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In this era of innovation, numerous researchers are striving to combat global warming and 

transform our planet into a greener and more sustainable environment. Their efforts focus 

primarily on reducing the release of harmful gases produced by conventional energy 

sources. This challenge can be mitigated by harnessing abundant renewable resources for 

various applications. This study explores the application of three distinct models, namely 

Convolutional Neural Network Long Short-Term Memory (CNN-LSTM), and 

Exponential Smoothing, for the prediction of solar wind patterns. The research aims to 

investigate the comparative performance of these forecasting techniques in capturing the 

dynamics of solar wind data. By leveraging the capabilities of deep learning through CNN-

LSTM and the simplicity of Exponential Smoothing, we assess their effectiveness in 

providing accurate predictions for solar wind behavior. The results of this investigation 

have consequences for space weather forecasting and the understanding of solar-terrestrial 

interactions. Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE) and R-squared (R2) are utilized for evaluating the manner in which 

a regression model performs. Wind speed and solar irradiation are predicted using four 

models are Exponential Smoothing model, LSTM model, CNN-LSTM model, and Smooth 

CNN-LSTM Model. The Exponential Smoothing model performs less well compared to 

the others, especially in terms of accuracy (MSE, RMSE) and explanatory power (R2). 

“LSTM” and “CNN-LSTM” models have similar performance, with “CNN-LSTM” 

slightly outperforming “LSTM” with regard to RMSE and R2. The “Smooth CNN-LSTM” 

model outperforms the other algorithms across all metrics, showcasing superior accuracy, 

precision, and explanatory power. 
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1. INTRODUCTION

Till now, our nation is a developing nation, many scholars 

have investigated the forecasting of available resources from 

wind and solar using different methodologies to make it a 

developed one. Tosun et al. [1] made wide research that 

underscores the efficacy of LSTM and CNN-LSTM models 

for the analysis and prediction of solar and wind energy data. 

This paper examines the factors influencing solar power 

generation and employs predictive models to achieve highly 

accurate intra-day solar power forecasts. These models 

successfully anticipate the forthcoming power output of the 

solar power facility, reaching an RMSE of less than 10%, all 

without the need for supplementary sensor data. In this work, 

a hybrid CNN-LSTM model is introduced for accurate 

forecasting of stable power generation in photovoltaic (PV) 

systems. This model excels in predicting power generation 

even in response to sudden weather condition shifts. By 

optimizing operations in PV power plants, this proposed 

model proves to be an efficient tool for forecasting solar 

energy production with precision, showcasing its effectiveness 

in achieving accurate predictions of solar energy output [2].  

The author's primary focus lies in the realm of wind energy, 

where they introduce an LSTM model designed to forecast 

direction, speed, and the energy of the wind, yielding 

promising outcomes. Furthermore, they present a data analysis 

model that leverages the LSTM a model for monitoring power 

generation from Wind power. The results exhibit notable 

accuracy, a mean error of under 3% and an impressive R-

Squared value of 0.95 [3]. Analyzes data on wind power time 

series and proposes a GA LSTM model for fluctuating wind 

energy prediction, demonstrating higher prediction accuracy 

compared to traditional methods. It proposes a wind power 

forecasting approach based on a deep learning model 

combining LSTM broadened using a GA [4].  
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LSTM emerges as a predictive model to predict the amount 

of solar radiation and photovoltaic power, surpassing the 

performance of traditional machine learning techniques. This 

study conducts a comparison between Separate LSTM and 

combined models that integrate LSTM, revealing LSTM's 

superiority in predicting solar energy when contrasted with 

other standalone models [5]. The paper presents a framework 

that synergizes a physics-based model with LSTM to enhance 

the accuracy of power output predictions for wind farms. 

Physics-based models such as FLORIS have the capability to 

estimate power generation based on atmospheric data over a 

given time series [6]. The authors concentrate on scrutinizing 

wind turbine data within a SCADA system. They utilize 

LSTM networks to project wind turbine performance, with the 

overarching goal of enhancing wind energy forecasting and 

operational efficiency. Through the utilization of LSTM 

models, the authors showcase the capacity to enhance 

prediction accuracy and actively contribute to the optimization 

of renewable energy sector wind turbine operations [7].  

The authors conduct a comprehensive survey of various 

techniques employed in the discipline of anticipating 

renewable energy. The study explores a range of methods and 

approaches for predicting renewable energy generation, 

encompassing sources such as wind and solar power. This 

survey paper serves as a valuable resource for understanding 

the diverse techniques available for forecasting renewable 

energy production. It provides insights into the current state of 

research and offers an overview of the methodologies used in 

this important area of renewable energy management. It 

concludes that LSTM and RNN are advantages of forecast of 

solar and wind power generating time series [8]. The authors 

concentrate on the use of LSTM networks for predicting the 

power output of solar photovoltaic systems. Their study is 

centered around improving the accuracy of forecasts for solar 

energy generation. By utilizing LSTM networks, the authors 

demonstrate their effectiveness in enhancing the precision of 

solar photovoltaic power output predictions. This research 

contributes to the field of renewable energy forecasting, 

particularly in the context of solar power, offering valuable 

perceptions of the potential of LSTM-based prototypes for 

optimizing solar energy management and utilization. A key 

component of the deeper RNN is a layered LSTM network [9].  

Wind and solar power forecasting are challenging, the 

authors delve into the critical domain of time series forecasting 

within the context of renewable energy. This work explores 

various techniques and methodologies for predicting 

renewable energy generation. By examining time series data, 

the study provides information about forecasting models and 

their application in renewable energy systems. It is a 

significant source of information for researchers and 

practitioners looking to deepen their comprehension of time 

series forecasting as it relates to renewable energy sources, 

contributing to the advancement of sustainable energy 

management and utilization [10].  

The authors focus on predicting solar energy generation 

using LSTM profound understanding techniques. This 

research explores the utilization of LSTM models to forecast 

solar power output. The study demonstrates the effectiveness 

of LSTM-based deep learning in enhancing the accuracy of 

solar energy predictions. This work adds to the area of 

renewable energy forecasting by presenting the potential of 

advanced machine intelligence methods like LSTM for 

optimizing the utilization of solar energy resources. To 

precisely predict the generated power of solar photovoltaic 

power plants, deep learning methods are employed [11]. The 

author conducts a thorough analysis of hybrid models used to 

forecast wind power, with a specific focus on the application 

of LSTM networks. The paper provides an overview of 

various hybrid approaches that combine LSTM with other 

techniques to enhance the accuracy of wind power predictions. 

By reviewing the existing research, it offers insights into 

modern technology methods for predicting wind energy 

production. This survey is valuable for researchers and 

practitioners seeking to improve wind power forecasting 

models and strategies. Wind power's unpredictable nature has 

an enormous effect on the power system [12].  

The study's main goal is to create a more effective technique 

for forecasting solar radiation in the near future, which is 

essential for optimizing the performance of solar energy 

systems. The authors propose the use of a hybrid model that 

combines CNN’s and LSTM networks. CNNs are effective at 

feature extraction from spatial data, while LSTMs excel in 

capturing temporal dependencies. A significant contribution 

of this research is the exploration of different time intervals for 

predicting solar radiation. The authors investigate various time 

intervals to identify the most suitable one for accurate 

predictions. The paper emphasizes the importance of both 

efficiency and accuracy in short-term solar radiation 

forecasting. The goal is to find a balance between 

computational efficiency and prediction precision. Compared 

to the SVR model, the CNN-LSTM hybrid model produced 

superior results [13].  

PV and wind energy have enhancing results, the authors 

investigate the variability in the output of intermittent energy 

sources using data from NASA. Presented at the 2nd ICPRE 

Conference, the research explores the fluctuations in energy 

generation from sources such as solar and wind power. By 

leveraging NASA data, the authors offer insights into the 

patterns and characteristics of intermittent sources of energy. 

This study improves our knowledge of the difficulties and 

possibilities connected to harnessing renewable energy, 

particularly in addressing the intermittency and variability 

inherent to these sources [14].  

The authors introduce a probabilistic forecasting model 

designed to provide precise estimates of power generation 

from photovoltaic (PV) solar and wind sources. The paper 

focuses on enhancing the accuracy of predictions for 

renewable energy generation, particularly from PV solar and 

wind systems. By incorporating probabilistic modeling, the 

authors aim to improve the reliability of forecasts, which is 

essential for efficient energy management and grid integration. 

This work contributes to the advancement of renewable energy 

forecasting techniques, addressing the variability inherent in 

solar and wind power generation. It is suggested to use a 

probabilistic method to estimate the solar irradiance and 

hourly wind speeds throughout a year [15].  

The study's primary goal is to explore the relationship 

between coronal holes on the outermost layer of the sun and 

the solar wind's following actions, with the aim of improving 

solar wind forecasting. Areas on the surface of the Sun known 

as coronal holes where particles from the solar wind can more 

readily escape and the magnetic field is open. The paper 

examines how the presence and characteristics of these holes 

correlate with solar wind properties. The authors analyze 

observational data to identify and track coronal holes. They 

also investigate how the solar wind speed and other parameters 

change in response to the existence of these features. The study 

discusses the potential implications of using coronal hole 
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observations for solar wind forecasting. Coronal holes may 

serve as valuable indicators for predicting solar wind 

conditions and space weather data. Up to 8.5 days ahead of 

time, the model can predict the Earth-directed solar wind 

velocity [16]. These papers focus on the use of SVR for 

predicting solar power. Author presents an SVR model for 

producing solar power forecasts up to 24 hours ahead. For 

energy forecasting, the effectiveness of various linear 

regression models and artificial neural networks is contrasted 

with the SVR model. The production of variable energy is 

rapidly increasing, especially from wind and solar energy 

resources [17].  

The article offers a synopsis of the capabilities and 

challenges in the field of real-time solar wind forecasting. It 

highlights the crucial role of accurate solar wind predictions in 

mitigating the effects of space weather on Earth's technical 

infrastructure and underscores the need for collaboration and 

ongoing research to enhance forecasting capabilities. The 

main issue limiting the accuracy of solar wind models used for 

space weather research and prediction is the uncertainty in 

figuring out the physical parameters required for model inputs 

from real-time solar metrics [18].  

This paper focuses on the establishment of a viable model 

for predicting the solar wind's behavior using numerical 

models. It highlights the importance of such forecasts for 

space weather prediction and their impact on various 

technological systems. This research contributes to the 

ongoing efforts to improve space weather forecasting 

capabilities. The Wang-Sheeley-Arge model that anticipates 

the solar wind speed time series most accurately [19]. This 

paper addresses the estimation of Uncertainties in the fast solar 

wind back mapping, an essential aspect of solar physics and 

space weather forecasting. It contributes to the ongoing efforts 

to enhance our understanding of solar wind behavior and its 

implications for space weather and astrophysical research. 

There is uncertainty in the fast solar wind's back mapping [20].  

The authors provide a comparative analysis of the two 

forecasting methods, assessing their accuracy and 

performance in predicting wind energy generation. This paper 

presents a comparative study of wind energy forecasting 

techniques, specifically the ARIMA stochastic model and the 

FFANN neural network model. It contributes to the domain of 

renewable energy by providing perspectives on the relative 

effectiveness of these two approaches, ultimately seeking to 

increase wind energy's accuracy forecasts for better energy 

management and grid reliability. An examination is made 

between a neural network-based model and a stochastic model 

for predicting the output of electrical energy from renewable 

sources, including wind power [21].  

The authors employ neural network techniques to create a 

forecasting model. Neural networks are renowned for their 

capacity to identify intricate links and patterns in data, making 

them appropriate for renewable energy forecasting. The 

prediction model is known as a Feedforward backpropagation 

neural network. This paper addresses the challenging task of 

forecasting the combined generation of wind and solar energy 

using neural network models. By providing a viable method 

for maximizing the integration of these renewable sources into 

the power grid for more sustainable energy management, the 

research advances the subject of renewable energy forecasting 

[22].  

The survey highlights that forecasting solar and wind 

energy can effectively predict the availability of resources in a 

specific area, enabling efficient energy storage to meet future 

demands and establish renewables as a sustainable energy 

source. 

Although various methodologies exist for forecasting, deep 

learning techniques have not been extensively utilized to 

enhance renewable energy forecasting. Hence, the decision 

was made to employ the CNN algorithm to optimize the 

parameters for renewable energy sources. 

The upcoming sections are structured as follows: Section 2 

discusses the methodologies, Section 3 focuses on wind 

prediction analysis, Section 4 addresses solar prediction 

analysis, and the study concludes in Section 5. 

 

 

2. METHODOLOGY  

 

The following subsections provide an overview of the 

algorithms used in this work to forecast wind and solar power. 

 

2.1 Exponential smoothing model 

 

A time period forecasting method called exponential 

smoothing gives different historical observations varying 

weights. Whenever examining time series data, SES works 

well when the recent past is more predictive of the future than 

the distant past. The current observation (Ot) and the prior 

forecast (Et-1) are weighted averages to create the forecast 

(Et), where α emphasizes more recent data. 

 

𝐸𝑡 = 𝛽𝑂𝑡 + (1 − 𝛽) (1) 

 

where, 0˂β˂1 is the smoothing parameter. 

 

2.2 LSTM smoothing model 

 

The LSTM is an effective instrument for capturing 

dependency relationships in data sequences because of these 

equations, which enable it to store, update, and retrieve 

information selectively. 

In order to solve the vanishing gradient issue that plagues 

conventional RNNs, LSTMs were created, which enhance 

their ability to recognize long-range dependencies in 

sequential data. 

Memory cells are long-term information storage, is feature 

of LSTM memory cells, which enables them to recognize 

patterns over long periods of time. The input, output, and 

forget gates allow LSTMs to selectively store or discard data 

by managing information traveling into, out of, and within the 

memory cell. Instruction is BPTT, or backpropagation through 

time, is used to train LSTMs. They acquire the ability to reduce 

the discrepancy between the values that were expected and 

those that were actually by adjusting the weights of 

connections. Sequence Input is LSTM models can be built to 

forecast one future value given a sequence of values or a series 

of future values of input data. The number of layers and the 

rate are hyperparameters of learning, the amount of LSTM 

units, and the length of the sequence used for training 

constitute significant hyperparameters. 

Xt-input  

Ht-Hidden state  

Ct-Cell state  

It, Ft, Gt, and Ot are Input, forget, cell, and output gates, 

correspondingly. 

W and β are input weight matrices and bias vectors for input, 

forget, cell, and output gates [23].  
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p and tanh are Sigmoid and Hyperbolic tangent activation 

function. 

 

𝐼𝑡 = р(𝑊𝑖𝑖 ∗ 𝑋𝑡 + 𝛽𝑖𝑖 +𝑊ℎ𝑖 ∗ ℎ𝑡 − 1 ∗ 𝛽ℎ𝑖) (2) 

 

𝐹𝑡 = р(𝑊𝑖𝐹 ∗ 𝑋𝑡 + 𝛽𝑖𝐹 +𝑊ℎ𝐹 ∗ ℎ𝑡 − 1 ∗ ℎ𝐹) (3) 

 

G𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝐺 ∗ 𝑋𝑡 + 𝛽𝑖𝐺 +𝑊ℎ𝐺 ∗ ℎ𝑡 − 1 ∗ ℎ𝐺) (4) 

 

𝐶𝑡 = 𝐹𝑡 ∗ 𝐶𝑡 − 1 + 𝐼𝑡 ∗ 𝐺𝑡 (5) 

 

O𝑡 = р(𝑊𝑖𝑂 ∗ 𝑋𝑡 + 𝛽𝑖𝑜 +𝑊ℎ𝑜 ∗ ℎ𝑡 − 1 ∗ 𝛽ℎ𝑜) (6) 

 

𝐻𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ⁡(𝐶𝑡) (7) 

 

When given a series of input data, LSTMs can be made to 

forecast a single future value or the model with these metrics 

performs better than the one you previously mentioned, 

according to the lower values of MSE, RMSE, and MAE.  

 

2.3 CNN-LSTM model 

 

A powerful architecture that is frequently employed for 

sequence prediction tasks involves the combination of CNNs 

and LSTMs. This combination is especially advantageous 

when interacting with time series data or sequential data that 

has geographic characteristics. CNNs excel at obtaining 

features from spatial data and identifying patterns across 

different abstraction levels. LSTMs are good at photographing 

temporal patterns and modeling sequential dependencies. 

Typical CNN components model is: 

 

𝐶𝑖 = 𝛼(𝛴𝑖𝑊𝑖𝑗 ∗ 𝑋𝑗 + 𝐵𝑖) (8) 

 

Pi=Pooling (Ci) (9) 

 

F=Flatten (P) (10) 

 

𝐶𝑖  is Output feature map, 𝑊𝑖𝑗⁡ is Convolutional filter, 

𝑋𝑗⁡is⁡Input feature map, 𝐵𝑖 is Bias term, Pi is Pooled feature 

map and F is Flattened feature vector. The above CNN 

components model is combined with LSTM model. 

 

2.4 Smooth CNN-LSTM model 

 

When using smoothing together with a CNN-LSTM 

architecture, temporal as well as spatial characteristics from 

the CNN-LSTM are combined, and the smoothing attributes 

of exponential smoothing are utilized for time series data. To 

train the combined model, an appropriate optimization 

algorithm is applied. It is necessary to optimize the weights 

and parameters of the CNN-LSTM and exponential smoothing 

components simultaneously. A wide range of time series 

forecasting applications, such as sales, stock price, demand, 

traffic, and weather forecasting, can be applied with the 

Smooth CNN-LSTM model [24].  

Figure 1 explains the Flowchart for Exponential smoothing 

CNN-LSTM model. Data Collection and Preparation: Gather 

and organize the time series data. Assemble the CNN 

architecture by specifying the number of convolutional layers, 

kernel sizes, and activation functions. Preprocess the data by 

normalizing or transforming it as necessary. Give the number 

of layers, LSTM units, and activation functions to define the 

LSTM architecture. CNN-LSTM Model Training: Utilize 

training data to train the model Make Predictions: Forecasts 

for new data are produced by using the trained model. Use the 

exponential smoothing method. CNN-LSTM forecasts are 

smoothed. Examine the model by contrasting the actual values 

with the smoothed forecasts [25].  

 

 
 

Figure 1. Flowchart for solar irradiation prediction and wind 

speed forecasting using smoothing CNN-LSTM model 

 

 

3. ANALYSIS FOR WIND PREDICTIONS  

 

The accuracy of solar and wind forecasting models can be 

impacted by various factors such as data quality, model 

complexity, geographic variability, and others. Therefore, 

meticulous attention to data quality, model architecture, and 

the training process is crucial for optimizing performance. In 

this study, various algorithms have been integrated to 

effectively forecast the availability of renewable resources. 

The Data was taken from NASA Native Resolution Powered 

by CERES/MERRA2. 

Daily data: January 1, 2010, through June 30, 2024 (month, 

day, year). 

 

 
 

Figure 2. Wind speed at 10 m above ground level 
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Location: 77.5227 latitude, 8.2509 longitude and Figure 2 

gives wind speed at 10m above ground level. 

The term mean squared error (MS) refers to the average of 

the squared differences between the actual and expected 

values. Large errors are penalized more severely than little 

errors due to the squaring. 

The root of the square root of the mean square error, or 

RMSE, is calculated. It offers a measurement of the typical 

size of the anticipated value errors. The dependent variable 

and it both have the same unit. 

The mean absolute error, or MAE, is the average of the 

absolute differences between the expected and actual values. 

R-squared (R2). The degree to which the model's predictions 

and the actual data agree is expressed by this statistic. It shows 

the percentage of the dependent variable's volatility that can 

be predicted based on the independent variable. 

 

3.1 Exponential smoothing model for wind speed 

prediction 

 

The Exponential smoothing model may not provide an 

optimal match for the data, or there may be potential for 

improvement, as shown by the lower R-squared values and the 

somewhat high MSE, RMSE, and MAE values. For a better-

fitting model, a higher R2 and lower MSE, RMSE and MAE 

value are often preferred.  

 

 
 

Figure 3. Actual vs. Predicted WS10M_MAX for 

exponential smoothening 

 

 
 

Figure 4. Actual vs. Predicted Scatter Plot for exponential 

smoothening 

 

WS10M_MAX=Wind Speed at a Maximum Ten Meters 

(m/s) 

The output taken using Exponential smoothing Model. 

Figure 3 gives Actual vs. Predicted WS10M_MAX for 

Exponential Smoothening and Figure 4 denotes Actual vs. 

Predicted Scatter Plot for Exponential Smoothening. 

The dataset contains 5110 data points. In the four models, 

79% (4015) of the dataset is used for training and 21% (1095 

datasets) is used for testing. This is applicable for solar 

irradiation forecasting and wind speed forecasting. 

 

3.2 LSTM smoothing model for wind speed prediction 

 

The estimates are more likely to match the actual values 

when the MSE, RMSE, and MAE are lower. When compared 

to the Exponential smoothing model (R-squared of 0.20), the 

higher R-squared value (0.66) suggests this model explains a 

greater percentage of the variance in the variable that is reliant. 

A greater R2 indicates a better fit. Figure 5 gives Actual vs. 

Predicted WS10M_MAX for LSTM Smoothening, and Figure 

6 denotes Actual vs. Predicted Scatter Plot for LSTM 

Smoothening.  

 

 
 

Figure 5. Actual vs. Predicted WS10M_MAX for LSTM 

 

 
 

Figure 6. Actual vs. Predicted Scatter Plot for LSTM  

 

3.3 CNN-LSTM model for wind speed prediction 

 

The CNN-LSTM model seems to have an acceptable level 

of accuracy based on the MAE, MSE, and RMSE metrics. 

Since the values are not exceptionally high, the model's 

predictions are, on average, not sufficiently far off from the 

actual values. An appropriately good fit can be determined by 

the R-squared value of 0.67.  
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Figure 7. Actual vs. Predicted WS10M_MAX for CNN-

LSTM 

 
 

Figure 8. Actual vs. Predicted Scatter Plot for CNN-LSTM 

This model handles a significant portion of the data 

variability, it might still be improved. Figure 7 shows Actual 

vs. Predicted WS10M_MAX for CNN-LSTM and Figure 8 

denotes Actual vs. Predicted Scatter Plot for CNN-LSTM. 

 

3.4 Smooth CNN-LSTM Model for wind speed prediction 

 

Smooth CNN-LSTM model produces very accurate 

predictions with average error values that are very close to 

zero, as shown by the low MAE, MSE, and RMSE values. 

With a high R-squared value of 0.98. This model has a very 

strong explanatory power and appears to be catching 

practically all of the data's fluctuations and patterns. 

Figure 9 gives Actual vs. Predicted WS10M_MAX for 

Smooth CNN-LSTM, and Figure 10 denotes Actual vs. 

Predicted Scatter Plot for Smooth CNN-LSTM.  

 

Table 1. Comparison of evaluation metrics for wind forecasting 

 
Algorithm MAE MSE RMSE R2 

LSTM 0.8962879619 1.282727664 1.132575677 0.6582805554 

CNN-LSTM 0.8961970531 1.314920129 1.146699668 0.6752102337 

Exponential Smoothening 1.439943771 3.271722413 1.808790318 0.1962437026 

Smooth CNN-LSTM  0.1798849493 0.05209774487 0.2282493042 0.9791479698 

 

All metrics show that the “Smooth CNN-LSTM” model 

operates more effectively than the other algorithms, 

demonstrating increased accuracy, precision, and explanatory 

power. When compared to the other models, the “Exponential 

Smoothing” model performs worse, particularly when it 

comes to explanatory power (R2) and accuracy (MSE, RMSE). 

The “CNN-LSTM” model surpasses the “LSTM” model with 

regard to RMSE and R2, but both models perform similarly. In 

conclusion, Smooth CNN-LSTM Model seems to be operating 

very well based on these metrics. The model accounts for a 

great deal of the variability in the data and is producing precise 

predictions with very little error.  

 

 
 

Figure 9. Actual vs. Predicted WS10M_MAX for exp 

Smooth CNN-LSTM 

 
 

Figure 10. Actual vs. Predicted Scatter Plot for exp smooth 

CNN-LSTM 

 

 
 

Figure 11. Comparison of evaluation metrics for wind 

forecasting 
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Figure 11 and Table 1 show the comparison of evaluation 

metrics for wind forecasting. 

 

 

4. RESULT ANALYSIS FOR SOLAR PREDICTIONS  

 

Interpret the performance metrics for each algorithm for 

solar prediction. Results are shown in Figures 12 to 16. 

ALLSKY_SFC_LW_DWN means Total Longwave 

Downward Irradiance of the Sky Surface (W/m2). 

 

 
 

Figure 12. Actual vs. Predicted Scatter Plot for exponential 

smoothening 

 

 
 

Figure 13. Actual vs. Predicted Scatter Plot for LSTM 

 

It is preferable if the MAE is lower. The model “CNN-

LSTM Exponential Smooth” shows the smallest average 

absolute errors (MAE). Larger errors are penalized with 

greater severity by MSE. Once more, “CNN-LSTM 

Exponential Smooth” has the lowest MSE, indicating 

predictions that are more accurate. Similar to MSE, but 

expressed in the target variable's original units is RMSE. With 

the lowest RMSE, “CNN-LSTM Exponential Smooth” 

suggests smaller average magnitude of errors. The dependent 

variable's predictable variance is expressed as a percentage, or 

R2. Greater R2 values are preferable. Out of all the models, 

“CNN-LSTM Exponential Smooth” has the highest R2, 

suggesting the best explanatory. The metrics make it evident 

that “CNN-LSTM Exponential Smooth” is the model in this 

comparison that performs the best at predicting the sun 

irradiation (Table 2). But given the nature of solar prediction 

tasks, it's also critical to assess the models' capacity to identify 

patterns linked to solar cycles and meteorological conditions. 

 

 
 

Figure 14. Actual vs. Predicted Scatter Plot for CNN-LSTM 

 

 
 

Figure 15. Actual vs. Predicted ALLSKY_SFC_LW_DWN 

for smooth CNN-LSTM 

 

 
 

Figure 16. Actual vs. Predicted Scatter Plot for smooth 

CNN-LSTM 

 

Table 2. Comparison of evaluation metrics for solar forecasting 

 
Algorithm MAE MSE RMSE R2 

LSTM 5.128618012 52.26106388 7.229181412 0.8347565928 

CNN-LSTM 5.274452091 56.68904962 7.529213081 0.7737642108 

Exponential Smoothening 13.78351081 283.8759998 16.84862012 0.1395408998 

Smooth CNN-LSTM 1.057548805 2.223535014 1.491152244 0.9874100766 
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5. CONCLUSIONS 

 

Naturally, wind and solar energy power change at all times. 

As a result, it must be forecast beforehand using a variety of 

predictive models. This is done with the goal of implementing 

corrective actions that ensure the best possible output of 

electric power. The hybrid deep learning network, Smooth 

CNN-LSTM model, was presented by the authors, who 

obtained accuracy levels that were more significant than those 

of other models. Studies employing as input variables the 14-

year historical meteorological solar and wind data for 

Aralvaimozhi. This can be applied to sun radiation and wind 

speed prediction. When data collected every four months was 

used to train the model, this performance was attained. The 

lower the MSE (2.2) in solar and (0.05) in wind, the better. In 

this regard, the Smooth CNN-LSTM model has the lowest 

MSE, indicating superior performance. Again, RMSE lower 

values (1.49) in solar and (0.22) in wind are better. The CNN-

LSTM Exponential Smooth has the lowest RMSE, suggesting 

that it has the smallest average magnitude of errors. Similar to 

RMSE, lower MAE values are preferable. The Smooth CNN-

LSTM model has the lowest MAE, indicating smaller average 

absolute errors. Higher R2 (0.98) values are better in both solar 

and wind power forecasting. The Smooth CNN-LSTM model 

has the maximum R2, signifying the finest explanatory power 

among the quartet of models. The proposed Exponential 

Smoothing-CNN-LSTM method outperforms existing 

techniques such as CNN-LSTM, LSTM, and Exponential 

Smoothing, as it effectively combines the strengths of all three 

approaches. The Smooth CNN-LSTM model, given its 

performance across multiple metrics, seems to be the most 

effective in this comparison. The limitation of this research 

lies in the fact that the predictive analysis of solar and wind 

data focuses exclusively on onshore climates. It remains 

uncertain whether the same methodologies would be 

applicable to offshore conditions. So, the future analysis may 

be on the weather forecasting for offshore environments. 
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