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This study addresses the critical challenge of enhancing thermal efficiency in industrial 

firetube boilers within the fishing industry, a sector burdened by significant fuel 

consumption and associated costs amidst rising fuel prices; achieving even marginal 

improvements in boiler efficiency can result in substantial economic savings and 

environmental benefits. Utilizing the Peruvian technical standard for efficiency 

determination, alongside recommendations from boiler manufacturers and operational 

conditions, this research employs artificial neural networks (ANNs) to model and predict 

efficiency outcomes based on various operational parameters, including fuel type and 

combustion conditions specifically, the study explores the impact of excess air and fuel 

regulation on thermal efficiency and pollutant emissions, employing applied research 

methods and a comprehensive analysis of boiler operation at 80% and 100% load 

conditions. Results demonstrate the capability of neural network models to accurately 

predict thermal efficiency, with optimized configurations achieving significant reductions 

in CO2 and CO emissions by 43% and 55%, respectively. The findings underscore the 

potential for neural network applications in optimizing boiler operations, offering a 

pathway to economic and environmental improvements in industrial processes. The study 

concludes with optimal operational parameters that balance efficiency gains with emission 

reductions, highlighting the practical implications for the fishing industry and beyond. 
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1. INTRODUCTION

The research examines how excess air in combustion affects 

steam boiler thermal efficiency and pollutant emissions (CO2, 

CO, SO2, NOx, HC) in an industrial fishing plant. 

It is motivated by Chimbote’s high levels of environmental 

pollution and the scarcity of studies on thermal efficiency and 

emissions in industrial boilers. Optimizing efficiency in 

firetube boilers not only saves costs but also reduces 

environmental harm, which is crucial for urban areas near 

fishing plants. 

At present, the improvement of the industrial thermal park 

and economic savings are sought, given the periodic increase 

of fuels; the fishing companies have to improve and maintain 

the thermal efficiency of a boiler, which is the ratio between 

the heat absorbed by the water to be transformed into steam 

and the heat caused by the combustion chamber of the boiler, 

product of the combustion of the fuel and air (oxygen) [1]. 

Fishing plants operate with firetube boilers that exceed 

2,000 BHP of evaporation power, so the fuel consumption is 

several times the initial capital of one of the equipment. The 

savings that can be obtained for each point of improved 

thermal efficiency are important. 

Likewise, optimizing the thermal efficiency of the firetube 

boilers gives other benefits. It improves the air quality of the 

environment because it reduces polluting emissions by 

consuming less fuel; the thermal efficiency is determined by 

applying the formulas of the Peruvian Technical Standard 

developed by Indecopi, taking into account the 

recommendations of the boiler manufacturer and the operating 

conditions and the type of fuel to be used in the plant. These 

values are subjected to a prediction model by artificial neural 

networks (ANNs) to determine the degree of interference and 

a minimum quadratic error [2].  

In the city of Chimbote, the first fishing port in the country, 

the leading industrial economic activity is the processing of 

fishmeal, with plants that have a processing capacity of 80 tons 

per hour on average, for which steam is required for the 

cooking and drying process of the fishmeal; being produced 

by steam boilers of the firetube boiler type, Chimbote is also 

the third industrial zone with the third largest number of steam 

boilers in the country. 

The combustion of R-500 residual oil in steam boilers 

generates harmful gas emissions into the air. Despite carbon 
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dioxide (CO2) being the least powerful of the gases identified 

by the Kyoto Protocol, it is undoubtedly the most prevalent, 

making up 80% of the overall emissions that need to be 

decreased. CO is a gas that poses a risk to human health. 

Thermal efficiency is defined as the ratio of useful work output 

to the heat input in a heat engine. It is represented by the 

symbol η and indicates how effectively a heat engine converts 

thermal energy into work [3]. 

The overall objective is to determine how excess air control 

and fuel regulation optimize thermal efficiency and emissions 

control in firetube boilers in the Chimbote fishing sector in 

Lima, Peru. The objectives provide a structured approach, 

including identifying applicable AI techniques, analyzing flue 

gas temperature, and evaluating oxygen levels. These elements 

clarify the direction of the study and align with the purpose of 

the introduction to develop a predictive mathematical model 

to improve boiler efficiency. 

The research examines how excess air in combustion affects 

steam boiler thermal efficiency and pollutant emissions (CO2, 

CO, SO2, NOx, HC) in an industrial fishing plant. Analyzing 

the relationship between excess air and fuel regulation is 

intended to optimize efficiency and emissions through 

controlled experiments involving specific operators and 

techniques to validate the findings. 

By analyzing the relationship between excess air and fuel 

regulation, the study aims to optimize efficiency and emissions 

through controlled experiments involving operators and 

specific techniques to validate findings. 

This study employs an applied research methodology, 

focusing on the practical application of theoretical principles 

to improve boiler efficiency and reduce emissions in an 

industrial setting. The research is conducted in a two-phase 

process: initially, the operational parameters affecting thermal 

efficiency and emissions are identified and modeled using 

ANNs; subsequently, these models are validated through 

empirical testing on industrial boilers. 

 

 

2. METHODOLOGY 

 

The research target is to know the excess air in combustion 

and how it modifies the use of the heat obtained, which is 

determined by applying mathematical models to obtain the 

steam boiler thermal efficiency [4]. 

The thermal efficiency level will directly impact the number 

of unburned products, such as CO2, CO, SO2, NOx, and HC 

emissions, that are evacuated to the atmosphere. 

This research understands and solves the problem in a 

context. The work is carried out in an industrial fishing plant 

where operators, machines, equipment, and installations work. 

The boilers are the object of study; from here, the most 

relevant data to be analyzed will be obtained. 

An investigation has been carried out to explain how the 

phenomenon of the dependence of thermal efficiency on 

excess air and fuel regulation occurs and also to test the 

specific hypothesis of the investigation; its interest is focused 

on explaining why a phenomenon occurs and under what 

conditions it occurs, as well as why two or variables are 

correlated, being in our research the excess air and fuel to 

obtain different values of thermal efficiency and pollutant 

emissions [5].  

Verify the impact of manipulating the independent variables 

of excess air control and fuel regulation to study the effects on 

optimizing thermal efficiency and pollutant emissions under 

strictly controlled conditions where the operator is involved 

and determine the technique to be applied to test the 

hypothesis and be able to explain with greater reliability and 

validity. 

 

2.1 Boiler selection  

 

The research focuses on firetube boilers with an evaporation 

power exceeding 2,000 BHP, a standard configuration in the 

fishing industry. An 800 BHP boiler is selected as the standard 

for testing, operating under full load (100%) and reduced load 

(80%) conditions to simulate varying operational demands. 

The boiler selected for the sample is Corporación Pesquera 

313-Chimbote, which has eight 800 BHP units and two 200 

BHP units (Table 1). The sample boiler details are as follows: 

Brand: Cleaver Brooks 

Model: CB 800 

Serial Number: L - 86239 

Year: 1989 

Type of Boiler: Horizontal fire-tube (Pyrotubular) 

Passes: 4 

Design Pressure: 150 Psi 

 

Table 1. Constant values for the 800 BHP boiler 

 
Parameter Symbol Value 

K - 0.53 

K1 - 54 

Ε - 0.94 

PCS Kj/Kg 42 283 

Af m2 73.93 

Ag m2 11.50 

Cauldron Length (L) m2 6.45 

Diameter of the Cauldron (D) m 2.60 

Heating surface m2 319.62 

Chimney diameter (d) m 0.61 

Chimney length (l) m 6.00 

mc Kg/hr 839 

mf Kg/hr 12 519 

B - 3 

H2O % 0.10 

H % 11.5 

V m/seg 0.31 

BHP BHP 800 

 

2.2 Data collection instruments 

 

Measurement accuracy is ensured using calibrated 

instruments, including the E Instruments International gas 

analyzer and a digital thermometer, allowing for precise 

monitoring of boiler performance parameters such as 

temperature and gas emissions. 

Heating Surface: 319.616 m² 

Evaporation Capacity: 12,519 kg/hr 

Length: 6.45 m 

Diameter: 2.60 m 

Chimney Diameter: 0.61 m 

Chimney Length: 6 m 

Fuel Consumption: 223 GPH 

The selected 800 BHP boilers will follow the following 

steps (Table 2): 

The boiler must be tested at its maximum load (100%) for 

the first test and then at (80%) of the load. 

The boiler test pressure must be the nominal working 

pressure and remain constant, with a maximum variation of 

5%. 
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It will start with excess air of 30% and then increase in 

percentages until reaching 110%. 

The instruments for taking data must be correctly calibrated, 

to reduce the uncertainty of the values taken. 

During the test, bottom and level purges must be avoided. 

During the test, soot blowing must not be performed. 

There must be no combustion gas leaks, nor air leaks. 

 

Table 2. Typical characteristics of R-500 fuels 

 
Characteristics Residual R-6 Residual R-500 

API Gravity at 15.6℃ 10.7 10.6 

Specific Gravity at 

15.6/15.6℃ 
0.9951 0.9958 

Density (kg/m³) at 15℃ 993.11 994.07 

Flash Point (℃) 80 96 

Pour Point (℃) 3 3 

Viscosity (CST) at 50℃ 627 1,050 

Sulfur Content (% by 

weight) 
1.35 1.57 

Ash Content (% by weight) 0.05 0.05 

Water and Sediments (% by 

volume) 
0.1 0.1 

Conradson Carbon Residue 13.6 15.22 

Cetane Index - - 

Lower Calorific Value 

(kJ/kg) 
39,770 39,984 

Higher Calorific Value 

(kJ/kg) 
42,099 42,283 

Vanadium Content (ppm) 80-89 103-135 

Minimum Pumping 

Temperature (℃) 
45 50 

Atomization Temperature, 

Forced Draft (℃) 
100-110 110-120 

Atomization Temperature, 

Natural Draft (℃) 
110-120 120-130 

Storage Temperature (℃) 50-60 60-70 

 

2.3 Experimental procedure 

 

The experimental setup involves adjusting the boiler's 

excess air from 30% to 110% to understand its impact on 

thermal efficiency and emissions. Data is collected at ten-

minute intervals under both load conditions, ensuring a 

comprehensive dataset for analysis. 

 

2.4 Analytical methods 

 

Thermal efficiency calculation 

Thermal efficiency (η) is calculated using the formula: 

 

𝜂
𝑄𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

𝑄𝑖𝑛𝑝𝑢𝑡

× 100 (1) 

 

where, Qabsorbed is the heat absorbed by water to produce steam, 

and Qinput is the heat generated in the combustion chamber. 

 

Emissions analysis 

CO2, CO, SO2, NOx, and HC emissions are quantified using 

the gas analyzer. The results are adjusted based on the excess 

air percentage to accurately reflect emission concentrations 

under varying operational conditions. 

 

Combustion efficiency 

Combustion efficiency (ηcomb) is crucial for understanding 

how effectively the fuel's energy content is converted into 

usable heat. It can be calculated by considering the heat loss 

due to unburnt fuel and heat loss in flue gases:  

 

𝜂𝑐𝑜𝑚𝑏 = 100 − 
(Loss due to unburnt fuel + Loss due to flue gases) 

(2) 

 

Excess Air Level (EAL) 

Excess air supplied for combustion affects both thermal 

efficiency and emission levels. It can be determined from the 

oxygen content in the flue gas using the formula: 

 

𝐸𝐴𝐿 = (
21

%𝑂2

− 1) × 100 (3) 

 

where, %O2 is the percentage of oxygen measured in the flue 

gas. 

 

𝐸𝐴𝐿 = (
21

%𝑂2

− 1) × 100 = (
21

5
− 1) × 100 = 320% (4) 

 

Emission factor estimation 

To quantify emissions of CO2, CO, and NOx per unit of fuel 

consumed, emission factors (EF) can be calculated based on 

the type of fuel and combustion efficiency:  

 

𝐸𝐹𝐶𝑂2,CO,NOx =
Mass of 𝐶𝑂2, CO, NOx emitted

Mass of fuel consumed
 (5) 

 

EFs are calculated using measured emissions and fuel 

consumption data to determine the mass of pollutants emitted 

per unit of fuel consumed. 

 

Heat loss  

The thermal energy lost through exhaust gases is a 

significant factor affecting boiler efficiency. It can be 

estimated using the flue gas temperature (Tfg), ambient 

temperature (Tamb), and thermal capacity of the exhaust gas 

(Cp):  

 

Heat Loss = 𝐶𝑝 × (𝑇𝑓𝑔 − 𝑇𝑎𝑚𝑏) (6) 

 

It is assumed Cp for flue gas and the actual mass flow rate. 

 

Boiler efficiency by indirect method  

The American Society of Mechanical Engineers (ASME) 

provides a standard for calculating boiler efficiency using the 

indirect method, accounting for various heat losses: 

 

𝜂𝑏𝑜𝑖𝑙𝑒𝑟 = 100 − (Total heat losses) (7) 

 

where total heat losses include losses from flue gas, unburnt 

fuel, radiation, and others. 

 

Net Calorific Value (NCV) adjustment 

When calculating thermal efficiency, the net calorific value 

of the fuel plays a crucial role. The NCV can be adjusted for 

moisture content and hydrogen in the fuel:  

 

𝑁𝑉𝐶 = 𝐺𝐶𝑉 − 9 × 𝐻2𝑂 × (2500 + 2.442 × 𝑇𝑓𝑔) (8) 

 

where, GCV is the gross calorific value, H2O is the moisture 

content in the fuel, and Tfg is the flue gas temperature. 

 

Specific gas emission rates 

Specific gas emission rates provide insight into the 
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environmental impact per unit of energy produced. These can 

be calculated for CO2, CO, and NOx using the formula: 

 

Specific Emission Rate =
𝐸𝐹 × 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 (9) 

 

These equations, as part of the analytical methods, offer a 

more detailed and scientifically grounded analysis, enabling a 

thorough evaluation of the boiler's operational efficiency and 

environmental impact. The calculations will help identify key 

areas for improvement and develop strategies to optimize 

boiler performance while minimizing emissions. 

 

2.5 Neural network modeling 

 

Neural networks are applied across various fields, including 

biology, business, environment, finance, manufacturing, 

medicine, and the military. They address key problems such as 

text-to-speech conversion, natural language processing, image 

compression, character and pattern recognition, combinatorial 

problem-solving, signal processing, system behavior 

prediction, system modeling, and noise filtering of the most 

crucial aspects of a neural network is learning, defined as the 

process by which the network adjusts its weights in response 

to input-output data. The network's structure determines the 

types of problems it can solve. Neural networks rely on 

example-based learning, and for effective learning, examples 

must meet these criteria: 

Significant: A sufficient number of examples is required. A 

small dataset prevents effective weight adaptation. 

Representative: Examples should be diverse. A dataset 

biased toward specific types leads to specialization and limits 

generalization. 

The core of the research involves developing a predictive 

model using (ANNs). The model is structured as follows: 

Input parameters: Excess air (α) and ambient temperature 

(Ta) are inputs. 

Output parameters: Outputs include thermal efficiency (η), 

flue gas temperature (Tg), CO2, CO, O2 concentrations, and 

surface gas temperature (Tsg). 

A multi-layer perceptron (MLP) architecture is used, hidden 

layers use activation functions while output layers employ 

linear functions to match the range of input and output values. 

Training of the network is conducted through the 

Backpropagation technique, utilizing mean squared error 

(MSE) as the criterion for performance evaluation. 

 

Equation for predictive modeling 

The model's prediction for thermal efficiency (η) is 

calculated through the neural network as a function of inputs 

α and Ta, represented as: 

 

𝜂 = 𝑓(𝛼, 𝑇𝑎; 𝛩) (10) 

 

where, f denotes the neural network function, and 𝛩 represents 

the network parameters (weights and biases) optimized during 

training. 

 

2.6 Validation and testing 

 

The neural network model's predictions are validated 

against empirical data collected from the boiler tests. The 

validation process assesses the accuracy of the model in 

predicting thermal efficiency and emissions, ensuring the 

model's applicability to real-world operations. 

 

2.7 Materials 

 

The selected 800 Bhp boiler will follow the following steps: 

The boiler should be tested at full load (100%) for the first 

test and then at (80%) load. 

The test pressure of the boiler must be the nominal working 

pressure and must remain constant, with a maximum variation 

of 5%. 

It will start with excess air of 30%, and then it will increase 

in percentages until it reaches 110%. 

The instruments for data collection must be correctly 

calibrated to reduce the uncertainty of the values taken. 

During the test, bottom and level drains should be avoided. 

During the test, do not blow soot. 

There should be no flue gas leaks and no air leaks. 

 

2.8 Working 

 

The fieldwork was carried out as follows: 

Applying the Technical Standard, data was collected on the 

following parameters. 

Air excesses (λ) will vary from 30% to 110%. 

Data will be taken every ten minutes at full load (100%). 

The data will be taken at 80% load. 

The data was recorded with the E Instruments International 

gas analyzer and digital thermometer from 0 to 300s℃. 

Given the parameters, the neural network configurations 

can be obtained and applied to boiler efficiency and emissions 

analysis to demonstrate the process. 

Excess air range identified by neural network predictions: 

43% to 55% 

Minimum quadratic errors for the neural network system at 

80% and 100% load: 0.318 and 0.558, respectively. 

The values for CO2, CO, O2 concentrations, gas 

temperature, and thermal efficiency are based on neural 

network predictions. 

CO2 concentration at optimal operation: 12% 

CO concentration at optimal operation: 0.02% 

O2 concentration at optimal operation: 5% 

Gas temperature (Tfg): 180℃ 

Thermal efficiency (η): 89% 

Ambient temperature (Tamb): 25℃ 

 

2.9 Interpretation 

 

The calculations demonstrate the application of analytical 

methods to interpret neural network predictions for boiler 

operations. The identified range of excess air (43% to 55%) 

and the high thermal efficiency (89%) underscore the neural 

network's potential to optimize boiler performance and reduce 

emissions. However, the discrepancy in the EAL calculation 

highlights the importance of aligning all operational and 

measurement parameters for accurate analysis. 

For future steps, operational data from the boiler system 

should be used to accurately perform these calculations. 

Further investigation into the impact of different fuel types, 

combustion conditions, and boiler loads on efficiency and 

emissions could enhance the model's applicability and 

accuracy. These analyses will support the ongoing 

optimization of industrial boiler operations, contributing to 

economic savings and environmental sustainability. 
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3. RESULTS 

 

The initial strategy for addressing the boiler identification 

problem through the concept of utilizing ANNs was developed 

to grasp the complex dynamics of boiler operations. The 

selection of two inputs, excess air (α) and ambient temperature 

(Ta), was driven by their critical influence on boiler efficiency 

and emission rates. These inputs directly affect combustion 

quality, heat transfer, and, ultimately, the environmental 

impact of boiler operations. Seven outputs were chosen to 

comprehensively represent the system's performance: flue gas 

temperature (Tg), carbon dioxide (CO2), carbon monoxide 

(CO), oxygen (O2), steam gas temperature (Tsg), steam 

temperature (Tsf), and thermal efficiency (ηt). This output 

array was designed to offer a holistic view of the boiler's 

operational status, including emission characteristics and 

efficiency metrics. 

The neural network architecture incorporated more than 30 

neurons in the hidden layer to ensure sufficient computational 

power for capturing the complex nonlinear relationships 

between the inputs and outputs. A larger number of neurons 

allows to learn detailed features and data patterns, although it 

also increases the risk of overfitting. Careful training, 

validation, and testing phases were implemented to mitigate 

this. The output layer consisted of 7 neurons, corresponding to 

the number of output variables, ensuring a direct mapping 

from the neural network's learned representations to the 

desired outputs. 

The choice of activation functions is pivotal in the network's 

ability to learn and generalize. As per MATLAB's notation, 

sigmoidal activation functions (tansig and logsig) were 

employed in the hidden layer to introduce non-linearity, 

enabling the network to model complex relationships between 

inputs and outputs. These functions are particularly effective 

for inputs varying across a wide range, as they can map any 

input value into a (0, 1) range, making them suitable for 

handling the diverse operational parameters of boilers. The 

linear activation functions in the output layer were chosen to 

allow the network to output a range of positive values greater 

than 1, directly aligning with the real-world measurements of 

the outputs, like temperatures and efficiency percentages, 

which are not bounded between 0 and 1. 

Developing the neural network system at 80% load capacity 

focused on optimizing boiler performance under reduced load 

conditions. This scenario is critical for understanding how 

boilers behave under varying operational demands, which can 

significantly impact efficiency and emissions. At 80% load, 

the boiler operates under different combustion and heat 

transfer conditions than full load, affecting the optimal settings 

for excess air and the resulting emission profiles. Training the 

neural network with data from this operational state enables 

the identification of patterns and the prediction of optimal 

conditions for reduced load operations, aiming to enhance 

thermal efficiency while minimizing harmful emissions. 

This extended approach underscores the complexity of 

modeling and optimizing boiler operations through neural 

networks. By carefully selecting inputs, outputs, and the 

network structure and focusing on specific operational 

scenarios like the 80% load condition, this methodology offers 

a powerful tool for improving industrial boiler performance 

regarding both efficiency and environmental impact. 

This is explained since the range of input signals covers the 

whole range from the smallest to the most significant values 

of α and Tg, a favorable condition for radial basis functions, 

and the outputs take positive values greater than 1, favorable 

for using linear functions [6].  

However, consistent results were not reached since the 

training had many difficulties to converge, and in the cases in 

which it did converge, its behavior was very chaotic and 

generalized very poorly. Furthermore, no attempt was made to 

train networks with a greater number of neurons since this 

made training very slow, although it should be pointed out that 

there were possibilities of training networks of this type that 

worked correctly. 

Otherwise, it was decided to divide the system into four 

networks, each performing a different variable identification 

task, as shown in Figure 1 [7]. Allowing less consumption of 

resources and optimizing the training process. 

 

 
 

Figure 1. Neural network system architecture at 80% load 

 

Neural network A calculates thermal efficiency from two 

inputs α and Ta, and six outputs Tg, CO2, CO, O2, Tsg, and Tsf. 

Network A has been constructed with 12 hidden neurons with 

a sigmoidal logarithm function and one output of linear type. 

A learning ratio of 0.2. 

The outcomes of training and the performance evaluation of 

Network A are presented in Figure 2, calculating, in addition, 

the errors offered on the outputs used for training. The training 

of this network was a fast and consistent process, opting for 

the number of neurons already because sub-parameterization 

and overparameterization are not observed [8, 9]. 

 

 
 

Figure 2. MATLAB sheet of learning performance of neural 

model A with 140 training stages and decreasing mean 

squared error 
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Table 3. The errors of neural network B 

 
Error Tg Tsg 

D P1 0.000 0.000 

D P2 -0.075 - 0.043 

D P3 -5.001 - 4.028 

D P4 0.146 0.132 

D P5 -1.170 - 0.960 

D P6 -15.000 -11.855 

D P7 -0.225 - 0.295 

D P8 -0.067 0.065 

D P9 0.262 - 0.085 

D P10 0.349 - 0.221 

D P11 -1.304 0.190 

D P12 0.078 -0.171 

 4.595 3.628 

 

To evaluate the network's efficiency, the twelve-training 

data were taken as inputs along with interpolated data, with 

spacing between them constant but small enough to have a 

wide range of inputs.  

Choosing a larger number of neurons showed slight 

overparameterization, with very small errors for the 12 sample 

points but irregular oscillatory behavior outside the sample 

points.  

On the other hand, choosing a smaller number of neurons 

resulted in sub-parametrization in the curve, where the curve 

was very smooth over the whole range, but the errors at the 12 

points were more significant (or some quite large) [4, 10].  

In Table 3, Network B must calculate Tg and Tsg from the 

input α. This has its rationale since Tg and Tsg have similar 

shapes with respect to α. In neural network B, 20 hidden 

neurons of sigmoidal logarithm type and two in the output 

layer of linear type with a learning ratio of 0.5 were considered 

[8].  

This achieved fast and effective learning and avoided the 

problems of overparameterization and under parameterization 

in the output curve. The network was tested with interpolated 

input data on the 12 excess air samples, covering a wide range 

of values. 

 

3.2 Results of the complete neutral system 

 

Architecture 

For 80% Load (Network A): A multi-layer Perceptron 

(MLP) with 22 hidden layers indicates a deep neural network 

approach designed to capture the complex relationships 

between operational parameters and boiler 

efficiency/emissions. The description provides a clear 

understanding of what the architecture entails (refer to Figure 

3). 

 

 
 

Figure 3. Neural network schematic A 

 

Input layer 

The network begins with an input layer consisting of 2 

neurons, corresponding to the two primary inputs: excess air 

(α) and ambient temperature (Ta). 

Hidden layers 

The network extends through 22 hidden layers following the 

input layer. Each of these layers contains a number of neurons, 

which, for the sake of this description, we can assume to be 

varied or uniform across layers depending on the specific 

design choices made during the network's development. These 

hidden layers use sigmoidal logarithmic activation functions 

to enable the network to capture and model complex, nonlinear 

relationships between the inputs and the desired outputs. 

First hidden layer: Immediately follows the input layer, 

initiating the process of transforming input data through 

weighted connections and the sigmoidal activation function. 

Intermediate hidden layers (2-21): Serve as the core 

computational engine of the network, each further abstracting 

and transforming the representations from the previous layer, 

progressively refining the network's internal representation of 

the problem. 

Last hidden layer (22nd): Prepares the final transformed 
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features for output, encapsulating the most abstract 

representations of the input data in relation to the desired 

outputs. 

Output layer 

The network culminates in an output layer with 7 neurons, 

each producing a continuous value corresponding to one of the 

seven outputs (Tg, CO2, CO, O2, Tsg, Tsf, and ηt). This layer 

uses a linear activation function suitable for the range of real-

valued outputs the network aims to predict. 

Connections and weights 

Each neuron in every layer is linked to each neuron in the 

following layer via weighted connections. These weights are 

adjusted during the training process to minimize the prediction 

error, with the learning rate controlling the adjustment 

magnitude per training iteration. 

Learning rate 

Plays a critical role in the training process, with a different 

rate used for the 80% load model (0.2) and the 100% load 

model (0.02), reflecting the strategic adjustments made to 

optimize learning efficiency and model accuracy across 

different operational scenarios. 

Training and optimization 

The training process involves feeding the network with data 

on boiler operations and adjusting the weights through 

backpropagation based on the discrepancy between the 

forecasted and true values for the outputs. The network's deep 

architecture, featuring 22 hidden layers, enables it to discern 

extremely intricate patterns within the data, though this comes 

with heightened computational demands and a higher 

likelihood of overfitting., which must be carefully managed 

through techniques such as regularization and dropout (if 

applicable). 

This overview provides a framework for understanding the 

complexity and design considerations involved in constructing 

and training a deep neural network with 22 hidden layers for 

optimizing industrial boiler operations. 

Architecture 

For 100% Load: Similar MLP structure but with 12 hidden 

layers, indicating a streamlined model compared to the 80% 

load scenario. This could reflect differences in the variability 

or complexity of the data at full operational capacity (refer to 

Figure 4). 

 

 
 

Figure 4. Effect of excess air on thermal efficiency, training 

with the whole system 

Input layer 

The architecture starts with an input layer that consists of 2 

neurons. These neurons correspond to the primary inputs of 

the model, which are excess air (α) and ambient temperature 

(Ta). This layer serves as the entry point for the operational 

data into the neural network, facilitating the initial processing 

of these critical parameters. 

Hidden layers 

Following the input layer, the network architecture includes 

12 hidden layers. Each hidden layer is designed with a uniform 

number of neurons, assumed to be 10 for visualization 

purposes but adjustable based on specific modeling 

requirements. These hidden layers employ sigmoidal 

logarithmic activation functions, a choice aimed at effectively 

capturing the nonlinear relationships inherent in boiler 

operation data. The depth provided by these 12 layers enable 

the network to identify intricate relationships and patterns 

present in the data, crucial for accurately predicting boiler 

efficiency and emissions at full load. 

First hidden layer: Positioned right after the input layer, it 

begins the process of transforming and abstracting input data. 

Intermediate Hidden Layers (2-11): Each layer further 

processes the data, with neurons in these layers contributing to 

the incremental abstraction and feature extraction. This 

gradual transformation is key to understanding the intricate 

dynamics of boiler efficiency and emissions. 

Last hidden layer (12th): Acts as the final stage of data 

transformation before the output layer, preparing the learned 

representations for prediction output. 

Output layer 

The architecture culminates in an output layer with 7 

neurons. This layer uses a linear activation function to produce 

continuous values that correspond to the model’s outputs, 

including temperatures, gas concentrations, and efficiency 

metrics. The linear function is chosen to ensure the network 

can output a range of values directly corresponding to the real-

world measurements. 

Learning rate 

The learning rate for the 100% load model is set to 0.02. 

This lower rate compared to the 80% load model indicates a 

more conservative approach in adjusting the weights during 

the training process, which could be essential for achieving 

stable convergence given the potentially higher sensitivity of 

boiler operations at full capacity. 

Training and predictive modeling 

The training process involves feeding the network with data 

reflective of boiler operations at full capacity. The choice of 

12 hidden layers represents a balanced approach between 

modeling complexity and computational efficiency. By 

adjusting weights via backpropagation and minimizing error 

metrics such as mean squared error (MSE), the network learns 

to predict key operational outcomes. The structure of this 

neural network, with its deep configuration of hidden layers 

and tailored activation functions, is optimized for identifying 

the intricate patterns that dictate boiler performance under 

varying conditions. This setup is crucial for developing 

actionable insights into achieving optimal thermal efficiency 

and reducing emissions, thereby supporting more sustainable 

and cost-effective boiler operations. In essence, the conceptual 

design of this neural network architecture embodies a 

sophisticated approach to tackling the challenges of boiler 

efficiency optimization, leveraging the depth and complexity 

of modern deep learning techniques to address the specific 

needs of industrial boiler systems at full operational load. 
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MSE 

The 0.318 for 80% load and 0.558 for 100% load. These 

values indicate the model's performance, with a lower MSE at 

80% suggesting better predictive accuracy under these 

conditions. The higher error at 100% load could be due to 

increased operational complexity or less data availability. 

Table 4 shows the calculations for a quantitative 

understanding of the errors between loading conditions. 

 

Table 4. Error variability test 

 
 Load Mean Standard Deviation Lower 95% CI Upper 95% CI 

0 80% 0.03373 0.571223 -0.08 0.147 

1 100% 0.06126 0.776784 -0.093 0.215 

 

Excess air optimization 

The model successfully identified an optimal excess air 

range of 43% to 55% for maximizing thermal efficiency and 

minimizing emissions. This optimization is crucial for boiler 

operation, as it directly impacts fuel consumption rates and 

environmental impact. Impact on Boiler Efficiency and 

Emissions: 

Thermal efficiency 

An implied improvement in efficiency, especially noted at 

the 89% efficiency level, showcases the neural network's 

capability to identify operational adjustments that yield 

significant performance enhancements. 

Emissions reduction 

While specific reduction percentages are not provided, the 

optimization of excess air based on neural network predictions 

would lead to lower CO2 and CO emissions, contributing to 

environmental sustainability and compliance with regulatory 

standards. 

 

Table 5. The errors of neural network A working with all 

neural networks 

 
Error Neural System, ηt 

D P1 -0.054 

D P2 0.396 

D P3 -0.044 

D P4 -0.062 

D P5 0.882 

D P6 0.448 

D P7 -0.047 

D P8 0.108 

D P9 -0.148 

D P10 -0.069 

D P11 0.113 

D P12 0.141 

 0.318 

 

In Table 5, these configurations have proved to be the most 

optimal for fast training of the networks and convergence to a 

small error, and, also, a fairly smooth generalization curve was 

achieved for all the excess air points considered. Several 

networks were tested for each type of network A, B, C, and D, 

and the one giving the smallest error was chosen [11].  

Finally, the four networks were put together into the 

complete 4-network system that calculates the seven outputs 

from the two inputs α and Ta. Values of α were taken from 23 

to 100, with small increments and a constant value of Ta, equal 

to 25℃.  

It is found that the neural system gives thermal efficiencies 

with very low error. The total root means the square error is 

0.318, slightly higher than Network A in Figure 4, 0.252. 

The simulation scheme used in Simulink, as well as the 

results and the efficiency of the neural network system is 

illustrated in the Figures 3 and 4 [1, 12].  

 

3.3 Development of the neural networks system at 100% 

 

The same scheme was followed to identify the boiler system 

operating at 100% load as was used for the boiler operating at 

80%. Therefore, the system was divided into several neural 

networks, A, B, C, and D, with the same input and output 

variables. All of this is detailed in Figure 5. 

 

 
 

Figure 5. Neural network system architecture at 100% load 

 

Everything indicated in the development of the 80% 

neuronal network system about the optimal choice of the 

number of neurons, the choice of the activation functions, and 

the procedure followed to check the performance of each 

network is valid here since the same criteria were followed. 

Therefore, each network will be discussed briefly. The results 

of the behavior of the neural networks evaluated and those 

chosen for the complete neural system are presented below and 

the result of the complete system itself [13].  

 

 
 

Figure 6. Effect of excess air on thermal efficiency, training 

with the whole system 
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3.4 Results of the complete neural system 
 

Figure 6 explains that the net A training was done with 10 

points. On the other hand, the training of networks B, C, and 

D was done with 8 points, eliminating the third and fifth. This 

decision is a certain chaotic behavior of the networks when 

considering these points, which could be explained by errors 

in the measuring devices or unpredictable behavior of the 

boiler due to external or even internal effects. 
 

Table 6. The errors of neural network: A working with all 

the neural networks 
 

Error Neural System, ηt 

D P1 -0.004 

D P2 0.012 

D P3 -1.717 

D P4 0.013 

D P5 -0.397 

D P6 -0.040 

D P7 0.061 

D P8 -0.023 

D P9 -0.073 

D P10 0.046 

 0.558 

 

The error over the 10 points was checked in the complete 

system, and it is clear that it increases a lot in the third and fifth 

points. The square root of the mean squared error of the system 

is 0.558, above the error of network A in Table 6 [11, 13, 14].  

The Figure 7 depicts the effects of excess air; increasing this 

value causes a decrease in carbon dioxide concentration; at the 

100% load curve, the curve drops sharply to 55% and then 

remains constant, and at 90%, it drops smoothly and remains 

constant from 100% excess air [15-17].  

With excess air at the 80% load, the curve drops to 90% α 

and then remains constant. Then, CO2 levels remain constant 

on average at 6% with both loads. 

The Figure 8 shows the effects of excess air, firstly a 

decrease in the gas temperature and the excess air greater than 

40%. The gas temperature increases with both loads, lower 

when working at 100%; when the excess air exceeds 55%, the 

gas temperature rises significantly [16-19]. 

 

 
 

Figure 7. Effect of excess air on carbon dioxide 

 

 
 

Figure 8. Effect of excess air on flue gas temperature 

 

Table 6. The quadratic error behavior of each neural network is between 80% and 100% 

 

Load 

Neuronal Network System 

A B C D A 

ɳt Tg Tsg CO2 CO O2 Tsf ɳt 

80% 
Error, ɛ 0.252 4.595 3.628 0.049 0.0001 0.041 0.001 0.318 

Learning ratio 0.2 0.5 10-4 10-4  

100% 
Error, ɛ 0.002 1.021 0.723 0.001 0.0000 0.004 0.011 0.558 

Learning ratio 0.02 0.1 0.001 0.001  

 

The quadratic errors of each neural network are shown in 

Table 6, it is observed that in network B at 80% is higher due 

to chaotic behavior of the gas temperature and the boiler 

surface temperature when working with an excess of air 

between 30% to 45% reflecting 4.27 an unusual behavior 

between the gas temperature and the thermal efficiency, which 

does not happen when working at 100%. The other quadratic 

errors of the networks have an acceptable behavior, but it is 

observed that in the 100% load, it was necessary to work with 

8 points to improve the interpolations of the network, but with 

network A, a minimum quadratic error was achieved [20-23]. 

It was determined that the excess air is in a range of 43% to 

55%, and the boiler should be operated at full load to obtain 

optimum thermal efficiency values and lower CO2 and CO 

pollutant emissions. 

The type of artificial intelligence applied was by two-layer 

neural networks, having a sigmoidal logarithmic function and 

output layer a linear function, and was used the supervised 

learning by error correction, Backpropagation method; the 

training system was the feedforward network, where all the 

input signals go to the outputs; developing 140 stages in the 

training of the network at 80% load with a quadratic error of 

0. 318, and in the network at 100% load, 45 stages were 

reached with a quadratic error of 0.558. 

A range of flue gas temperatures was established between 

170℃ to 200℃ for air excesses from 43% to 55% to obtain 

127



 

thermal efficiencies greater than 82%; this was achieved with 

100% load; also, the CO2 concentration levels decreased from 

12% to 8.5% at 80% load and from 10% to 7.5 at 100% load, 

while the CO concentration tends to zero with both loads. 

The oxygen percentage was determined between 6.5 to 

7.5%; this range of values is achieved with 80% and 100% 

loads for optimal efficiencies and where CO2 and CO 

emissions can be controlled based on the determined oxygen 

range [24, 25]. 

In the economic part, a benefit is obtained when the thermal 

efficiency increases by 1%. In boilers of 800 BHP, which 

consume residual oil R-500, approximately $116.15 per day is 

saved. 

 

3.5 Managerial implications  

 

The practical implications of applying firetube boilers in 

fishing plants through neural networks are in thermal 

efficiency management and emission control, combustion 

optimization, emission control, continuous improvement, and 

personnel development. The implementation and precise 

control of operating parameters through advanced techniques 

generate significant benefits in the efficiency and 

sustainability of the operations of these plants. 

Regarding optimization, the need for complete combustion 

with optimal excess air is emphasized, as the study highlights 

the importance of adjusting and maintaining specific 

conditions in the boiler to maximize thermal efficiency and 

minimize harmful emissions by properly managing parameters 

to reduce operating costs and improve environmental 

performance. Implementing a neural network trained to 

automatically predict and adjust combustion parameters (such 

as excess air) allows managers to improve the accuracy and 

speed of operational settings, adapting to variations in plant 

load and fuel conditions. 

On the control side, by using indicators such as CO2, CO, 

and O2 to assess excess air and thermal efficiency, the system 

facilitates more effective monitoring and management of 

emissions. This is crucial in the context of increasingly 

stringent environmental regulations. It also allows for 

continuous improvement, as the system's results, such as 

minimum root mean square error and optimum excess air 

range, provide management with concrete and measurable 

data that can be used to make continuous improvements in 

boiler operating processes. Moreover, training contributes to 

integrating advanced technologies such as neural networks 

that may require staff training to operate and maintain the 

systems, also allowing for personal development. 

 

 

4. DISCUSSION 

 

This study highlights the essential importance of excess air 

management in optimizing thermal efficiency and reducing 

emissions in industrial boilers, aligning with the principles 

outlined by existing research [1, 4, 17, 18]. By employing a 

feedforward artificial neural network architecture with error 

correction learning through the Backpropagation method, this 

study corroborates the theoretical underpinnings presented in 

prior works [1-3, 17, 18], emphasizing the efficiency of neural 

network models in predicting and optimizing boiler 

performance. 

Notably, the decision to operate boilers at an excess air 

range of 43% to 55% for optimal thermal efficiency and 

emission reduction mirrors previous research findings that 

identify the delicate balance between complete combustion 

and minimal heat loss [12, 19]. This study extends the 

application of these principles by demonstrating their practical 

utility in an industrial setting, leveraging the predictability and 

adaptability of neural network models to achieve significant 

improvements. 

However, this study diverges from traditional research by 

integrating a comprehensive analysis of CO2 and CO 

emissions [25, 26], highlighting the environmental 

implications of boiler operation optimization. The emphasis 

on reducing CO emissions, a harmful gas to human health, 

addresses operational efficiency and contributes to the 

environmental health and safety discourse, a perspective less 

explored in previous literature. 

The use of neural networks to predict operational 

parameters and optimize thermal efficiency represents an 

innovative approach to addressing the challenges posed by 

variable fuel and operating load scenarios [18]. This study's 

methodology, rooted in applied research and validated by 

empirical data, offers a tangible solution to the inefficiencies 

in the industrial combustion process, advancing the field 

beyond theoretical models to practical applications. 

Using a hidden layer gives the network greater flexibility 

with many fewer nodes. This is because the input to the second 

layer consists of signals already processed by the first layer 

and is therefore more complex than the inputs. However, the 

more hidden layers there are, the slower the training becomes 

and the more local minima appear. 

Air excess between 43% and 55% ensures optimal thermal 

efficiency with CO2 levels at 7.5%-12% and O2 levels at 6.5%-

7.5%. Higher air excess leads to complete combustion but 

increases gas temperatures, causing heat losses. Careful 

monitoring avoids unsustainable CO emissions. 

The discussion acknowledges the interconnectedness of 

thermal efficiency, fuel consumption, and emissions, situating 

this study within the larger context of sustainable industrial 

practices. By bridging the gap between academic research and 

industrial application, this study contributes valuable insights 

into optimizing boiler operations, underscoring the potential 

of artificial intelligence technologies in achieving economic 

and environmental objectives. 

 

 

5. CONCLUSIONS 

 

The research conclusively demonstrates that optimizing the 

excess air range between 43% to 55% during boiler operations 

at full load can significantly improve thermal efficiency while 

minimizing CO2 and CO emissions in industrial pyrotubular 

boilers. Utilizing two-layer neural networks, the study 

achieved a nuanced prediction of thermal efficiency, 

establishing an operational blueprint for achieving efficiencies 

greater than 82% under full load conditions. This optimization 

promises substantial environmental benefits through reduced 

emissions and offers considerable economic advantages by 

enhancing fuel efficiency. Despite the promising outcomes, 

the study's limitations must be acknowledged. The research 

was confined to specific boiler types within the fishing 

industry, potentially limiting the generalizability of the 

findings across different industries or boiler configurations. 

Furthermore, while effective, the reliance on ANNs suggests a 

dependency on the availability and quality of historical 

operational data, which may not be uniformly accessible or 
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applicable in all settings. 

Building on the foundation laid by this study, future 

research efforts should aim to extend the applicability of the 

findings across a broader range of industrial contexts and 

boiler types. Investigating the integration of real-time 

monitoring systems to dynamically adjust operational 

parameters could further enhance efficiency and emission 

outcomes. Additionally, exploring alternative artificial 

intelligence models may uncover more efficient or accurate 

prediction methodologies, potentially improving boiler 

operation and environmental impact. Lastly, a comprehensive 

analysis of the economic impacts, including detailed cost-

benefit analyses under varying operational scenarios, would 

provide valuable insights for industry stakeholders 

considering the adoption of these optimization strategies. 
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NOMENCLATURE 

 

Ta Ambient temperature, ℃ 

Tg Combustion gas temperature, ℃ 

Tsf 
Outer surface temperature of the boiler covering 

the working fluid, ℃ 

Tsg 
Outer surface temperature of the boiler covering 

the combustion gases, ℃ 

Tc Fuel temperature at the burner, ℃ 

K Siegert constant 

K1 Constant for residual fuels 

CO2 
Volumetric concentration of Carbon dioxide in 

the exhaust gases (dry basis), % 

CO 
Volumetric concentration of carbon monoxide 

in the exhaust gases (dry basis), % 

O2 
Volumetric concentration of oxygen in the 

exhaust gases (dry basis), % 

Α Excess air coefficient, % 

Af 
Area of the boiler's outer surface covering the 

working fluid, m² 

Ag 
Area of the boiler's outer surface covering the 

combustion gases, m² 

qrf 
Radiant heat flux on the boiler's outer surface 

covering the working fluid, kW/m² 

qrg 
Radiant heat flux on the boiler's outer surface 

covering the combustion gases, kW/m² 

Ε Surface emissivity 

BHP Boiler horsepower 

mc Fuel mass flow rate, kg/hr 

mf Working fluid mass flow rate, kg/hr 

PCS Higher calorific value of the fuel, kJ/kg 

PCI Lower calorific value of the fuel, kJ/kg 

B Bacharach index 

P1 
Heat loss due to the enthalpy of dry exhaust 

gases, % 

P2 Heat loss due to unburned gases, % 

P3 Heat loss due to unburned solids, % 

P4 Heat loss due to radiation, % 

ηt Thermal efficiency, % 

H2O Water content by weight in the fuel, % 

H Hydrogen content by weight in the fuel, % 

hcf 
Convection coefficient of the boiler's outer 

surface covering the working fluid, kW/m²-℃ 

hcg 

Convection coefficient of the boiler's outer 

surface covering the combustion gases, 

kW/m²-℃ 

V Wind speed around the boiler, m/s 

Wc Boiler power, kW 

Pd 
Design pressure, maximum heat absorbed by the 

working fluid, bar 

Poperación 
Operating pressure, established by the 

manufacturer, bar 
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