameter 𝜏 is not fixed and instead 

includes a linear component, it can be modeled accordingly. 

This allows the gamma regression model to jointly account for 

both the mean and shape parameters of the gamma-distributed 

variable. Specifically, let 𝑌𝑖~𝐺(𝜇𝑖 , 𝜏𝑖) for 𝑖 = 1,2, … , 𝑛 [44]. 

Here, the linear predictor for the mean is defined as 𝜂1𝑖 =
𝑔(𝜇𝑖) = 𝑥𝑖𝛽 , and for the shape as 𝜂2𝑖 = ℎ(𝛼𝑖) = 𝑧𝑖𝛾 . The 

parameters 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)  and 𝛾 = (𝛾0, 𝛾1, … , 𝛾𝑘) 

correspond to the regression coefficients for the means and 

shape, respectively. The function 𝑔(𝜇)  serves as the link 

function for the mean (typically the natural link function), and 

ℎ(𝛼)  is the link function for the shape (commonly 

logarithmic). The linear predictors are 𝜂1𝑖 and 𝜂2𝑖, with 𝑥𝑖 =
(𝑥𝑖1, … , 𝑥𝑖𝑝)  as the vector of independent variables for the 

mean and 𝑧𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝑘) as the vector shape. 

 

3.7 Parameter estimation of gamma regression model  

 

The parameters of the gamma regression model are 𝜃 and 𝜏. 

The parameter estimation can be done using the Maximum 

Likelihood Estimation (MLE) method. The MLE method can 

obtain consistent estimates and smaller variances that are 

easier to understand. 

The likelihood function of the gamma regression model in 

equation is as follows [44]. 

 

𝐿 = ∏ 𝑓(𝑦; 𝜃, 𝜏)

𝑛

𝑖=1

 

𝐿 = ∏
1

Γ𝜏𝑖

(
𝜏𝑖

𝜇𝑖
)

𝜏𝑖

𝑦𝑖
𝜏𝑖−1 

𝑒𝑥𝑝 (−
𝜏𝑖

𝜇𝑖
𝑦𝑖) 

𝑛

𝑖=1

 

log log(𝐿) = ∑ {−𝑙𝑜𝑔𝑙𝑜𝑔(+𝜏𝑖𝑙𝑜𝑔𝑙𝑜𝑔 (
𝜏𝑖𝑦𝑖

𝜇𝑖
)

𝑛

𝑖=1

− 𝑙𝑜𝑔𝑙𝑜𝑔(𝑦𝑖) − (
𝜏𝑖

𝜇𝑖
) 𝑦𝑖} 

(8) 

 

where, 𝜇𝑖 = 𝑥′𝛽 and 𝜏𝑖 = exp (𝑧′𝛾). 

 

𝜕𝐿

𝜕𝛽𝑗
= ∑ −

𝜏𝑖

𝜇𝑖
(1 −

𝑦𝑖

𝜇𝑖
) 𝑥𝑖𝑗          ; 𝑗 = 1, … , 𝑝

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝛾𝑘
= ∑ −𝜏𝑖 [

𝑑

𝑑𝜏𝑖
𝑙𝑜𝑔𝑙𝑜𝑔Γτi

− 𝑙𝑜𝑔𝑙𝑜𝑔 (
𝜏𝑖𝑦𝑖

𝜇𝑖
) − 1

𝑛

𝑖=1

+
𝑦𝑖

𝜇𝑖
] 𝑧𝑖𝑘; 𝑘 = 1, … , 𝑟         , 𝑗 ≥ 𝑘, 𝑝

≥ 𝑟 

(9) 

 

Through the Hessian Matrix, which is a matrix of second-

order partial derivatives for a multivariable function, all 

possible second-degree partial derivatives of the function are 

represented [44]. 

 

𝜕𝐿
2

𝜕𝛽𝑘𝛽𝑗
= ∑

𝜏𝑖

𝜇𝑖
2 (1 −

2𝑦𝑖

𝜇𝑖
) 𝑥𝑖𝑗𝑥𝑖𝑘

𝑛

𝑖=1

; 𝑗, 𝑘 = 1, … 𝑝 

𝜕𝐿
2

𝜕𝛾𝑘𝛽𝑗
= ∑

𝜏𝑖

𝜇𝑖
(1 −

𝑦𝑖

𝜇𝑖
) 𝑥𝑖𝑗𝑧𝑖𝑘

𝑛

𝑖=1

; 𝑘 = 1, … 𝑟, 𝑗 = 1, … , 𝑝 

𝜕𝐿
2

𝜕𝛾𝑘𝛾𝑗
= ∑ −𝜏𝑖 [

𝑑

𝑑𝜏𝑖
𝑙𝑜𝑔𝑙𝑜𝑔Γ(𝜏𝑖) − 𝑙𝑜𝑔𝑙𝑜𝑔 (

𝜏𝑖𝑦𝑖

𝜇𝑖
) − 1

𝑛

𝑖=1

+
𝑦𝑖

𝜇𝑖
] 𝑧𝑖𝑗𝑧𝑖𝑘

− ∑ 𝜏𝑖 [
𝜏𝑖𝑑2

𝑑𝜏𝑖
2 log 𝑙𝑜𝑔Γ(τi)

𝑛

𝑖=1

− 1] 𝑧𝑖𝑗𝑧𝑖𝑘    ; 𝑗, 𝑘 = 1, … , 𝑟 

(10) 

 
The Fisher Information Matrix was used to compute the 

contrast matrix corresponding to the maximum likelihood 

estimates of my agencies [44]. 

 

𝐼(𝛽) = [−𝐸 (
𝜕𝐿

2

𝜕𝛽𝑘𝛽𝑗
) − 𝐸 (

𝜕𝐿
2

𝜕𝛾𝑘𝛽𝑗
) − 𝐸 (

𝜕𝐿
2

𝜕𝛾𝑘𝛽𝑗
)

− 𝐸 (
𝜕𝐿

2

𝜕𝛾𝑘𝛾𝑗
)] 

−𝐸 (
𝜕𝐿

2

𝜕𝛽𝑘𝛽𝑗
) = ∑

𝜏𝑖

𝜇𝑖
2 𝑥𝑖𝑗𝑥𝑖𝑘

𝑛

𝑖=1

 

−𝐸 (
𝜕𝐿

2

𝜕𝛾𝑘𝛽𝑗
) = 0, 𝑘 = 1, … , 𝑟; 𝑗 = 1, … , 𝑝 

−𝐸 (
𝜕𝐿

2

𝜕𝛾𝑘𝛾𝑗
) = ∑ 𝜏𝑖

2 [
𝑑2

𝑑𝜏𝑖
2 𝑙𝑜𝑔𝑙𝑜𝑔Γ(𝜏𝑖) −

1

𝜏𝑖
] 𝑧𝑖𝑗𝑧𝑖𝑘; 𝑗, 𝑘

𝑛

𝑖=1

= 1, … , 𝑟 

(11) 
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𝐼(𝛽) = [∑
𝜏𝑖

𝜇𝑖
2 𝑥𝑖𝑗𝑥𝑖𝑘0 ∑ 𝜏𝑖

2 [
𝑑2

𝑑𝜏𝑖
2 𝑙𝑜𝑔𝑙𝑜𝑔Γ(𝜏𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

−
1

𝜏𝑖
] 𝑧𝑖𝑗𝑧𝑖𝑘] 

 

The Fisher Information Matrix is noted to be a diagonal 

matrix, with one block associated with the medium regression 

parameters and another with the shape regression parameter. 

This structure implies that the maximum likelihood estimators 

for 𝛽 and 𝛾 are independent of each other. Consequently, the 

parameters of the Gamma Regression Model (GRM) cannot 

be estimated using conventional methods. Instead, we apply 

the Fisher scoring method, a repetitive algorithm similar to the 

Newton-Raphson method or iterative weighted least squares, 

using the expected value of the second derivatives matrix. This 

algorithm yields estimates for the parameters and �̂�and 𝛾 [43]. 

 

�̂�𝑘+1 = (𝑋𝑊1
𝑘𝑋)−1𝑋𝑊1

𝑘𝑌 (12) 

 

A diagonal matrix with elements along the main diagonal, 

denoted as 𝑊1
𝑘, contains these values. 

 

𝑊1
𝑘 =

(𝜇𝑖
2)𝑘

𝜏𝑖
𝑘  

𝛾𝑘+1 = (𝑍𝑊2
𝑘𝑍)−1𝑋𝑊2

𝑘𝑌 

(13) 

 

where, 𝑊2
𝑘 =

1

𝜏𝑖
𝑘. 

 

3.8 Multicollinearity  

 

Multicollinearity is when the predictor variables have a 

linear relationship or high correlation. The amount that can be 

used to detect the presence or absence of multicollinearity is 

the Variance Inflation Factor (VIF). 

 

𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2 , 𝑗 = 1,2, … , 𝑘 (14) 

 

with 𝑅𝑗
2  is the coefficient of determination between 𝑋𝑗  other 

predictor variables. The value 𝑅𝑗
2 can be calculated using the 

following formula,  

 

𝑅𝑗
2 =

∑ (𝑋�̂� − �̅�)
2𝑘

𝑗=1

∑ (𝑋𝑗 − �̅�)
2𝑘

𝑗=1

 (15) 

 

The criteria used to detect the presence or absence of 

multicollinearity are 𝑉𝐼𝐹 > 10 if the value of 𝑉𝐼𝐹 > 10 it is 

said to be multicollinear in the data.  

To detect multicollinearity, a VIF threshold of 10 was used, 

consistent with established guidelines. Predictor variables 

with a VIF exceeding this threshold were considered to exhibit 

significant multicollinearity. If detected, such variables were 

either removed from the model or combined with other related 

variables to reduce redundancy and improve model stability. 

 

3.9 Model significance test  

 

The model significance test is carried out to determine 

whether the predictor variables can simultaneously influence 

the response variable. The Likelihood Test (LRT) is used to 

test the significance of the model in gamma regression with 

the following hypothesis, 

𝐻0: There is no significant fit difference between the simple 

and more complex models. 

𝐻1: There is a significant difference in fit between simple 

and more complex models, with more complex models better 

explaining the data. 

Test Statistics 

 

𝐺2 = 2 ∑ 𝑓𝑖𝑗𝑙𝑛 (
𝑓𝑖𝑗

𝑒𝑖𝑗

)

𝑖𝑗

 (16) 

 

with  

 

𝑒𝑖𝑗 =
𝑓𝑖. × 𝑓.𝑗

𝑓..

 (17) 

 

𝑓𝑖𝑗: cell frequency of i-th row and j-th column 

𝑒𝑖𝑗: expected frequency of cells of i-th row and j-th column 

Test Criteria  

Reject 𝐻0 if the value 𝐺2 < 𝜒(𝛼,1)
2  with a free degree of 1 

and a significance level of 𝛼. In this study used a value 𝛼 of 

10%.  

 

3.10 Parameter significance test  

 

A parameter significance test is conducted to determine 

whether the parameters used have a significant effect on the 

model or not. The Wald test is used to test the significance of 

parameters with hypotheses,  

𝐻0 ∶  𝛽𝑗 = 0, with 𝑗 = 1,2, … , 𝑚 (There is no effect of the 

jth predictor variable on the response variable) 

𝐻1 ∶  𝛽𝑗 ≠ 0, with 𝑗 = 1,2, … , 𝑚 (There is an effect of the 

jth predictor variable on the response variable) 

Test Statistics  

 

𝑊 =
𝛽�̂�

𝑆𝐸(𝛽�̂�)
 (18) 

 

with 

𝑊: Wald test statistic 

𝛽�̂�: Estimator of 𝛽𝑗  

𝑆𝐸(𝛽�̂�): Standard error of 𝛽𝑗 

Test Criteria  

Reject 𝐻0  if value |𝑊| > |𝑍𝛼

2
|  or when the p-value < 𝛼 , 

accept in all other cases.  
 

3.11 Root Mean Square Error (RMSE) 
 

RMSE is the square root of the mean squared error (MSE) 

[45]. RMSE is a method of summing the square of the error or 

difference between the real and predicted values. In this case, 

RMSE is the prediction of potential ocean wave power 

compared to the actual observed potential ocean wave power 

value, calculated by squaring the error, divided by the average 

amount of data, and then rooted [46]. 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑘 − 𝑥𝑘)2

𝑁

𝑘=1

 (19) 
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with 

N: number of data  

𝑥𝑘: true value  

�̂�𝑘: predicted value 

 

3.12 Data 

 

The data used in this study were obtained from official and 

reputable sources, including the Indonesian Maritime 

Meteorology, Climatology, and Geophysics Agency (BMKG). 

To ensure accuracy, we cross-referenced the data with other 

publicly available reports and performed consistency checks 

to detect and correct anomalies. These steps included verifying 

wave height categories, wind speed ranges, and weather 

classifications against historical records and BMKG’s 

standardized measurement guidelines (Table 1).  

 

Table 1. Variables in research 

 
Variable Unit Scale 

Ocean Wave Power Potential Watt Ratio 

Average Wind Speed KTS Ratio 

Wave Type - Ordinal 

Weather - Ordinal 

 

Ocean wave power potential refers to how much energy can 

be generated by ocean waves. It indicates the ability to harness 

energy from the movement of ocean waves based on wave 

conditions. This variable is critical to assessing the feasibility 

of using ocean wave energy as a sustainable renewable energy 

source. 

The average rate at which wind moves through the 

atmosphere is known as the average wind speed. It is critical 

to understanding how wind affects the formation and intensity 

of ocean waves because wind speed contributes to wave 

formation and height. In a maritime context, wind speed is 

measured in knots (KTS), a unit commonly used to measure 

wind speed. Average wind speed is measured as a continuous 

variable over a given period, rather than in specific categories, 

and provides useful information on how wind affects the 

possible use of wave energy. 

Wave type refers to the classification of waves based on 

height, which helps in understanding the different wave 

conditions that can impact the potential wave energy. 

According to the Indonesian Meteorology Climatology and 

Geophysics Agency, seven categories of waves, namely calm 

waves with a height of 0.01m – 0.5m; low waves with a height 

of 0.5m – 1.25m; medium waves with a height of 1.25m – 

2.5m; high waves with a height of 2.5m – 4m; very high waves 

with a height of 4m – 6m; and extreme waves with a height of 

6m – 9m. These classifications are important in assessing how 

different wave conditions affect energy generation. This 

classification is important for assessing how different wave 

conditions affect energy generation. 

Wave behavior and energy potential can be affected by 

various weather components, such as cloud cover, rainfall, and 

temperature. Some weather types are classified based on cloud 

cover and rain intensity. For example, cloudy indicates thin 

cloud cover; heavy cloudy indicates thick cloud cover; bright 

sunny indicates a combination of sunshine and clouds; heavy 

rain indicates heavy rainfall; localized rain indicates localized 

rain; and light rain indicates light rainfall. These weather types 

are classified by the extent of cloud cover. 

To enhance the chamber efficiency in the OWC system, 

specific design parameters were implemented. The chamber 

width was set to 2.4 meters, consistent with the prototype used 

in Pantai Baron, Yogyakarta, Indonesia, which demonstrated 

optimal performance under similar wave conditions. 

Additionally, the airflow outlet was modified to optimize 

energy conversion during wave oscillations. Numerical 

simulations were conducted to evaluate the impact of these 

modifications on energy absorption and conversion efficiency, 

focusing on the interaction between wave dynamics and air 

pressure within the chamber. 
 

3.13 Data processing 
 

Data processing using R software with attached syntax. The 

research framework in this study is shown in Figure 3. 
 

 
 

Figure 3. Research framework 
 

Hypothesis 

The alternative hypotheses used are: 

H1: There is an influence between the wave types, average 

wind speed, and weather to the ocean wave power potential. 

Data preprocessing was conducted in R to ensure the quality 

and reliability of the dataset before analysis. Missing data were 

identified and addressed using the mice package for multiple 

imputations, ensuring minimal bias in the dataset. Outliers 

were detected using boxplots and handled through capping at 

the 1st and 99th percentiles to reduce the influence of extreme 

values. Variables were standardized using the scale() function 

to ensure uniformity in measurement scales, which is 

particularly critical for regression models. Additionally, 

categorical variables such as wave type and weather were 

converted into dummy variables using the model.matrix() 

function to integrate them into the analysis effectively. The 

final dataset was verified for consistency, and summary 

statistics were recalculated to confirm data integrity before 

proceeding with modeling. 
 

 

4. ANALYSIS AND FINDINGS 
 

4.1 Descriptive statistics 
 

As a first step, data exploration was conducted to 

understand the characteristics of the research data. This 

descriptive analysis is important to determine the distribution, 

central tendency, and variability of the key variables. Table 2 

presents the results of the descriptive statistics of the variables 

potential power generated and average wind speed, which 

provide an initial overview of the pattern and relationships in 

the data. 

 

Table 2. Descriptive statistics  

 
Variable Min. Mean Std. Deviation Max. 

Power Potential 150,889 108,057 31,104.48 150,889 

Wind Speed 20 9.791 3.217353 20 
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Figure 4. Wave types pie chart 

 

 
 

Figure 5. Wheater pie chart 

 

Based on Table 2, the mean, standard deviation, minimum, 

and maximum values of the potential power generated and 

average wind speed variables are obtained in the variable 

potential power generated obtained and average values of 

108,057 with the potential power generated by the average sea 

wave height in Indonesian waters at least 55,645 Watt and a 

maximum of 150,889 Watt. The average wind speed variable 

obtained an average value 9.791 with a minimum value of 4 

and a maximum value of 20.  

In the wave type variable, there are three categories on May 

2, 2024, namely, calm waves, low waves, and high waves. 

With details, calm waves occur in 29 waters in Indonesia, low 

waves occur in 99 waters in Indonesia, and moderate waves 

occur in 47 waters in Indonesia.  

In the weather variable, seven types of weather occur on 

May 2, 2024, in Indonesia waters, namely, partly cloudy, 

cloudy, heavy cloudy, local rain, light rain, moderate rain, and 

heavy rain. With details of bright cloudy weather occurring in 

30 waters in Indonesia, cloudy weather occurs in 43 waters in 

Indonesia, thick cloudy weather occurs in 13 waters in 

Indonesia, local rain weather occurs in 4 waters in Indonesia, 

light rain weather occurs in 51 waters in Indonesia, moderate 

rain weather occurs in 32 waters in Indonesia, and heavy rain 

weather occur in 2 waters in Indonesia. 

In addition to the individual pie charts of wave type (Figure 

4) and weather (Figure 5), an analysis was conducted to 

explore the relationship between these two variables. A 

contingency table was created to examine the frequency 

distribution of weather conditions across different wave types. 

The results indicate that low waves are most commonly 

associated with cloudy conditions, while high waves tend to 

occur more frequently during heavy rain. Furthermore, a Chi-

Square Test showed a significant association (p-value < 0.05) 

between wave type and weather, suggesting that weather 

conditions have an observable influence on wave 

characteristics. 

To investigate whether wind speed and weather conditions 

influence wave types, an additional analysis was conducted. A 

Chi-Square test was performed to examine the relationship 

between weather and wave types, which revealed a significant 

association (p-value < 0.05). Specifically, calm waves were 

more commonly associated with partly cloudy or cloudy 

weather, while high waves were observed more frequently 

during heavy rain. Additionally, a regression analysis 

indicated that higher wind speeds were significantly correlated 

with the occurrence of high waves (p-value < 0.01). These 

results suggest that wind speed and weather indirectly affect 

power potential by influencing wave types, highlighting their 

role in shaping wave energy dynamics. 
 

4.2 Generalized linear model analysis 
 

From the previous explanation using the Cullen and Frey 

graph, it can be concluded that wave power potential by OWC 

method not normally distributed but are exponentially 

distributed, tending to have a gamma or beta distribution. 

Therefore, to analyze the variables that gives a potential to 

generate renewable energy, the Generalized Linear Model 

with Gamma link will be used.  

The Generalized Linear Model results show that low and 

medium wave types have a significant negative effect on ocean 

wave power potential. While other variables such as weather 

and average wind speed have no significant effect on ocean 

wave power potential.  

Gamma regression data analysis will use Maximum 

Likelihood Estimation (MLE) parameter estimation. The 

result of testing the initial model, namely with the predictor 

variables of maximum wind speed (X1), wave type (X2), and 

weather (X3) are seen in the Table 3. 
 

Table 3. Gamma regression modeling 
 

Parameters 
Estimated 

Value 
Standard Error p-Value 

Intercept 1.797 × 10−5 1.230 × 10−20 < 2 × 10−16 

X1 8.818 × 10−23 4.738 × 10−22 0.853 

X2_Low −8.270 × 10−6 7.361 × 10−21 < 2 × 10−16 

X2_Medium −1.124 × 10−5 7.625 × 10−21 < 2 × 10−16 

X3_Cloudy −2.066 × 10−21 1.095 × 10−20 0.851 

X3_Cloudy 

Thick 
−9.952 × 10−22 1.143 × 10−20 0.931 

X3_Cloudy 

Sunny 
5.610 × 10−21 1.104 × 10−20 0.612 

X3_Heavy Rain −2.767 × 10−21 1.784 × 10−20 0.877 

X3_Local Rain −1.441 × 10−20 1.086 × 10−20 0.895 

X3_Light Rain −1.745 × 10−21 1.116 × 10−20 0.876 

𝑁𝑢𝑙𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 1.6452 × 10 

(df = 174) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 1.0535 ×
10−14 (df = 165) 

 

Based on the table, the initial model was formed using the 

predictor variables of average wind speed, wave type, and 

weather. It was found that the average wind speed and weather 

predictor variables were not significant. It is necessary to test 

the model again by excluding the insignificant variables for 
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further model building. Remodeling with average wind speed 

and weather predictor variables can be seen in Table 4. 

 

Table 4. Gamma regression remodeling 

 

Parameters 
Estimated 

Value 
Standard Error p-Value 

Intercept 1.797 × 10−5 8.474 × 10−21 < 2 × 10−16 

X2_Low −8.270 × 10−6 8.828 × 10−21 < 2 × 10−16 

X2_Medium −1.134 × 10−5 8.822 × 10−21 < 2 × 10−16 

𝑁𝑢𝑙𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 1.6452 × 10 

(df = 174) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  12.834 ×
10−14 (df = 172) 

 

Based on the table, the test results show that the p-value of 

the wave type predictor variable is less than 𝛼 = 5% . 

Therefore, the wave-type predictor variable is significant to 

the potential power generated. Since there is only one 

predictor variable in the model, namely wave type, there is no 

need to test for multicollinearity between response variables. 

To evaluate whether a more complex model provides a 

better explanation than a simpler model, the 𝐺2 statistical test 

has been conducted. This test compares the model fit by 

considering the difference in log-likelihood between the two 

models. 

 

Table 5. Model significance test results 

 

𝑮𝟐 df p-Value Decision 

6126.9 2 < 2.2e- 16 Reject 𝐻0 

 

Table 5 shows that the p-value is smaller than the value of 

= 0.05, so it can be concluded that rejecting 𝐻0 means that 

there is a significant difference in fit between the simple model 

and the more complex model, with the more complex model 

better explaining the data. So, the full model is better at 

explaining the data than the reduced model.  

 

Table 6. Final model of gamma regression 

 

Parameters Parameters 
Estimated 

Value 

Standard 

Error 

Intercept 𝛽0 1.797 × 10−5 
8.474
× 10−21 

X2_Low 𝛽1 
−8.270
× 10−6 

8.828
× 10−21 

X2_Medium 𝛽2 
−1.134
× 10−5 

8.822
× 10−21 

𝑁𝑢𝑙𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 1.6452 ×
10 (df = 174) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =
 12.834 × 10−14 (df = 172) 

 

After testing the fit of the model using the 𝐺2 statistic and 

finding that a more complex model better explains the data, 

the next step is to evaluate how well the model predicts the 

true values. For this, the Root Mean Squared Error (RMSE) is 

calculated. The RMSE provides a measure of how far away 

the model predictions are from the observed values, where 

lower values indicate more accurate predictions and are 

consistent with previous model fit test results favoring more 

complex models. The RMSE value obtained from the model 

with the wave type predictor variable is 2.93e-10. This value 

shows that the RMSE value is close to 0. So, based on the 

RMSE value, the prediction results from the model are more 

accurate or closer to the actual value 

By considering the results of the previous stages of analysis, 

the Gamma regression model was determined as the final 

model. This model was chosen due to its ability to capture 

patterns in the data well and provide accurate predictions. The 

final model obtained from the test results can be seen in Table 

6. 

Table 6 shows that the effects of the wave-type predictor 

variable have a very small value. When the wave type variable 

is 0 and the response variable’s expectation is 1, the 

exponential value close to one indicates that the value of the 

response variable or the potential power generated is almost 

unchanged. When the low waves rise by one unit, the potential 

power generated will decrease by about 0.0000083% 

compared to the calm wave. When the medium wave rises by 

one unit, the potential power generated will decreed by about 

0.0000113% compared to the calm wave. This shows a very 

small decrease in the potential power generated when there is 

an increase in low or medium waves by one unit compared to 

calm waves.  

This study shows that, although the effect is small, wave 

type affects the power potential of ocean waves. The OWC 

technique can be used in Indonesian waters due to its stable 

performance under various wave conditions. However, it is 

important to provide further explanation on how the model 

output is used to assess the power that ocean waves can 

generate. This includes examining how well the model results 

show the pattern of energy reliability or maximum power 

capacity under various wave conditions. In addition, research 

findings should be linked to their consequences for energy 

production. This could include the development of more 

efficient wave power plants or plans to integrate renewable 

energy into the national energy system. Therefore, further 

research is needed to find other potential variables. 

In addition to the statistical analysis, improvement measures 

were implemented to enhance the chamber's product 

efficiency in the OWC system. These measures included 

optimizing the chamber dimensions and adjusting the airflow 

outlet to better accommodate wave variability. The chamber 

width was set at 2.4 meters, reflecting optimal dimensions 

identified in the prototype used in Pantai Baron, Yogyakarta, 

Indonesia, with an efficiency rate of 8% [24]. Numerical 

simulations demonstrated that narrowing the outlet improved 

air pressure consistency, increasing turbine efficiency. By 

implementing these adjustments, the chamber's ability to 

convert ocean wave energy into mechanical energy improved, 

contributing to the overall effectiveness of the OWC system. 

The findings highlight the significant negative impact of 

low and medium wave types on power potential, which is 

captured effectively through the Gamma Regression model. 

This methodological innovation addresses the limitations of 

linear models used in prior studies, providing a more accurate 

representation of wave energy dynamics in diverse conditions. 

OWC technology for wave power generation has many 

advantages over hydropower, steam power generation, and 

solar power generation, especially in terms of sustainability, 

efficiency, and environmental impact. OWCs use ocean wave 

energy which is a renewable and stable energy source 

especially in coastal areas with large waves. The advantage of 

OWC is its low land footprint as it uses ocean space, which 

makes it ideal for a country like Indonesia with a long coastline 

in contrast to Hydroelectric Power Plants that require large 

dams and can disrupt river ecosystems and Hydroelectric 

Power Plants that require large dams. 

In terms of environmental impact, OWCs are much more 

environmentally friendly than steam power plants that rely on 

fossil fuels and produce high carbon emissions. OWCs offer a 
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more sustainable alternative that does not disrupt terrestrial 

ecosystems. This is in contrast to hydropower plants, which 

while also renewable, often affect local communities and river 

flows. Although the initial investment in OWC technology is 

rather large, as with solar power plants, the operational costs 

in the long run can be reduced, especially with the technology 

evolving. In terms of efficiency, OWCs have great potential. 

This is because, unlike solar power plants that depend on the 

length of sunlight or hydroelectric power plants that are 

susceptible to changes in rainfall, ocean wave energy is 

consistent in a given location. OWCs are an excellent solution 

to meet the renewable energy needs of small islands and 

coastal areas and support Indonesia's and the world's energy 

sustainability targets. 

 

 

5. CONCLUSION  

 

Based on the modelling analysis results, the average 

potential power generated by ocean waves in Indonesian 

waters using gamma regression with Maximum Likelihood 

Estimation (MLE) parameter estimation shows that the wave 

type factor influences the average potential power generated 

by ocean waves in Indonesian waters. Meanwhile, the average 

wind speed and weather factors do not affect the potential 

power generated by ocean waves in Indonesian waters. The 

model’s prediction results are accurate because the RMSE 

value obtained is 2.93e-10, which is close to 0, indicating that 

the prediction results of the model are very close to the actual 

values. However, the wave type has minor effect on the 

potential power generated. When there is one-unit increase in 

low and medium wave types, the resulting power potential 

decreases compared to calm waves. However, the decrease 

that occurs is not too significant. For a low waves, a one-unit 

increase only reduces the value of the potential power 

generated by 0.0000083%, and for medium waves, a one-unit 

increase only reduces the value of the potential power 

generated by 0.0000113% compared to calm waves. 

These results imply that, in comparison to low or medium 

waves, calm calm waves offer more stable circumstances. 

Building and running a Marine Wave Power Plant is safer and 

simpler due to the stability of calm wave conditions, which 

also lowers the possibility of equipment damage. Moreover, 

calm waves' consistency and predictability might be helpful 

for dependable energy generation, even though wave form has 

little bearing on potential power.  

Calm or stable wave condition in Indonesian waters is often 

observed during dry season, typically from May to September, 

when the southeastern monsoon wind dominates, resulting in 

reduced turbulence and consistent sea conditions. These 

periods provide ideal condition for optimizing the operation of 

OWC systems, ensuring stable energy generation and 

minimizing risks associated with equipment stress.  

The OWC technology is ideal for areas characterized by flat 

seabed topography and consistent wave heights, as it requires 

minimal construction space. In Indonesia, one of the regions 

that meet these criteria is West Kalimantan, where the coastal 

waters feature a flat seabed and stable wave conditions. These 

characteristics make West Kalimantan a promising location 

for implementing OWC systems. This study aims to provide 

insights that can assist the West Kalimantan Regional 

Government in developing policies for establishing Marine 

Wave Power Plants (PLTGL) in the area. 

Considering the model results, the siting and development 

of Marine Wave Power Plants using OWC should prioritize 

areas with stable wave conditions, especially during the dry 

season when the waves tend to be calmer and more predictable. 

Additionally, based on the model’s findings showing only a 

minor impact of low and medium waves on potential power, 

the capacity of OWC systems in areas with low or medium 

waves can be scaled down to optimize costs without 

significantly compromising power Bahaefficiency. 

Maintenance schedules should also be adjusted based on local 

wave conditions, where systems in areas with more stable 

waves may require less frequent maintenance, while systems 

in areas with stronger waves may require more frequent 

maintenance to ensure optimal operation and prevent damage. 

These findings provide the following insights for feature 

research:  

1. Additional Research into Other Factors: Future 

investigations may look into other factors or 

combinations of factors that could affect the potential 

power output, as wave type has a negligible impact. 

2. Marine Wave Power Plant Optimization: Since calm 

wave conditions are preferred in plant design, it is 

important to optimize MWPPs to function well in these 

circumstances. Doing so could result in more reliable and 

economical energy production. 

3. Extended Regional Studies: Similar analyses in different 

regions could help validate whether the observed effects 

are consistent across various locations and environmental 

conditions. 

4. Long-Term Monitoring: Implementing long-term 

monitoring could provide insights into how seasonal and 

temporal variations affect wave power potential and 

operational efficiency 

5. Use of Other Analysis Techniques: Consider using 

additional analysis techniques, such as principal 

component analysis (PCA) or clustering, to identify 

hidden patterns in the data and see how the results of the 

gamma regression analysis can be strengthened. 

This study used gamma regression with Maximum 

Likelihood Estimation (MLE) parameter estimation to gather 

and evaluate data on the power potential produced by ocean 

waves in Indonesian waters. The average power potential 

generated in this investigation was found to be influenced by 

the wave type component, with calm waves exhibiting more 

stable conditions than low or medium waves. The power 

potential does, however, slightly drop when wave type varies, 

indicating a negligible impact of wave type on power potential. 

By applying a gamma regression model, which can produce 

precise findings that are near to the true value, the limitations 

of the available data have been addressed. Additional research 

is recommended by this study in order to examine the data 

variability in greater detail and to take various places' wave 

conditions into account. Additional study with data from more 

places and longer time periods is needed to gather more 

thorough information. To ensure the technology's sustainable 

deployment with an aim to reduce dependence on fossil fuels, 

thereby lowering greenhouse gas emission and mitigating the 

effects of climate change, by concentrating on wave energy, a 

lot emission and renewable energy source.  

Compared to traditional energy generation techniques, 

OWC technology has negligible environmental impact as it 

does not require much land or emit harmful pollutants. The 

paper also emphasizes how OWC systems can be incorporated 

into existing marine infrastructure, which will reduce the 

demand for new development while protecting marine habitats. 
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However, additional factors that must be considered include 

environmental impact assessments and the creation of novel 

technologies for ocean wave energy conversion. In order to 

validate these results and offer a more comprehensive 

understanding of the potential of ocean wave power 

throughout Indonesian waters, future research could involve 

more thorough and in-depth data analysis. 
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NOMENCLATURE 

 

T Wave period 

H Wave height 

g  Earth gravity (9.81 m/S2) 

E Total energy (Joules) 

𝑤  Angular frequency of wave measured (rad/s) 

W Wald test statistic 

N Number of data  

𝑥𝑘  True value 

�̂�𝑘  Predicted value 

 

Greek Symbols 

 

𝜆  
Wavelength (distance between two consecutive 

Wace crests) 

𝜌  Water dencity (kg/m3) 

𝑎  Wave amplitude  

𝛽�̂�  Estimator of 𝛽𝑗  

𝑆𝐸(𝛽�̂�)  Standard error of 𝛽𝑗 

 

 

143




