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In this paper, we explore the enhancement of photovoltaic (PV) system efficiency and 

sustainability using advanced machine learning (ML) models in M’Sila, Algeria, a region 

with exceptional solar energy potential. Four models—deep neural networks (DNN), 

recurrent neural networks (RNN), extreme gradient boosting (XGBoost), and long short-

term memory (LSTM)—were used to predict annual energy production, energy yield, and 

CO₂ emissions mitigation. Among these models, the DNN showed superior performance, 

with a mean absolute error (MAE) of 0.071, a mean square error (MSE) of 0.0072, and an 

R² of 0.99998, achieving the highest energy production of 275,150,912 kWh and a CO₂ 

emissions mitigation of 137,575,456 tons per year. RNN outperformed in predicting 

sequential data, while XGBoost achieved a balance between accuracy and computational 

efficiency. This research highlights the transformative potential of machine learning to 

improve solar energy systems by improving design, reducing operating costs, and 

supporting renewable energy policies in Algeria. Furthermore, the results offer practical 

guidance for replicating similar developments in other semi-arid regions worldwide. 
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1. INTRODUCTION

Renewable energy sources are now the focal point of global 

strategies to address environmental challenges and ensure 

sustainable development, as the energy sector is shifting its 

paradigm. The global transition toward renewable energy has 

accelerated in recent years, driven by the pressing need to 

address climate change and reduce reliance on fossil fuels. 

Solar energy is unique among renewable energy sources 

owing to its vast potential, particularly in areas with sufficient 

sunlight. Sun photovoltaic systems convert sunlight directly 

into direct current electricity, making them one of the most 

scalable and cost-effective methods for generating renewable 

energy. Several studies have highlighted the role of solar PV 

systems in reducing greenhouse gas emissions and enhancing 

energy security, particularly in regions with high solar 

insolation [1-9].  

However, the efficiency of these systems is heavily 

influenced by environmental conditions, such as temperature, 

dust, and wind, which necessitate adaptive optimization 

strategies. However, despite scientific breakthroughs in the 

sector, enhancing their performance remains a substantial 

problem due to complicated climatic, economic, and 

technological factors. Research in similar semi-arid regions 

has demonstrated that predictive models can significantly 

enhance PV system performance by addressing site-specific 

challenges, such as dust accumulation and temperature 

fluctuations. These findings underscore the importance of 

integrating advanced tools like ML for sustainable energy 

solutions. Algeria has massive solar potential and is well-

positioned to become a prominent participant in the global 

renewable energy industry, particularly in the solar energy 

sector. The country’s abundant solar resources, characterized 

by high average daily solar radiation levels of at least 5 

kWh/m²/day, make it an ideal location for developing 

photovoltaic systems. One of the problems in this area is the 

high initial cost of installation, which can hinder the 

widespread adoption of solar energy technology, but the high 

price per kilowatt-hour of other resources such as gas and oil 

and even competing renewable energies such as wind 

compared to the product through photovoltaic energy has 

strengthened the trend towards this optimal source of 

electricity. Adverse environmental conditions, such as high 

temperatures, dust accumulation, and strong winds, can 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 3, March, 2025, pp. 573-583 

Journal homepage: http://iieta.org/journals/jesa 

573

https://orcid.org/0000-0002-7381-3534
https://orcid.org/0000-0003-3700-7049
https://orcid.org/0000-0002-1646-7145
https://orcid.org/0000-0003-3894-6726
https://orcid.org/0000-0003-0397-1868
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580314&domain=pdf


deteriorate the performance of solar panels over time, leading 

to lower efficiency and increased maintenance costs. These 

challenges underscore the importance of evaluating solar 

energy system performance through sophisticated methods to 

enhance it, utilizing machine learning models to increase 

economic feasibility and environmental sustainability, and 

understanding these challenges and their impacts [10-17].  

This project utilizes sophisticated machine learning to 

enhance solar energy systems in M'Sila, Algeria, thereby 

reducing expenses, increasing energy output, and minimizing 

environmental impacts. Traditional solar energy production 

estimates use complex approximate models that must account 

for climate components and solar panel technology. Machine 

learning provides a more robust and accurate predictive 

answer [18, 19].  

This study utilizes large datasets of solar radiation, 

temperature, wind speed, and economic factors, including 

installation and operational expenses, to enhance the solar 

energy output forecast and efficiency. Understanding 

Complicated dynamic solar energy systems demands a reliable 

model, and artificial intelligence is ideal. This study used 

DNN, RNN, XGBoost, and LSTM networks, which can 

replicate complicated data linkages and temporal correlations. 

We used deep neural networks to simulate nonlinear 

interactions and recurrent neural networks and LSTM to 

handle changeable time series data like daily and seasonal 

solar radiation fluctuations. However, utilizing the XGBoost 

gradient boosting method compromises accuracy and 

computing efficiency. The study evaluates the models' ability 

to predict daily, annual, and CO₂ emissions decrease in M'Sila. 

Models are estimated using key performance indicators 

including MAE, MSE, and R². This work uses these models to 

improve regional solar PV system operating strategies, 

optimize panel layouts, and reduce maintenance costs. Since 

boosting system efficiency may directly affect project cost-

effectiveness, this study will have major implications for the 

Algerian solar PV system's economic viability [20].  

This research addresses Algeria's steppe areas' specific 

environmental and technological problems to contribute to 

sustainable energy growth in developing economies. 

Increasing solar PV system efficiency will also help Algeria 

meet its objectives for reducing carbon emissions and 

achieving environmental sustainability. Furthermore, the 

results can be generalized to similar locations with significant 

solar potential, providing a scalable basis for increasing solar 

energy production worldwide. The structure of this paper is as 

follows: Section 2 provides a detailed overview of the research 

area, M’Sila, and its climate, economy, and technology. 

Section 3 covers the process, which includes data collection, 

machine learning model selection, and performance 

evaluation measures. Section 4 summarizes and examines the 

findings. Section 5 closes the analysis by recommending 

further research and practical uses for the model.  

2. STUDY AREA

M'Sila, located 240 km southeast of Algiers at 1,000 meters 

above sea level, has significant sun exposure and minimal 

cloud cover, making it ideal for solar energy, as shown in 

Figure 1. The region experiences hot summers above 45℃, 

cold winters below 0℃, and regular winds that reduce PV 

efficiency. These conditions require effective modeling to 

optimize solar system design and ensure long-term energy 

production. 

Figure 1. Geographic map showing M'sila, Algeria's location 

Table 1 summarizes this study's climatic and system-

specific data, which form the foundation for training and 

evaluating the machine learning models. 

Table 1. Key environmental and meteorological data for M'Sila, Algeria 

Parameter 
Unit of 

Measurement 
Value/Range Description 

Solar Irradiance W/m² 
5.8 kWh/m²/day 

(Annual average) 
Daily Solar Irradiance average per square meter per day. 

Average Temperature ℃ 
22.5℃ (Annual 

average) 

Annual Average Temperature ranges from 18℃ to 28℃ 

throughout the year. 

Temperature Range ℃ 10℃ - 35℃ Minimum 10℃ in winter and Maximum 35℃ in summer. 

Wind Speed m/s 3.5 m/s Average Wind Speed is typically higher in winter due to storms. 

Humidity % 55% - 65% Relative Humidity was observed in the region. 

Precipitation mm/day 2 - 3 mm/day Daily Precipitation, with an annual average of around 200 mm. 

Cloud Cover % 40% Cloud Cover percentage affecting solar radiation. 

Dust Load g/m² 20 - 50 g/m² Dust Accumulation rate is typical for semi-arid regions. 

Air Quality Index 

(AQI) 
AQI 50 – 100 Air Quality Index, indicating moderate air quality. 

3. METHODOLOGY

The technique combines powerful ML models with real-

world meteorological and technical data to improve the 

performance of PV systems in M'Sila. The approach forecasts 

three significant results: decreased CO₂ emissions, a daily 

energy yield, and annual energy production. Figure 2 

illustrates the solar panels and system components utilized in 

the study. This configuration aims to enhance the performance 

and productivity of solar photovoltaic systems in M'Sila. 
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Figure 2. Components and configuration of the solar panel 

system 

 

3.1 Data collection and preprocessing 

 

Data preprocessing is a critical step in preparing the dataset 

to ensure reliability and performance in machine learning 

models. In this study, we applied specific techniques to 

manage missing values and outliers based on statistical and 

domain-specific reasoning. 

 

3.1.1 Handling missing values 

The dataset included occasional missing entries due to 

sensor malfunctions or data transmission gaps. To address this, 

we applied a univariate interpolation method, specifically 

linear interpolation, to estimate missing values based on 

adjacent data points. This approach is commonly used in time-

series forecasting due to its ability to preserve data continuity 

without introducing significant bias [21]. In cases where 

missing values occurred at the edges of the data or could not 

be reliably interpolated, rows were removed if they 

represented less than 0.5% of the total dataset, to avoid data 

distortion. 

 

3.1.2 Outlier detection and treatment 

To detect outliers, we applied Z-score analysis with a 

threshold of ±3 standard deviations. Data points falling outside 

this range were flagged as potential anomalies. In energy-

related datasets, extreme deviations may represent sensor 

errors or external disturbances (e.g., dust storms). For these 

outliers, two strategies were used: 

Winsorization: For moderate outliers (within ±4σ), we 

applied winsorization by capping the values at the 5th and 95th 

percentiles. 

Removal: For extreme outliers exceeding ±5σ, the rows 

were excluded to prevent adverse effects on model training. 

These preprocessing steps improved the overall data quality 

and ensured robust and generalizable model performance. 

To train and evaluate the machine learning models, a dataset 

comprising 50,000 data points was collected. The dataset 

includes three main categories: climatic data, system-specific 

parameters, and economic data. Data was collected using 

credible sources, such as the Global Solar Atlas, 

meteorological stations in Algeria, and performance metrics 

from operational solar projects in M'Sila. 

Table 2 summarizes the key technical specifications of the 

solar PV system utilized in the study. The system optimizes 

solar energy capture by utilizing specific configurations and 

selecting appropriate panels. 

Climate data helps determine how environmental elements 

affect solar photovoltaic system performance. The basic 

climate parameters are: 

Solar power by area. Consider watts per square meter 

(W/m²) when assessing solar energy applications. The average 

daily solar radiation in M'Sila is 5.5 kWh/m²/day. Seasonal 

and daily fluctuations alter this number. Summer irradiance 

may reach 6.2 kWh/m²/day, whereas winter can dip to 4.8 

kWh/m²/day. In M'Sila, winter temperatures plummet below 

0℃, and summer temperatures surpass 45℃. These factors 

impact solar panel efficiency. Wind speed (W) Dust buildup 

on panels and system efficiency depends on wind speed data 

up to 60 km/h. Five years of hourly data collecting yielded 

43,800 data points. 

 

Table 2. Technical specifications of the solar PV system 

 
Property Value 

Panel Type Polycrystalline Silicon 

Rated Panel Capacity 325 W 

Number of Panels 32 panels 

Total Area 59.16 m² 

Optimal Tilt Angle 34° 

Inverter 10 kW On-Grid Inverter 

Energy Storage 3 Battery Strings 

 

System-specific data covers M'Sila's solar PV system's 

setup and operation. Panel Type It uses 325-watt 

polycrystalline silicon panels. The building contains 32 

panels, totaling 59.16 m². Configuring Systems South-facing 

systems have 34° tilt angles to maximize sun exposure. A 10-

kW on-grid converter converts DC to AC. It takes 5 years to 

collect 1,825 data points each year, or 9,125 system-specific 

traits. 

Economic data is required for cost-effective and financially 

sustainable solar PV system installation. Solar photovoltaic 

panels, inverters, and labor cost money. 

Recurring expenditures include grid integration and system 

monitoring. The five-year maintenance costs included 

quarterly cleaning and upkeep. 

Five years of economic statistics accurately represent 

installation and maintenance costs. 

Data preparation is vital for ensuring the dataset's quality 

and consistency. Several important milestones were 

completed: 

Missing values were imputed using statistical imputation 

methods, resulting in the mean of surrounding values. 

Outlier Detection: Z-scores were utilized to identify 

extreme values that may affect model predictions. Outliers 

were either eliminated or corrected. 

Continuous numerical variables (e.g., sun irradiance, 

temperature, wind speed) were standardized to [0, 1] for 

consistency among features. 

Data split: The dataset was separated into three subsets: 

70% for training, 15% for validation, and 15% for testing. This 

guarantees that the models are verified with data they have 

never seen before. 

The following table summarizes the statistical properties of 

the dataset for energy yield, yearly energy output, and CO₂ 

emissions mitigated. These data points were critical for 

evaluating the solar PV system's environmental and energy 

production performance. 

Table 3 displays daily energy output (kWh/day), year 

production (kWh), and CO₂ emissions reduction (tons). The 

dataset measures the solar system's environmental and energy 

production performance using mean, standard deviation, 

minimum, maximum, and 25%, 50%, and 75% percentiles. 

In addition to these performance metrics, the amount of CO₂ 

emissions mitigated by the photovoltaic system was estimated 

using the following formula. 
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3.1.3 CO₂ emissions mitigation calculation 

The amount of CO₂ emissions mitigated was estimated 

using the following formula: 

avoided (tons) CO E EF=  (1) 

where, 

E is the total annual electricity generated by the PV system 

(in kWh) 

EF is the emission factor of the grid electricity (in kg 

CO₂/kWh) 

For this study, we adopted an average emission factor (EF) 

of 0.5 kg CO₂/kWh, which is consistent with recent literature 

for North African electricity grids. 

Thus, the CO₂ savings were calculated as: 

avoided CO 275,150,912kWh 0.5kg / kWh

137,575,456kg 137,575tons

= 

= 

This method provides a realistic estimate of environmental 

benefits when solar PV displaces conventional fossil fuel-

based electricity generation. 

These calculations provide a clearer understanding of the 

environmental impact of the photovoltaic system. By 

displacing traditional fossil fuel-based electricity, the solar 

system contributes to reducing CO₂ emissions, further 

supporting the sustainability and environmental benefits of 

solar energy. 

3.2 Machine learning models 

Four machine learning models—DNN, RNN, XGBoost, 

and LSTM—optimized M'Sila's solar PV systems. We chose 

models that could handle non-linear connections, analyze 

time-series data, and capture long-term interdependence. 

Table 4 shows that each model was selected based on 

specific characteristics suited to the available data and the 

research objectives [22]. While DNN is ideal for modeling 

complex non-linear patterns, RNN and LSTM are more suited 

to time-series modeling. XGBoost, on the other hand, is highly 

efficient for handling large datasets, making it a suitable 

choice for quick and effective predictions. 

For the RNN and LSTM models used in this study, we set 

the input sequence length (i.e., number of time steps) to 30. 

This means that each prediction is based on the previous 30 

days of historical data, which includes features such as solar 

irradiance, temperature, humidity, and wind speed. 

This sequence length was chosen based on empirical testing 

and domain relevance. A 30-day window provides a balance 

between capturing meaningful temporal trends and avoiding 

overfitting. It allows the model to learn from monthly seasonal 

patterns while maintaining computational efficiency. Shorter 

sequences (e.g., 7 or 14 days) were found to be insufficient for 

capturing seasonal variability, while longer sequences (e.g., 60 

days) increased training time and introduced redundant 

information. 

Table 3. Statistical summary of energy yield and co₂ emissions mitigated 

Metric Energy Yield (kWh/day) Annual Energy (kWh) CO₂ Emissions Mitigated (tons) 

Count 50,000 50,000 50,000 

Mean 100.26 36,593.67 19,138.49 

Standard Deviation (std) 19.35 7,063.80 3,694.37 

Minimum (min) 64.87 23,677.01 12,383.08 

25th Percentile (25%) 83.58 30,505.74 15,954.50 

Median (50%) 100.21 36,578.20 19,130.40 

75th Percentile (75%) 116.86 42,654.07 22,308.08 

Maximum (max) 137.45 50,170.05 26,238.93 

Table 4. Justification for the selection of machine learning models 

Model Justification for Selection 

DNN [23, 24] 

- Suitable for learning complex, non-linear relationships between data.

- High capacity to capture interactions between climatic parameters and system characteristics.

- Excellent general prediction accuracy.

RNN [25-27] 

- Ideal for sequential data and time-series analysis.

- Effectively captures temporal dependencies (daily and seasonal) in solar irradiance and temperature.

- Well-suited for modeling the time-varying nature of solar energy generation.

XGBoost [28-30] 

- Efficient for handling large, complex datasets.

- Uses gradient boosting techniques to sequentially correct errors of previous trees.

- Balances high performance with computational efficiency.

LSTM [31-33] 
- Effective at capturing long-term dependencies in sequential data, like seasonal effects.

- Superior for modeling time-series data with complex temporal relationships.

This window size was consistent across both the RNN and 

LSTM architectures to ensure fair performance comparison. 

3.2.1 DNN 

DNNs learn complicated, non-linear correlations between 

input data using several neuron layers [34]. They are ideal for 

this investigation because they can represent complex 

relationships between environmental factors (irradiance, 

temperature, wind speed) and system characteristics (panel 

efficiency, inverter capacity). 

The output of a neural network can be expressed as [35, 36]: 

( )( )( )( )1 2 ny f W f W f f W x=     (2) 

where, 𝑊1,𝑊2, … ,𝑊𝑛 are the weight matrices at each layer., x

is the input feature vector (e.g., solar irradiance, temperature), 

𝑓(⋅) is the activation function (e.g., ReLU, Sigmoid), and y is 
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the predicted output (e.g., energy yield). As shown in Figure 

3, the DNN's various layers capture non-linear correlations 

between meteorological factors and solar energy production. 

 

 
 

Figure 3. DNN architecture 

 

The DNN model used in this study consists of a feedforward 

neural network with four fully connected hidden layers. The 

architecture is designed to capture complex non-linear 

relationships between climatic variables and system 

performance metrics. 

Input layer: 10 neurons (corresponding to features such as 

irradiance, temperature, wind speed, humidity, etc.) 

Hidden layer 1: 6 neurons with ReLU activation . 

Hidden layer 2: 4 neurons with ReLU activation . 

Output layer: 1 neuron with linear activation . 

All layers use ReLU activation functions except the output 

layer, which uses a linear activation to maintain the continuity 

of the regression output. The model was trained using the 

Adam optimizer and mean squared error (MSE) as the loss 

function. The updated DNN architecture is shown in Figure 3. 

 

3.2.2 RNNs 

Sequential data suits RNNs, which capture temporal 

relationships well. In solar energy forecasting, they represent 

daily and seasonal solar irradiance, temperature, and wind 

speed well. The output of an RNN at each time step t can be 

described as [37, 38]: 

 

( )1t h t x th f W h W x−=  +   (3) 

 

where, ht is the hidden state at time step t, ht-1 is the hidden 

state at the previous time step, xt is the input at time step t (e.g., 

solar irradiance at time t), and Wh and Wx are weight matrices 

for the hidden state and input, respectively. 

 

3.2.3 XGBoost 

Gradient-boosting approach Fast and effective XGBoost. 

Sequentially creating decision trees fixes errors. Complex data 

relationships and big datasets are XGBoost's forte. A tree sum 

represents the model's forecast [39, 40]: 

 

1

ˆ ( )
K

k

k

y T x
=

=  (4) 

 

where, Tk(x) is the kth decision tree, K is the total number of 

trees in the model, and x represents the input features. 

In this study, four main machine-learning models were 

chosen to enhance the efficiency of photovoltaic systems in 

the M'Sila region of Algeria. Various parameters were tuned 

to identify the most suitable model. Table 5 outlines the key 

parameters used in the XGBoost model, which include 

n_estimators, learning_rate, and other hyperparameters that 

were optimized for performance. 

 

Table 5. Key parameters for the XGboost model used in the 

study 

 
Parameter Value Description 

n_estimators 100 Number of boosting rounds 

learning_rate 0.1 
Step size shrinkage to prevent 

overfitting 

max_depth 6 
Maximum tree depth for base 

learners 

Subsample 0.8 
Subsample ratio of training 

instances 

colsample_bytree 0.7 
Subsample ratio of columns when 

constructing each tree 

gamma 0 
Minimum loss reduction for further 

partitioning 

reg_alpha (L1) 0.1 L1 regularization term on weights 

reg_lambda (L2) 1 L2 regularization term on weights 

 

These parameters were carefully chosen to ensure a balance 

between model accuracy and computational efficiency. They 

include adjustments such as the number of boosting rounds, 

which helps improve the model's ability to generalize, as well 

as parameters that control tree complexity and regularization 

terms to prevent overfitting. 

 

3.2.4 LSTM 

RNNs, like LSTMs, learn from sequential data's long-term 

dependencies. They recall essential information for long 

durations, making them appropriate for solar energy 

prediction, including seasonal impacts [25, 41]. 

An LSTM cell contains three gates (input gate, forget gate, 

output gate) that regulate the flow of information. The 

fundamental equations are [42-44]: 

Forget gate: 

 

 ( )1,t f t t ff W h x b −=  +  (5) 

 

Input gate: 

 

 ( )1,t i t t ii W h x b −=  +  (6) 

 

Cell state: 

 

 ( )1 1tanh ,t t t t C t t CC f C i W h x b− −=  +   +  (7) 

 

Output gate: 

 

( )tanht t th o C=   (8) 

 

where, ft, it, and ot are the forget, input, and output gates, 

respectively, Ct is the cell state at time t, and ht is the hidden 

state at time t. Figure 4 shows the LSTM's architecture, 

highlighting the input, forget, and output gates that allow the 
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model to remember long-term dependencies. 

Figure 4. LSTM architecture 

3.3 Performance evaluation 

Each model was evaluated using important machine 

learning model metrics, including regression tasks. These 

metrics assess the model's ability to forecast energy output, 

annual production, and CO₂ emissions reduction. 

3.3.1 MAE 

The MAE measures the average magnitude of errors in the 

model's predictions. It is calculated as [45, 46]: 

1

1
ˆMAE

n

i i

i

y y
n =

= − (9) 

where, yi is the actual value (accurate energy output), 𝑦̂𝑖 is the

predicted value (energy output), and n is the total data points. 

3.3.2 MSE 

The MSE penalizes more significant errors more heavily 

and is given by [21]: 

( )
2

1

1
ˆMSE

n

i i

i

y y
 =

= − (10) 

3.3.3 Coefficient of determination 

The R² value measures how well the model explains the 

variance in the data. It is calculated as [47]: 

( )

( )

2

2 1

2

1

ˆ

1

n

i i

i

n

i

i

y y

R

y y

=

=

−

= −

−




(11) 

where, 𝑦̄ is the mean of the actual values, and n is the number 

of data points. 

Data collection, machine learning, and performance metrics 

improve M'Sila solar PV system performance. We employ 

advanced models like DNN, RNN, XGBoost, and LSTM to 

predict energy output, boost efficiency, and reduce CO₂ 

emissions. Equations and metrics evaluate models. 

4. RESULTS AND DISCUSSION

We compared four machine learning models—DNN, RNN, 

XGBoost, and LSTM—for their ability to predict energy 

production and minimize CO₂ emissions. Table 6 displays the 

accuracy of each model using MAE, MSE, and R². 

Additionally, the table shows predicted annual energy 

production and CO₂ emissions reductions for each model. 

In addition to MAE, MSE, and R², we measured 

computational efficiency metrics like training time and 

memory usage to assess the practical performance of each 

model. The experiments were conducted in Google Colab 

using Python 3.11.12 with TensorFlow 2.18.0 and scikit-learn 

1.6.1, running on an Intel® Xeon® CPU @ 2.20GHz with 12 

GB of RAM. 

While LSTM showed reasonable predictive ability, it 

performed worse than other models, with higher MAE and 

MSE. This suggests challenges in capturing complex patterns. 

Further hyperparameter tuning and dataset expansion may 

improve its performance, especially for long-term 

dependencies, allowing LSTM to potentially outperform other 

models for complex time-series data. 

Table 6. Comparative performance metrics of machine learning models 

Model MAE MSE R² Annual Energy Production (kWh) CO₂ Emissions Mitigated (tons) 

DNN 0.071169 0.007229 0.999981 274,602,688 137,301,344 

RNN 0.131871 0.021227 0.999943 275,150,912 137,575,456 

XGBoost 0.137005 0.029904 0.999920 274,778,304 137,389,152 

LSTM 0.302944 0.101557 0.999729 273,961,024 136,980,512 

4.1 Predictive accuracy 

DNN demonstrated the highest accuracy, achieving the 

lowest MAE (0.071169) and MSE (0.007229) with an R² of 

0.999981. This indicates its superior ability to capture the non-

linear relationships between climatic and system parameters. 

In addition to MAE, MSE, and R², computational efficiency 

metrics like training time and memory usage were measured 

for each model to assess their practical performance. 

While the DNN model showed excellent performance, the 

unusually high R² raised concerns about overfitting. To 

address this, cross-validation and Ablation studies were 

conducted. Regularization techniques such as Dropout and 

Early Stopping were applied during training to prevent 

overfitting and ensure the model generalizes well to new data. 

RNN showed slightly lower accuracy but maintained solid 

predictive performance (MAE = 0.131871, MSE = 0.021227, 

R² = 0.999943). XGBoost, a traditional model, achieved 

balanced performance with an R² of 0.999920, highlighting its 

robustness and computational efficiency. 

Figure 5. DNN predictions vs actual values 
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Figure 6. RNN predictions vs actual values 

Figure 7. XGBoost predictions vs actual values 

Figure 8. LSTM predictions vs actual values 

Figure 9. Predictions vs actual values for all models 

LSTM had the least accurate predictions, with higher MAE 

(0.302944) and MSE (0.101557), though its R² remained high 

at 0.999729, reflecting reasonable explanatory power. 

Figure 5 compares the predicted values with the actual 

values for the DNN model, clearly illustrating its high 

predictive accuracy. Figure 6 shows the difference between the 

predicted and actual values for RNN, reflecting its solid 

performance despite slightly lower accuracy than DNN. 

Figure 7 highlights the predicted vs actual values for 

XGBoost, demonstrating the balance it achieves between 

performance and computational efficiency. Figure 8 presents 

the predictions vs actual values for LSTM, showing that 

although it has a higher error rate, its predictive ability still 

provides valuable insights. Figure 9 presents all models and 

compares the predictions with actual DNN, RNN, XGBoost, 

and LSTM values. Figures 10 and 11 illustrate the annual 

energy production and CO₂ emissions mitigated by the 

models, respectively. 

Figure 10. Annual energy production by model 

Figure 11. CO₂ emissions mitigated by model 

4.2 Energy production and CO₂ mitigation 

RNN achieved the highest annual energy production 

(275,150,912 kWh) and the most significant CO₂ emissions 

mitigated (137,575,456 tons). This highlights its strength in 

modeling sequential dependencies, which is critical in time-

series energy data. 

While marginally lower in energy production, DNN 

exhibited higher overall accuracy, making it a reliable choice 

for PV system optimization. 

XGBoost and LSTM produced comparable energy outputs, 
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with LSTM slightly underperforming in both metrics. 

4.3 Model residuals analysis 

Residuals, defined as the differences between actual and 

predicted values, provide further insights into model 

performance. Small and randomly distributed residuals 

indicate a well-performing model. 

DNN residuals were the smallest and most randomly 

distributed, confirming its predictive accuracy and robustness. 

RNN residuals were slightly larger but still showed a 

random distribution. 

XGBoost exhibited moderate residuals, reflecting balanced 

performance. 

LSTM residuals displayed more significant variance, 

suggesting room for improvement in capturing non-linear 

dependencies. 

This comprehensive chart presents residuals for all four 

models, comparing their performance in terms of prediction 

error distribution. 

4.4 Training and validation curves 

The training and validation curves for each model reveal 

insights into their learning behavior: 

DNN achieved rapid convergence with minimal overfitting, 

reflecting its ability to generalize well to unseen data. 

RNN showed a similar pattern, requiring slightly more 

epochs to stabilize. 

XGBoost is not reliant on epochs but maintains consistent 

performance throughout. 

LSTM displayed a slower convergence rate, likely due to its 

complexity and hyperparameter sensitivity. 

Figure 12 compares the DNN’s training and validation 

loss/accuracy, showing rapid convergence and minimal 

overfitting. 

Figure 13 illustrates RNN's training vs validation 

loss/accuracy, with a slightly slower convergence than DNN. 

Figure 14 presents LSTM's slower convergence, reflecting 

its sensitivity to hyperparameters. 

DNN was the most accurate model, with the lowest errors 

and R². Modeling complicated, non-linear connections makes 

it excellent for PV system optimization. Both residual analysis 

and prediction accuracy demonstrate that it performs best 

among all models. 

In energy production, RNN excelled in sequential data 

processing, leading to the most considerable yearly energy 

output and CO₂ mitigation. This makes it ideal for energy 

system time-series forecasts, mainly when modeling 

sequential relationships. 

XGBoost may be a useful option for settings with limited 

resources because to its balance between accuracy and 

processing efficiency. Although not the most accurate, its solid 

performance and efficiency make it excellent for real-time 

applications. 

Improvement Potential for LSTM: LSTM underperformed 

other models, although hyperparameter adjustment and more 

datasets may improve performance. With additional tuning, 

LSTM might outperform other models in complicated time-

series data, making it useful in energy prediction models. 

Research indicates that machine learning models like DNN, 

RNN, XGBoost, and LSTM may effectively predict energy 

production and reduce CO₂ emissions. DNN was the most 

accurate model, but RNN predicted energy production best. 

XGBoost balanced efficiency and precision, but LSTM 

needed more tweaking. Machine learning in renewable energy 

forecasting systems is better understood with these findings, 

which might improve energy sustainability. 

Figure 12. DNN training vs. validation (Loss, MAE) 

Figure 13. RNN training vs. validation (Loss, MAE) 
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Figure 14. LSTM training vs. validation (Loss, MAE) 

5. CONCLUSION

This study illustrates the considerable potential of ML 

techniques for enhancing the performance of PV systems, 

specifically in the M'Sila region of Algeria, known for its high 

solar radiation levels. This research employs advanced 

machine learning models, including DNN, RNN, XGBoost, 

and LSTM, to comprehensively analyze energy production, 

CO₂ emissions reduction, and overall system efficiency. 

The DNN model outperformed other models in predicting 

accuracy, with the lowest MAE, MSE, and greatest R² value. 

This shows the ability to capture complex, non-linear 

environmental-system connections. The RNN model excels in 

predicting yearly energy output and CO₂ emission reductions, 

demonstrating its capacity to handle sequential data. XGBoost 

is ideal for real-time applications due to its precision and 

processing efficiency. While LSTM performed somewhat 

worse, its ability to capture long-term relationships in time-

series data suggests that more tuning might improve energy 

predictions. 

These findings highlight the importance of machine 

learning in improving photovoltaic system efficiency, 

sustainability, and cost-effectiveness, especially in solar-rich 

places like M'Sila. This research uses machine learning 

models and real-world data to maximize energy production, 

save costs, and decrease environmental impact. The results 

improve Algeria's renewable energy policy and provide a 

scalable model for other solar-rich locations. 

This study represents a notable progression in implementing 

machine learning within renewable energy systems. 

Enhancing prediction accuracy and system performance 

through these techniques is essential for developing more 

efficient and sustainable solar energy solutions globally. This 

initiative aligns with Algeria's renewable energy objectives 

and serves as a framework for international endeavors to 

enhance energy security and combat climate change. 
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