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Efficient production management in energy storage systems requires accurate performance 

modeling of lithium-ion batteries (LIBs), especially under varying load conditions. This 

study presents a novel simplified lumped parameter approach that predicts battery 

performance with minimal reliance on internal design specifics. The approach uses a black-

box modeling technique to estimate critical parameters—ohmic overpotential, diffusion 

time constant, and charge exchange current—via a Levenberg–Marquardt optimization 

algorithm, based on experimental voltage, current, and open circuit voltage data. Results 

demonstrate high accuracy in predicting cell voltage over dynamic load cycles, achieving 

standard deviations of 0.015 V and 0.014 V in parameter estimation and load prediction, 

respectively. These findings have significant implications for advancing energy storage 

systems by enabling more sustainable production management practices, reducing resource 

wastage, and improving operational efficiency. By enhancing the adaptability of 

production processes while maintaining high performance, this model contributes to 

achieving long-term goals of sustainability and scalability in energy storage applications. 
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1. INTRODUCTION

Lithium-ion batteries (LIBs) have become indispensable in 

modern energy storage applications due to their high energy 

density, relatively long cycle life, and efficient charge-

discharge rates. These features make them an ideal choice for 

renewable energy storage systems, which rely on efficient, 

scalable storage solutions to balance supply and demand, 

especially as intermittent renewable sources like solar and 

wind become more prevalent. In addition, LIBs are integral to 

the growth of the electric vehicle (EV) industry, where the 

demand for reliable, long-lasting, and high-performance 

batteries continues to surge. As LIBs become increasingly 

embedded in various high-demand sectors, production 

efficiency becomes a critical area of focus. Reliable models 

that predict battery performance under different load 

conditions are essential to ensuring production quality and 

operational stability. Traditionally, battery modeling requires 

a detailed understanding of internal processes, including 

chemical reactions, material properties, and thermal behavior, 

making it challenging to develop models that are both accurate 

and manageable. For manufacturers, this complexity can lead 

to increased costs and production delays, particularly when 

models need frequent recalibration or extensive parameter 

knowledge. To address these issues, there is a need for 

streamlined, simplified models that can predict battery 

performance accurately without requiring detailed internal 

battery parameters. Such models would enable production 

lines to implement faster quality control and adjustment 

processes, ultimately improving production efficiency and 

scalability.  

In recent years, the literature has highlighted significant 

advancements in lithium-ion battery applications, thermal 

management, and energy optimization for battery-driven 

systems, particularly in EVs and renewable energy storage. 

Studies emphasize the need for precise, efficient, and 

integrated thermal management solutions to mitigate thermal 

runaway risks, improve longevity, and optimize performance 

in high-demand applications [1-3]. Methods such as the 

implementation of electro-thermal aging models for real-time 

monitoring have been explored, alongside hybrid storage 

systems that integrate flywheels and batteries for enhanced 

grid stability and reduced wear and tear [4, 5]. Particle filter-

based virtual sensors for state of charge (SOC) estimation also 

emerge as cost-effective approaches, showing accuracy in 

dynamic conditions without requiring intensive physical 

instrumentation [4]. Thermal management remains crucial, 

with integrated systems using materials such as composite 

phase change substances for efficient heat dissipation, 

demonstrating the importance of novel cooling strategies for 
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extended LIB life in EVs and energy-intensive applications [3, 

6]. Additionally, the role of production environment control in 

battery efficiency, through approaches like model-predictive 

control in HVAC systems, reflects a growing trend toward 

more sustainable and controlled manufacturing processes [7]. 

These advancements collectively underscore the 

interdisciplinary efforts to meet the growing demands for LIBs 

by enhancing their thermal resilience, operational efficiency, 

and applicability across various sectors. The rapid growth of 

energy storage systems, driven by the increasing adoption of 

renewable energy sources and EVs, has placed unprecedented 

demands on the energy sector. In this context, LIBs have 

emerged as a cornerstone technology due to their high energy 

density, efficiency, and scalability. However, ensuring the 

efficient integration of these storage systems into the broader 

energy grid poses significant challenges, particularly in 

deregulated markets where competition and operational 

efficiency are paramount. In a deregulated environment, 

transmission planning must balance technical constraints, 

economic objectives, and regulatory requirements while 

accommodating the dynamic nature of energy generation and 

consumption. The inclusion of energy storage systems like 

LIBs adds complexity to this planning process, requiring 

precise performance predictions and adaptable management 

strategies to optimize grid reliability and market 

competitiveness. Traditional electrochemical and thermal 

models offer detailed insights into battery behavior but are 

often impractical for real-time applications due to their 

computational demands and reliance on extensive internal 

data. In contrast, simplified modeling approaches provide 

faster predictions but may sacrifice accuracy under dynamic 

conditions. This trade-off underscores the need for 

methodologies that strike a balance between precision and 

computational efficiency. The proposed lumped parameter 

model addresses these challenges by offering a scalable, 

production-oriented solution for battery performance 

prediction. By focusing on key overpotentials and leveraging 

robust optimization techniques, the model enables 

manufacturers and grid operators to make informed decisions 

that enhance efficiency and sustainability. This is particularly 

critical in deregulated markets, where minimizing costs and 

maximizing system adaptability are essential for maintaining 

a competitive edge. By streamlining the modeling process 

while maintaining predictive accuracy, the lumped parameter 

approach supports both the operational and strategic goals of 

energy systems in deregulated environments. Its application 

extends beyond production management, contributing to 

optimized transmission planning and the integration of energy 

storage systems into modern grids. 

In addition to prior studies on lithium-ion battery 

applications in energy storage, recent literature expands upon 

the thermal management and optimization frameworks crucial 

for advancing battery performance in high-demand sectors. 

Wen’s [8] exploration of fire modeling emphasizes the unique 

challenges in battery safety, focusing on thermal behavior in 

emerging energy technologies, which is critical in managing 

risks associated with lithium-ion cells under high-power 

scenarios. Ebbs-Picken et al. [9] present a hierarchical model 

for cold plate optimization, demonstrating its utility in 

efficiently managing heat dissipation for EV batteries a vital 

innovation for extending battery life and enhancing EV safety. 

Eslamibidgoli et al. [10] discuss advances in simulation 

models, illustrating how theoretical models contribute to 

understanding complex electrochemical reactions, critical in 

the fuel cell sector, which shares parallels in the modeling 

needs for LIBs. 

In operational settings, Hasan’s [11] work on boundary 

observer design applies state estimation for LIBs, providing 

insights into real-time monitoring through infinite-

dimensional systems, a promising tool for battery health 

monitoring. Zhang et al.’s [12] intelligent SOC estimation 

using machine learning further showcases the role of artificial 

intelligence in refining battery management systems (BMS), 

achieving high accuracy while reducing computational loads 

essential for optimizing battery life in EV applications. Hybrid 

configurations like those explored by Bagherabadi et al. [13] 

show the potential for reducing emissions through integrated 

power management strategies, with LIBs playing a central role. 

These developments underscore the interdisciplinary 

approaches that continue to shape the field of lithium-ion 

battery optimization for practical applications across 

transportation and renewable energy storage systems. 

Conventional battery modeling approaches often depend on 

electrochemical models that require intricate information 

about the internal design, chemistry, and materials used in 

each battery cell. While these models can offer high accuracy, 

they are complex, time-consuming, and costly to calibrate, 

particularly when attempting to predict battery performance 

under variable dynamic load conditions. This complexity 

poses significant challenges for manufacturers seeking to 

apply battery models in production environments, where fast, 

efficient, and reliable performance predictions are crucial. 

LIBs have become the cornerstone of the EV industry due to 

their high energy density, longevity, and lightweight design, 

which collectively address the critical performance needs of 

modern EVs. In EV applications, batteries must store 

sufficient energy to allow for extended travel ranges between 

charges, respond effectively to dynamic power demands 

during acceleration and deceleration, and endure repeated 

charge-discharge cycles while maintaining stability and 

capacity over time. The LIB's inherent characteristics make it 

well-suited to fulfill these requirements, as it offers a favorable 

balance between weight, energy output, and thermal stability 

factors that are especially vital in automotive applications 

where weight and performance efficiency are interdependent. 

The performance of LIBs in EVs is critical to achieving the 

range, efficiency, and reliability that consumers expect. For 

instance, battery capacity directly affects the maximum range 

an EV can travel on a single charge, making it a core 

performance metric and a primary factor in consumer 

purchasing decisions [14, 15]. Additionally, LIBs enable fast 

charging, a feature increasingly supported by advanced 

charging infrastructure, which helps to reduce the downtime 

associated with charging and makes EVs more viable for 

longer commutes or travel. With EVs, battery efficiency also 

plays a significant role in the overall sustainability of the 

vehicle, as higher efficiency reduces the frequency and 

intensity of charging cycles, thereby extending the battery’s 

usable lifespan and reducing the environmental impact 

associated with battery disposal and replacement [16-18]. 

Thermal management is another critical factor in the use of 

LIBs for EVs, as these batteries must be able to withstand 

high-power demands without experiencing overheating, which 

can lead to thermal runaway or degradation over time. 

Consequently, EV manufacturers invest in advanced BMS that 

monitor temperature, voltage, and current, ensuring the battery 

operates within safe parameters [19-21]. This management is 

essential in enhancing battery performance and reliability, 
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especially during demanding tasks such as rapid acceleration, 

long-distance travel, or operating in extreme temperatures. 

Additionally, the scalability of LIBs allows them to be 

customized to meet the specific requirements of different EV 

types, from compact cars to larger electric trucks and buses, 

by adjusting the number and arrangement of cells within the 

battery pack to optimize both energy capacity and power 

output [22, 23]. 

Moreover, LIBs contribute significantly to the sustainability 

and emissions reduction goals of the automotive industry. 

With zero direct emissions, EVs powered by LIBs provide a 

cleaner alternative to traditional combustion engine vehicles, 

aligning with global efforts to reduce greenhouse gas 

emissions and dependence on fossil fuels. As LIB technology 

advances, with improvements in energy density, charge rates, 

and recycling processes, it not only enhances the efficiency 

and appeal of EVs but also fosters a circular economy within 

the battery industry, where materials can be recovered and 

reused, further decreasing the environmental impact [24, 25]. 

The integration of LIBs in EVs has revolutionized the 

automotive industry by enabling cleaner, more efficient, and 

high-performing alternatives to traditional vehicles. Through 

advancements in battery technology, EVs are becoming more 

accessible, sustainable, and aligned with the goals of reducing 

emissions and advancing renewable energy use, positioning 

LIBs as a central component of the future of transportation. 

In response to these challenges, simplified or “lumped” 

models have emerged as a practical alternative. Lumped 

models aggregate key battery characteristics into a set of 

generalized parameters that approximate the battery’s 

dynamic behavior without detailing every internal process. 

However, such models must strike a careful balance between 

simplification and accuracy to ensure they can provide reliable 

predictions in a production context. Thus, developing a 

lumped model that accurately predicts lithium-ion battery 

performance while minimizing the need for detailed internal 

parameters is essential for optimizing battery production 

management. This research makes several key contributions to 

battery modeling and production management by introducing 

a black-box modeling approach that does not require 

knowledge of the battery’s internal composition or design. 

This accessible method provides a production-oriented 

solution, capturing essential performance metrics without 

intricate internal details. Leveraging the Levenberg–

Marquardt optimization algorithm, the study directly estimates 

critical battery parameters—ohmic overpotential, diffusion 

time constant, and charge exchange current—from 

experimental voltage, current, and open circuit voltage data, 

allowing the model to adapt to real-time performance 

conditions. By reducing model complexity, this research 

presents a production-ready solution that supports efficient 

performance predictions, quality control, and process 

adjustments, offering manufacturers a streamlined and 

scalable tool for enhanced production management in energy 

storage applications. LIBs have become a cornerstone of 

modern energy storage solutions, supporting applications 

ranging from renewable energy systems to EVs. Their high 

energy density, long cycle life, and efficient charge-discharge 

characteristics make them essential for addressing global 

energy demands. However, the production management of 

LIBs presents several challenges that hinder scalability and 

efficiency. Current LIB production processes often rely on 

detailed, computationally intensive models that require 

extensive knowledge of internal battery chemistries and 

material properties. This level of complexity increases costs, 

slows production timelines, and complicates quality control. 

For instance, traditional electrochemical models demand 

constant recalibration to address variations in manufacturing 

conditions, leading to resource inefficiencies and inconsistent 

production quality. Additionally, balancing performance 

optimization with sustainability goals remains a significant 

pain point, as manufacturers strive to minimize waste and 

improve energy efficiency across production lines. To address 

these issues, this study introduces a simplified lumped 

parameter model that reduces dependence on detailed internal 

parameters while maintaining high predictive accuracy. By 

focusing on practical and scalable solutions, the proposed 

model aims to streamline LIB production, enhance operational 

adaptability, and support sustainable practices in energy 

storage manufacturing. 

The main objective of this study is to develop and apply a 

lumped parameter model for LIBs that enables accurate 

performance prediction under dynamic load conditions, with a 

specific focus on enhancing production management 

efficiency. By implementing a black-box modeling approach, 

this research aims to bypass the complexities of detailed 

battery chemistry and structure, relying instead on a set of 

experimentally derived, time-dependent parameters that are 

optimized for predictive accuracy. Through this approach, the 

study seeks to provide battery manufacturers with a practical 

tool that supports reliable performance predictions, allowing 

for greater flexibility and control in production processes. 

 

1.1 Novelty of the paper 

 

This paper introduces a novel approach to lithium-ion 

battery modeling tailored specifically for production 

management applications in energy storage systems. Unlike 

traditional battery models that rely on detailed electrochemical 

and thermal knowledge of internal battery processes, this study 

employs a black-box, lumped parameter model that 

streamlines the prediction of battery performance under 

dynamic load conditions. The novelty lies in the model’s 

ability to estimate essential battery parameters such as ohmic 

overpotential, diffusion time constant, and charge exchange 

current directly from experimental data, using a Levenberg–

Marquardt optimization technique. This approach allows for 

accurate performance predictions with minimal input 

requirements, reducing the complexity and computational 

demands often associated with battery modeling. Additionally, 

this model is designed to meet the unique demands of the 

production environment, where rapid and reliable 

performance predictions are crucial. By focusing on a 

production-ready solution, this research bridges the gap 

between theoretical modeling and practical manufacturing 

needs, providing a scalable tool that manufacturers can easily 

implement for efficient quality control, real-time process 

adjustments, and streamlined production management. The 

novelty of this paper lies not only in the methodological 

approach but also in its applicability across energy storage 

production systems, where flexibility, efficiency, and 

accuracy are essential for managing large-scale production 

demands. 

 

1.2 Organization of the paper 

 

This research presents a simplified, production-oriented 

model to predict lithium-ion battery performance under 
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dynamic load conditions, addressing the challenges faced by 

manufacturers in the energy storage sector. Traditional battery 

models often rely on detailed electrochemical processes and 

thermal dynamics, requiring extensive knowledge of internal 

battery components, materials, and reactions. While these 

detailed models achieve high accuracy, they are complex, 

time-intensive, and challenging to implement on a large scale 

in production environments, where quick, reliable predictions 

are essential. To meet this need, the present study employs a 

black-box, lumped parameter approach, allowing for accurate 

performance predictions without requiring intricate internal 

battery information. 

The methodology centers on three key parameters that 

capture essential aspects of battery behavior: ohmic 

overpotential, diffusion time constant, and charge exchange 

current. These parameters are crucial in modeling voltage 

losses that occur in response to load cycles and provide a 

simplified but accurate representation of the lithium-ion 

battery’s performance over time. Ohmic overpotential reflects 

resistive losses, the diffusion time constant captures the impact 

of lithium-ion diffusion within the battery, and the charge 

exchange current represents the reaction kinetics at the 

electrode surfaces. By focusing on these parameters, the model 

remains accessible and reduces the need for detailed input on 

material properties or design, making it suitable for quick 

implementation in production settings. The model utilizes a 

Levenberg–Marquardt optimization algorithm, a widely used 

technique in non-linear least-squares problems, to estimate the 

values of these parameters directly from experimental data. 

The experimental data used includes load cycle information, 

such as time-dependent voltage and current profiles, and open 

circuit voltage (OCP) data, which reflect the battery's 

performance over various states of charge (SOC). This data-

driven approach enables the model to adjust to different load 

cycles and dynamic conditions, improving its versatility and 

applicability across a range of battery operations. By applying 

the Levenberg–Marquardt optimization, the model aligns 

closely with actual battery behavior, achieving high predictive 

accuracy while requiring only a few key parameters. Designed 

specifically for production management applications, this 

model facilitates efficient quality control by enabling 

manufacturers to conduct rapid performance predictions. It 

supports real-time adjustments to the production process, as 

operators can quickly gauge battery performance outcomes 

without the need for recalibrating complex models. This 

efficiency is especially valuable in high-throughput 

environments, where scalability, consistency, and speed are 

critical. Additionally, the model’s simplified structure allows 

for easy integration into existing manufacturing systems, 

contributing to reduced operational costs and improved overall 

production efficiency. Beyond its immediate production 

benefits, this research contributes to the broader field of 

battery modeling by demonstrating that lumped parameter 

approaches can achieve a balance between simplicity and 

accuracy. While the black-box model does not capture every 

detail of the battery's internal processes, it provides 

sufficiently accurate predictions for practical applications, 

highlighting the potential of streamlined models in production 

environments. As LIBs become more essential in renewable 

energy and EV sectors, the need for scalable, production-

friendly solutions grows. This research offers a practical 

response to that need, illustrating how focused parameter 

estimation can support effective energy storage production 

management. This study provides a novel, simplified battery 

model that bridges the gap between complex theoretical 

models and the production-ready tools required in 

manufacturing. By emphasizing accessibility, efficiency, and 

real-time adaptability, the proposed model not only advances 

battery modeling practices but also enhances the ability of 

manufacturers to meet the growing demand for high-quality 

LIBs in energy storage applications. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Lumped parameter model 

 

This study uses a lumped parameter model to predict 

lithium-ion battery performance under dynamic load 

conditions without relying on detailed chemical, thermal, or 

structural knowledge of the battery. Unlike traditional models 

that account for intricate electrochemical processes within the 

cell, this simplified model uses a black-box approach, 

allowing it to represent the battery's overall behavior through 

key generalized parameters. This approach makes it suitable 

for rapid implementation in production environments where 

ease of use and scalability are essential. The lumped model’s 

key components are three types of voltage losses or 

“overpotentials,” which collectively capture the essential 

behaviors of lithium-ion battery dynamics. These 

overpotentials include: 

 

1. Ohmic Overpotential: Represents resistive losses in the 

battery due to the internal resistance of the electrolyte, 

separator, and electrodes. These losses increase 

proportionally with current, affecting overall battery 

efficiency. 

2. Activation Overpotential: Captures voltage losses 

associated with charge transfer reactions at the electrode-

electrolyte interfaces. This component accounts for the 

energy required to initiate and maintain electrochemical 

reactions and is sensitive to current and reaction kinetics. 

3. Concentration Overpotential: Models the voltage loss due 

to lithium-ion diffusion within the electrode particles, 

particularly when ions must move over longer distances 

as the battery state of charge (SOC) changes. This 

component captures the effects of diffusion limitations, 

which become prominent under high current loads. 

 

These overpotentials enable the lumped parameter model to 

accurately reflect battery performance, providing insights into 

how the battery will respond to variable loads over time. 

Governing Equation: 

 

𝐸cell = 𝐸𝑜𝑐𝑝(𝑆𝑂𝐶) − η𝑅 − ηact − ηconc (1) 

 

where, 𝐸𝑜𝑐𝑝(𝑆𝑂𝐶)  is the open circuit potential (OCP) as a 

function of the state of charge (SOC), representing the 

equilibrium voltage of the battery when no load is applied, 𝜂𝐼𝑅 

is the ohmic overpotential, which accounts for resistive losses 

within the battery due to internal resistance, 𝜂act is the 

activation overpotential, representing the energy barrier for 

charge transfer reactions at the electrodes, and 𝜂conc  is the 

concentration overpotential, which models the voltage loss 

due to lithium-ion diffusion limitations within the electrode 

material. Each of these overpotentials is defined by the 

following sub-equations: 
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1. Ohmic Overpotential 

 

η𝐼𝑅 = η𝐼𝑅,1𝐶 ⋅
𝐼cell 

𝐼1𝐶

 (2) 

 

where, 𝜂𝐼𝑅,1𝐶 is the ohmic overpotential at a 1C discharge rate, 

representing internal resistive losses, 𝐼𝑐𝑒𝑙𝑙  is the applied cell 

current, 𝐼1𝐶  is the current corresponding to a 1C discharge rate, 

defined as 𝐼1𝐶 =
𝑄𝑐𝑒𝑙𝑙,0

3600
 where 𝑄𝑐𝑒𝑙𝑙,0 is the battery capacity in 

ampere-hours (Ah). 

2. Activation Overpotential 

 

ηact =
2𝑅𝑇

𝐹
⋅ 𝑎 sinh (

𝐼cell 

2𝐽0𝐼1𝐶

) (3) 

 

where, 𝑅 is the universal gas constant, 𝑇 is the temperature in 

Kelvin, 𝐹  is the Faraday’s constant, and 𝐽0  Dimensionless 

charge exchange current, representing reaction kinetics at the 

electrode surfaces. 

3. Concentration Overpotential 

 

ηconc = 𝐸𝑜𝑐𝑝(𝑆𝑂𝐶surface) − 𝐸ocp(𝑆𝑂𝐶average) (4) 

 

where, 𝑆𝑂𝐶surface and 𝑆𝑂𝐶average is the state of charge at the 

surface and average state of charge in the electrode, 

respectively. These terms are derived from diffusion dynamics 

modeled by Fick’s law, where the time constant τ represents 

the diffusion rate of lithium ions within the particle. This 

governing equation serves as the foundation for the lumped 

model's ability to predict cell voltage 𝐸𝑐𝑒𝑙𝑙 under dynamic load 

conditions. By combining the effects of ohmic, activation, and 

concentration overpotentials, it captures key voltage losses 

that occur within the battery during operation. Each 

component in the equation reflects distinct aspects of battery 

behavior: ohmic overpotential accounts for internal resistance, 

activation overpotential models the energy required for charge 

transfer reactions, and concentration overpotential captures 

the diffusion limitations of lithium ions. Together, these 

components provide a comprehensive and efficient 

representation of battery performance, enabling accurate 

predictions without complex, detailed modeling. 

 

2.2 Data collection and experimental 

 

To calibrate and validate the model, experimental data was 

gathered under controlled load cycles, simulating dynamic 

operating conditions typically encountered in real-world 

applications. The datasets used include: 

1. Load Cycle Data: Provides time-dependent current and 

voltage profiles, representing the battery’s behavior under 

different loading conditions. This data helps capture real-

world performance and is crucial for adjusting the model 

to reflect actual battery behavior. 

2. Open Circuit Voltage (OCP) versus SOC Data: This 

dataset records the battery's OCP across various states of 

charge, offering baseline information on the battery’s 

intrinsic potential independent of load. OCP data is 

essential for modeling the equilibrium state of the battery 

and serves as a reference point for calculating 

overpotentials. 

3. Experimental Voltage and Current Data: Represents the 

battery's response across a wide range of operational 

states and SOC levels, providing the empirical basis for 

parameter estimation. 

These datasets were used in tandem to tune the model’s 

parameters and verify its accuracy. The time-dependent load 

cycle data, combined with OCP vs. SOC information, allowed 

for precise adjustments to the overpotential parameters, while 

the experimental voltage and current profiles were used to 

validate the model by comparing simulated outputs against 

actual performance.  

 

2.3 Parameter estimation process 

 

Parameter estimation was conducted using the Levenberg–

Marquardt optimization algorithm, a robust method for non-

linear least-squares fitting. This algorithm was chosen for its 

capacity to handle complex, non-linear relationships, allowing 

for efficient fitting of the model parameters to the 

experimental data. Key parameters targeted for optimization 

included: 

1. Ohmic Overpotential at 1C (eta_IR_1C): A fitting 

parameter that represents the ohmic voltage loss when the 

battery is discharged at a 1C rate. It provides a measure of 

internal resistance under standard operating conditions. 

2. Diffusion Time Constant (tau): Represents the rate at 

which lithium ions diffuse within the battery. This 

parameter is critical for modeling concentration 

overpotential, as it influences how the battery responds to 

varying SOC levels. 

3. Dimensionless Charge Exchange Current (J0): A 

parameter representing the rate of charge transfer 

reactions at the electrodes. It is inversely proportional to 

the activation overpotential, capturing the ease with which 

electrochemical reactions occur within the battery. 

These parameters were iteratively adjusted until the 

simulated voltage closely matched the experimental voltage 

for the specified load cycles. The resulting optimized 

parameters enabled the model to provide accurate predictions 

of battery performance, validated through comparisons against 

additional experimental data not used during calibration. The 

lumped parameter model was implemented using COMSOL 

Multiphysics, a simulation software that allows for the detailed 

modeling of physical and chemical processes. Within 

COMSOL, the model setup included defining boundary 

conditions and interpolation functions to accurately represent 

the time-dependent experimental data. The boundary 

conditions were established to reflect typical operational 

constraints, such as initial SOC and temperature, while 

ensuring that the model could handle the variations in current 

load as specified by the experimental load cycles. 

Interpolation was used for both voltage and current data, 

allowing the model to generate continuous predictions across 

the entire load cycle. This approach allowed the model to 

respond dynamically to changes in current, mirroring the real-

world fluctuations encountered in battery operation. By 

leveraging COMSOL’s computational capabilities, the model 

effectively integrates the optimized parameters to simulate the 

battery’s voltage response under various load conditions, 

providing a scalable solution for performance prediction in 

production environments. 

 

2.4 Modified governing equations 

 

The governing equation for lithium-ion battery performance 

is modified to capture critical factors that influence real-world 

behavior, such as temperature dependence, SOC sensitivity, 
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and diffusion limitations. Temperature impacts internal 

resistance and reaction rates, so incorporating temperature-

dependent terms allows the model to adjust for varied thermal 

conditions. SOC sensitivity affects charge transfer resistance 

and diffusion rates, which are crucial for accurate predictions 

across different charge levels. Additionally, high loads can 

create diffusion limitations, leading to concentration gradients 

that influence voltage. By modifying the equation with SOC, 

temperature, and diffusion terms, the model becomes more 

adaptable and precise, providing reliable performance 

predictions for applications like EVs and renewable energy 

storage, where batteries face diverse and dynamic conditions. 
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 (5) 

 

This modified equation combines the effects of OCP, ohmic 

resistance, activation energy, and ion diffusion to simulate the 

realistic performance of a lithium-ion battery. By 

incorporating SOC and temperature dependencies, as well as 

a dynamic representation of diffusion limitations, the model 

adapts to variable operating conditions, making it suitable for 

performance prediction in diverse environments. Each term 

reflects a critical aspect of battery behavior, enabling the 

model to deliver accurate voltage predictions under real-world 

load conditions. 

 

 

3. RESULT AND DISCUSSIONS 

 

3.1 Parameter estimation results 

 

The parameter estimation process, conducted using the 

Levenberg–Marquardt optimization algorithm, yielded 

optimized values for the key parameters in the lumped battery 

model. The COMSOL results provides a summary of these 

optimized parameters, including the ohmic 𝜂𝐼𝑅,1𝐶 , diffusion 

time constant (τ), and charge exchange current (J0). These 

values reflect the specific behavior of the battery under 

dynamic load conditions, as derived from the experimental 

voltage, current, and open circuit voltage (OCP) data. To 

assess the accuracy of the model, we calculated the standard 

deviation between the modeled and experimental cell voltages. 

For the initial parameter estimation phase, the standard 

deviation was approximately 0.015 V, while the full load 

prediction study achieved a standard deviation of 0.014 V. 

These low deviations indicate that the model aligns closely 

with the actual performance data, confirming the effectiveness 

of the optimized parameters. Additionally, model fitting 

against experimental data across the load cycle demonstrates 

strong predictive power, as shown in the overlay of modeled 

and experimental voltage profiles, which exhibit minimal 

deviation throughout the cycle. It is essential to explain the 

context and purpose behind comparing modeled and 

experimental voltage data across a load cycle. The goal of this 

study is to develop a simplified, lumped parameter model that 

accurately predicts lithium-ion battery performance under 

dynamic operating conditions, crucial for applications like 

production management and quality control. To validate this 

model, we use experimental data collected from a lithium-ion 

battery operating under a 600-second load cycle. This load 

cycle simulates the variable current and voltage demands that 

batteries typically experience in real-world applications, such 

as EVs or renewable energy storage. The experimental voltage 

data serves as a baseline for assessing the accuracy of the 

model, while the modeled voltage is generated by optimizing 

key parameters including ohmic resistance, activation energy, 

and diffusion characteristics using a Levenberg–Marquardt 

optimization algorithm. 

 

 
 

Figure 1. Simulation of voltage over load cycle 

 

Figure 1 illustrates the comparison between modeled and 

experimental cell voltage across a 600-second load cycle, 

capturing the battery’s response under dynamic operating 

conditions. The blue line represents the experimental voltage 

measurements, providing a baseline of actual battery 

performance during the cycle. The orange dashed line, 

indicating the modeled voltage, follows the experimental data 

closely, with minimal deviation throughout the load cycle. The 

alignment between these curves reflects the model's accuracy, 

achieved by optimizing key parameters like ohmic 

overpotential, diffusion time constant, and charge exchange 

current. In the initial stages (0 to 200 seconds), the modeled 

voltage tracks the experimental data well, with both curves 

peaking around the same voltage levels. As the cycle 

progresses toward the middle (200 to 400 seconds), the curves 

maintain alignment, although slight phase shifts occur due to 

inherent model limitations or slight discrepancies in parameter 

sensitivity. Toward the end of the cycle (400 to 600 seconds), 

the modeled voltage continues to approximate the 

experimental values, demonstrating the model’s robustness in 

predicting battery behavior across varied current loads and 

SOC levels. The close fit, indicated by a standard deviation of 

approximately 0.015 V in the initial estimation phase and 

0.014 V in the full load prediction, validates the effectiveness 

of the lumped parameter approach. This model's ability to 

replicate real-world performance through simplified 

parameters makes it a viable tool for applications in production 

management, where real-time performance prediction and 

quality control are critical. By comparing the modeled voltage 

with the experimental data, we aim to assess how well the 

lumped model can replicate actual battery behavior with 

minimal parameter requirements. The accuracy of this 

comparison, quantified by standard deviation values between 

the two curves, indicates the model’s reliability and its 

potential applicability in fast-paced production environments. 

This analysis allows us to determine if the simplified model 
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captures the essential battery dynamics without requiring 

detailed, complex electrochemical information, thus 

supporting its use in real-time battery performance prediction 

and management. 
 

3.2 Voltage loss analysis 
 

The lumped model divides total voltage loss into three main 

components: ohmic, activation, and concentration 

overpotentials. This section breaks down the contributions of 

each overpotential across the load cycle, highlighting their 

roles in overall battery performance. 

1. Ohmic Overpotential: This component represents the 

resistive losses within the battery, which remain relatively 

stable but increase proportionally with current. Visual 

analysis of the ohmic loss indicates that these losses are 

more significant during peak current periods, contributing 

to an immediate drop in cell voltage. 

2. Activation Overpotential: The activation overpotential 

reflects the energy required to drive charge transfer 

reactions at the electrode interfaces. This loss is more 

dynamic, varying based on current and SOC. During high-

demand periods, such as the start of the load cycle, 

activation overpotential increases due to the higher 

reaction rate demands, contributing to additional voltage 

loss. 

3. Concentration Overpotential: Concentration overpotential 

represents diffusion limitations within the electrode 

particles. As current increases, concentration gradients 

develop, particularly under sustained high-load 

conditions, leading to a delayed voltage drop. This effect 

is more pronounced in the latter part of the load cycle 

when SOC is lower, and lithium-ion diffusion is slower. 

Visual representations, including plots comparing the 

modeled and experimental voltage losses over the load cycle 

and a full 600 s load prediction, highlight the cumulative 

impact of these overpotentials. These graphs show that the 

modeled losses closely follow the trends observed in the 

experimental data, validating the model’s ability to accurately 

simulate individual and combined voltage losses. 

To understand the factors contributing to total voltage loss 

in a lithium-ion battery during operation, we analyze three 

main types of overpotentials: ohmic, activation, and 

concentration. Each overpotential represents a unique aspect 

of the battery's internal resistance and performance limitations. 

Ohmic losses stem from resistive elements within the battery, 

such as electrolyte and electrode resistance, and are directly 

proportional to current. Activation losses are associated with 

the energy required for electrochemical reactions at the 

electrode interfaces, influenced by current and state of charge 

(SOC). Concentration losses arise due to limitations in 

lithium-ion diffusion, which becomes more significant under 

high-load conditions when ions have to travel greater distances. 

Analyzing these individual components provides insight into 

the battery’s internal mechanisms and allows for a more 

accurate and practical model for performance prediction. The 

following figure shows the contributions of each voltage loss 

type across a 600-second load cycle, revealing how each 

component affects the overall cell voltage under dynamic 

conditions. 

Figure 2 presents the voltage loss analysis over a 600-

second load cycle, illustrating the distinct contributions of 

ohmic, activation, and concentration losses. The red curve 

shows the ohmic loss, which fluctuates with the current load 

and is primarily responsible for instantaneous voltage drops, 

particularly at the beginning of high-current phases. The green 

curve represents activation loss, which varies as a function of 

current and SOC, and tends to increase as current demand rises. 

The purple line illustrates concentration loss, which builds 

gradually over time due to lithium-ion diffusion limitations 

and remains relatively stable compared to the more dynamic 

ohmic and activation losses. Together, these curves 

demonstrate how each voltage loss component influences the 

total cell voltage, validating the model’s ability to capture 

critical battery behaviors under operational loads. This 

breakdown of voltage losses supports real-time performance 

monitoring and quality control in battery production, where 

understanding and minimizing losses is key to optimizing 

efficiency and reliability. To gain a detailed understanding of 

the battery's internal behavior during operation, we have 

analyzed the voltage losses due to ohmic, activation, and 

concentration overpotentials at specific intervals across a 600-

second load cycle. Each type of loss contributes uniquely to 

the overall performance of the battery, reflecting different 

aspects of internal resistance and energy expenditure. The 

ohmic loss represents the resistive effects within the battery’s 

internal components, such as the electrolyte and electrodes, 

which affect voltage immediately with any change in current. 

Activation loss corresponds to the energy required for 

electrochemical reactions at the electrode interfaces, 

influenced by the state of charge (SOC) and current intensity. 

Lastly, concentration loss accounts for limitations in ion 

diffusion within the electrodes, which become more 

pronounced during prolonged high-load conditions. The 

following table provides a snapshot of these voltage loss 

values at specific time points, offering insights into how each 

loss component evolves during the load cycle. 

 

 
 

Figure 2. Voltage loss analysis 

 

Table 1 presents the simulated values of voltage losses for 

ohmic, activation, and concentration overpotentials at selected 

time points throughout the 600-second load cycle. This 

breakdown allows for a comparative analysis of each 

component’s behavior over time. The ohmic loss, initially at 

0.005 V, fluctuates with changes in current demand, reflecting 

its dependence on resistive elements in the cell. Activation loss, 

beginning at 0.0025 V, varies in response to both SOC and 

current, showing peaks that align with high current demands. 

Concentration loss, which starts at zero, gradually increases 

due to diffusion limitations, peaking at 0.0045 V towards the 

end of the cycle. This table highlights the cumulative impact 

of these losses on battery performance, supporting real-time 

applications in quality control by indicating which 

overpotentials are most significant under various operating 
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conditions. To evaluate the accuracy of the lumped parameter 

model in simulating battery performance, we compare the 

modeled cell voltage, cell open circuit voltage (OCV), and 

experimental cell voltage over a 300-second simulation. The 

cell potential, a critical measure of battery performance, 

reflects the real-time response of the battery under dynamic 

loading. By plotting both modeled and experimental cell 

voltages alongside the open circuit voltage, we can analyze 

how closely the model replicates actual battery behavior 

across varying conditions. This comparison helps to validate 

the model’s reliability and determine if the simplified 

parameters accurately capture the complex internal dynamics 

of the battery. The following figure shows the results of this 

comparison over time, offering insights into the model’s 

precision and areas for potential refinement. 

 

Table 1. Simulation voltage loss 

 
Time 

(s) 

Ohmic Loss 

(V) 

Activation 

Loss (V) 

Concentration 

Loss (V) 

0 0.005 0.0025 0.0000 

100 0.012 0.0040 0.0010 

200 0.015 0.0035 0.0020 

300 0.007 0.0028 0.0030 

400 0.002 0.0030 0.0035 

500 0.008 0.0042 0.0040 

600 0.010 0.0040 0.0045 

 

 
 

Figure 3. Cell potential simulation 

 

Figure 3 illustrates the cell potential simulation results, 

displaying the modeled cell voltage (blue line), cell open 

circuit voltage (green line), and experimental cell voltage (red 

line) over a 300-second interval. The modeled voltage closely 

tracks the experimental data, indicating that the lumped 

parameter model effectively predicts battery behavior, with 

minor discrepancies at specific peaks and valleys. The open 

circuit voltage (OCV) provides a steady reference, showing 

the battery’s equilibrium voltage independent of load, while 

the modeled and experimental voltages fluctuate around it due 

to dynamic loading effects. The close alignment between the 

modeled and experimental curves, despite minor deviations, 

supports the model’s suitability for real-time performance 

prediction. These results highlight the model’s potential for 

use in production environments, where quick and accurate 

simulations are essential for quality control and performance 

optimization. 

 

Figure 4 consists of two plots, (a) and (b), that simulate the 

battery's state of charge (SOC) and overpotentials under 

dynamic loading conditions over a 300-second interval. Figure 

4(a) shows the relationship between the cell’s state of charge 

(SOC) and cell current over time. The blue line represents the 

SOC, while the green line depicts the cell current in amperes 

(A). As the current varies, we observe corresponding 

fluctuations in SOC. High current draws lead to a rapid 

decrease in SOC, while lower or negative currents (charging 

events) allow the SOC to stabilize or increase. This plot 

highlights the SOC's sensitivity to dynamic load conditions 

and demonstrates the battery’s charging and discharging 

cycles within the simulated period. Figure 4(b) illustrates the 

three types of overpotentials (voltage losses) in the battery: 

ohmic (blue line), activation (green line), and concentration 

(red line) over time, with the dashed black line showing cell 

current. Each overpotential fluctuates based on the load 

conditions, reflecting how internal battery losses respond to 

varying currents. Ohmic overpotential remains relatively 

stable, indicating resistance-based losses. Activation 

overpotential spikes with high current draws, showing the 

energy required for charge transfer. Concentration 

overpotential also rises under high loads, due to diffusion 

limitations. Together, these overpotentials provide insight into 

the factors contributing to voltage loss during dynamic 

operation. 

 

 
(a) 

 
(b) 

 

Figure 4. Simulate the state of charges and cell 
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3.3 Production management implications 

 

The results of this study underscore the potential benefits of 

the lumped parameter model in battery production 

management. By providing an accurate yet simplified model 

for performance prediction, this approach facilitates faster 

production cycles by reducing the need for extensive 

parameter calibration. The low computational demand of the 

lumped model allows for real-time performance predictions, 

enabling production lines to quickly assess quality and make 

adjustments to ensure consistency in battery performance. For 

quality control, this model provides a reliable method for 

predicting battery voltage under different load cycles, which is 

critical for detecting anomalies early in the production process. 

This capacity for quick, real-time predictions can enhance 

process management, reduce production costs, and improve 

scalability, especially for manufacturers operating at high 

volumes. Additionally, the model’s ability to predict 

performance across a range of operating conditions ensures 

that batteries meet the demands of diverse applications, from 

EVs to renewable energy storage, supporting more versatile 

and efficient battery production strategies. This simplified 

lumped parameter model offers a practical solution for 

enhancing production efficiency, quality control, and real-time 

adaptability in battery manufacturing. By accurately capturing 

key voltage loss components and aligning closely with 

experimental data, the model supports reliable performance 

predictions without the complexity of traditional models, 

making it a valuable tool for optimizing lithium-ion battery 

production management. In order to evaluate the predictive 

accuracy of the lumped parameter model, it is essential to 

compare the predicted cell voltage with both the experimental 

cell voltage data and the open circuit voltage (OCV) over an 

extended period. By examining these values over a 600-second 

simulation, we can assess how well the model replicates real-

world battery behavior under dynamic conditions. The 

predicted cell voltage, derived from the model’s simplified 

parameter set, reflects the model's response to fluctuations in 

current and state of charge (SOC). Meanwhile, the 

experimental cell voltage serves as a benchmark for actual 

battery performance, and the OCV provides a reference of the 

cell’s equilibrium potential in the absence of load. This figure 

will highlight the extent to which the model can accurately 

capture the cell's response to varying loads, providing insights 

into its potential utility for real-time applications in battery 

performance management. 

 

 
 

Figure 5. Cell voltage prediction 

Figure 5 illustrates the predicted cell voltage (blue line), 

experimental cell voltage (red line), and cell open circuit 

voltage (green line) over a 600-second simulation period. The 

predicted cell voltage closely tracks the experimental cell 

voltage, with minor deviations during peaks and troughs, 

demonstrating the model's accuracy in capturing battery 

performance under dynamic load conditions. The green OCV 

line remains relatively stable, representing the cell's 

equilibrium voltage in the absence of current. The alignment 

between the predicted and experimental voltages across 

various load changes indicates that the lumped parameter 

model provides reliable predictions, with minimal error. This 

strong correlation validates the model’s effectiveness in real-

time battery management applications, where accurate voltage 

predictions are essential for monitoring, quality control, and 

optimization of battery performance. 
 

3.4 Discussions 
 

The results of this study underscore the effectiveness of the 

lumped parameter model in predicting lithium-ion battery 

performance under dynamic loading conditions, validating its 

potential for practical applications in battery production and 

management. By simplifying the model to focus on key 

overpotentials ohmic, activation, and concentration the 

approach offers a streamlined yet accurate prediction of cell 

voltage with minimal computational demand. This simplified 

model addresses the complexity and cost challenges associated 

with traditional battery models that require extensive 

knowledge of internal chemistry and thermal dynamics. The 

comparison between the predicted and experimental cell 

voltages, as shown in Figures 3 and 5, demonstrates the 

model’s ability to closely replicate real-world battery behavior 

across various load conditions. The minor discrepancies 

observed in peak and trough values are expected, as the 

lumped parameter model simplifies certain internal dynamics 

to maintain computational efficiency. Despite these small 

deviations, the overall alignment suggests that the model is 

robust enough for real-time performance prediction, a critical 

requirement in high-throughput production environments 

where rapid quality control and operational adjustments are 

essential. The voltage loss analysis, depicted in Figures 2 and 

4, further highlights the model's value by breaking down the 

contributions of each type of overpotential. Ohmic losses are 

immediate and relatively stable, driven by internal resistance, 

while activation and concentration losses fluctuate based on 

current and state of charge (SOC). This breakdown provides 

valuable insights for production management, as 

understanding these losses allows for targeted interventions to 

optimize efficiency and extend battery life. For instance, 

minimizing activation overpotentials through improved 

electrode materials could reduce voltage drops during high-

current applications, thereby enhancing overall battery 

efficiency. From a production management perspective, the 

model’s low computational requirements and accuracy enable 

faster cycle times by reducing the need for extensive 

calibration. This efficiency facilitates the integration of the 

model into real-time performance monitoring systems, where 

continuous assessment of voltage can detect potential issues 

early in the production process. Moreover, the ability to 

accurately simulate SOC and predict overpotentials makes the 

model highly applicable for quality assurance, as 

manufacturers can identify batteries that may exhibit 

performance inconsistencies over time. The study’s findings 

also suggest broader implications for the application of 
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simplified models in energy storage technologies. By focusing 

on essential parameters and overpotentials, the lumped 

parameter model demonstrates that reliable battery 

performance prediction does not always require complex, 

detailed models. This approach aligns well with the demands 

of EVs and renewable energy storage systems, where 

operational efficiency, scalability, and cost-effectiveness are 

key. Furthermore, the insights gained from this model could 

inform future battery design, potentially guiding materials 

research and engineering efforts aimed at reducing specific 

types of voltage losses. In summary, the lumped parameter 

model offers a practical, scalable, and accurate tool for 

lithium-ion battery performance prediction, with demonstrated 

value for production management. Its streamlined design 

allows for real-time applications, addressing both quality 

control needs and operational efficiency in manufacturing 

environments. Future research could further enhance the 

model by refining parameters to capture peak and trough 

discrepancies, potentially improving its accuracy for even 

more demanding applications.  

The lumped parameter model offers a practical tool for 

lithium-ion battery performance prediction, but several 

limitations may impact its real-world applicability, especially 

in demanding applications like EVs and large-scale energy 

storage. The model simplifies internal battery dynamics by 

focusing on three primary overpotentials ohmic, activation, 

and concentration while omitting complex thermal and 

electrochemical interactions, leading to potential inaccuracies 

under extreme or variable conditions. It also shows limited 

accuracy during peak power demands and lacks considerations 

for battery aging, which can affect prediction reliability over 

time. While basic temperature dependencies are included, the 

model does not fully address the impact of fluctuating or 

extreme temperatures, which significantly influence battery 

behavior. Additionally, the model’s sensitivity to parameter 

calibration may limit its flexibility across different battery 

types and operating scenarios, as each new application might 

require recalibration. Importantly, the model does not account 

for safety-critical events, such as thermal runaway or internal 

short circuits, making it insufficient as a standalone solution in 

high-risk applications. Despite these limitations, the model 

remains valuable for controlled environments, such as 

production and quality control, though enhancements in 

thermal modeling, aging considerations, and transient 

response would improve its broader applicability. 
 

 

4. CONCLUSIONS 
 

This study demonstrates the effectiveness of a lumped 

parameter model in predicting lithium-ion battery 

performance, highlighting its potential for use in production 

management and quality control. By focusing on key 

overpotentials ohmic, activation, and concentration the model 

provides accurate voltage predictions with minimal 

computational demand, making it suitable for real-time 

applications. The close alignment between the predicted and 

experimental cell voltages validates the model’s accuracy, 

with only minor discrepancies observed at peak and trough 

values. Voltage loss analysis further underscores the model’s 

ability to capture essential battery dynamics, offering insights 

into how different types of overpotentials affect overall 

performance. However, the study also reveals certain 

limitations. The model's simplified approach does not fully 

capture complex internal battery interactions, transient 

responses under extreme conditions, or long-term aging 

effects. While the model includes basic temperature 

dependencies, it lacks detailed thermal modeling and does not 

account for safety-critical events, which limits its applicability 

in high-stakes applications such as EVs and large-scale energy 

storage systems. Overall, the lumped parameter model offers 

a practical, computationally efficient solution for applications 

where fast, reliable performance prediction is essential, 

particularly in controlled environments. Future work could 

focus on enhancing the model’s accuracy by incorporating 

aging effects, refining transient response under peak 

conditions, and adding detailed thermal modeling to expand 

its applicability across more demanding and varied operational 

scenarios. 
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NOMENCLATURE 

 

𝐸𝑐𝑒𝑙𝑙   Cell voltage (Volts) 

𝐸𝑂𝐶𝑃  
Open circuit potential, dependent on SOC  

V (Volts) 

𝜂𝐼𝑅  
Ohmic overpotential (internal resistance loss)  

V (Volts) 

𝜂𝑎𝑐𝑡  
Activation overpotential (charge transfer loss)  

V (Volts) 

𝜂conc   
Concentration overpotential (diffusion limitation) V 

(Volts) 

𝐼cell   Applied cell current A (amperes) 

𝐼1,𝐶  
1C rate current, based on nominal capacity  

A (amperes) 

𝑄cell ,0  Battery capacity Ah (amp-hours) 

R Universal gas constant J/(mol·K) 

T Temperature K (kelvin) 

F Faraday’s constant (C/mol) 

𝐽0  Charge exchange current density (A/m²) 

SOC State of Charge (%) 

𝜏dlifficion   Diffusion time constant s (seconds) 

𝛼  Empirical scaling factor for diffusion limitations 

f(T) Temperature-dependent function for ohmic loss 

g(SOC) SOC-dependent function for activation overpotential 

h(T) Temperature-dependent function for activation loss 
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