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Optimizing the control of Permanent Magnet Synchronous Motors (PMSMs) is essential 
for various applications, such as industrial automation, electric vehicles, and renewable 
energy systems. Conventional control techniques often face difficulties adapting to the 
nonlinear and dynamic characteristics of PMSMs, resulting in less-than-optimal 
performance. To overcome these limitations, this study introduces an adaptive nonlinear 
control (ANLC) approach incorporating a deadbeat observer (DO) to enhance PMSM 
drive performance. The primary objective is to increase control precision and robustness 
while accounting for system parameter variations and external disturbances. 
Comparative simulations between the proposed approach and the conventional ANLC 
demonstrate its superior capability in handling PMSM operation under fluctuating loads 
and speed changes. The suggested method reaches a peak relative speed error of 
approximately 6% at 0.4s when subjected to significantly increasing torque disturbances, 
outperforming the ANLC, which exhibits an 8% error. Additionally, under significant 
speed fluctuations at 0.85s, the proposed control strategy maintains a maximum relative 
speed error of 0.82%. Furthermore, robustness analysis against variations in system 
parameters, including stator resistance, inductance, and moment of inertia, confirms the 
remarkable effectiveness of the developed control method. 

Keywords: 
deadbeat observer (do), adaptive nonlinear 
control (anlc), permanent magnet 
synchronous motor (pmsm), pmsm drive 
performance enhancement, load torque 
disturbance 

1. INTRODUCTION

In the dynamic field of modern electrical engineering, it is
vital to search for advanced control techniques for electrical 
machines constantly. Among these machines, the permanent 
magnet synchronous machine (PMSM) stands out for its high 
performance, compactness, and exceptional energy efficiency 
[1]. Its use extends from industrial applications to electric 
vehicles and renewable energies [2]. Besides, with the 
development of power electronics and the advance of highly 
integrated digital control units, several control strategies have 
been developed [3, 4]. Proportional-integral (PI) loop-based 
vector control is commonly the industrial standard for PMSM 
control, owing to its decoupling characteristics and simple 
structure, which stands out as a powerful and efficient tool 
that endows the PMSM with dynamic performance as 
satisfactory as DC machines. However, the PMSM control 
has a major problem related to the variation of parameters 
during operation and unknown disturbances, which may 
threaten the stability of the PMSM drive. Therefore, the 
control scheme design that can guarantee a safe and stable 
operation under the mentioned issues is challenging. 

Numerous control strategies have been adopted for PMSM 
control, considering its parameters variation and various 
disturbances. For instance, an intelligent control strategy 
employing a recurrent Elman neural network based on the 

wavelet method (RWENN) is designed for PMSM’s position 
control, aiming to attain high tracking performance and 
manage the uncertainties' existence [4]. Indeed, ANNs are a 
simplified mathematical formulation of biological neurons, 
but the difficulty of interpreting the behavior of a neural 
network is a drawback when developing an application. It is 
also risky to generalize from previous experience and 
conclude or create rules about how neural networks work and 
behave. A fuzzy inferior is introduced to adjust the gains of a 
feed-forward PI controller (Pseudo-derivative feedback with 
feed-forward gain) [5]. The result of this approach is an 
appropriate placement of the transfer function closed-loop 
poles, which improves the ability to reject load torque 
disturbances. In the 1980s, the first direct torque control 
(DTC) was introduced [6]. The DTC is a technique applied to 
PMSMs, capable of providing good electromagnetic torque 
dynamics. This allows the possibility to achieve these 
objectives by selecting inverter output vectors from a 
switching table; stator flux and electromagnetic torque are 
controlled directly and independently. However, this strategy 
has significant drawbacks; the switching frequency is not 
controlled, the presence of large ripples in stator flux and 
torque, and variations in stator resistance due to temperature 
change or operation at low rotational speeds may degrade 
control performance [7]. Therefore, several advanced control 
techniques have been implemented to enhance the 
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performance of PMSM drive, including the predictive control 
model (MPC) [8-10], robust control [11-13], sliding mode 
control (SMC) [14-16], backstepping technique [17-19], 
adaptive control [20-24], and deep learning algorithms-based 
control [25-27]. These non-linear control techniques have 
contributed to improving the PMSM system performance in 
some ways. On the other hand, recently, observer-based 
control techniques have gained significant attention for their 
ability to enhance robustness against load disturbances and 
parameter uncertainties in PMSMs, emerging as highly 
popular approaches adopted in the field of AC motor drives 
[28, 29]. Various observer-based control approaches have 
been proposed in the literature [30-36]. Although these 
methods can deliver acceptable performance under 
perturbation in load torque, the observers’ effectiveness, 
which depends on precise system models or parameters, 
tends to diminish when faced with parameter uncertainties. 

In the study [30-32, 37], model-based reduced-order 
nonlinear observers-based controllers, including linear 
extended observer, extended-order nonlinear observer (ENO), 
and state-observer, have been developed to enhance 
robustness versus load torque perturbation with slow 
variation. Nevertheless, these observers-based control 
techniques exhibit sensitivity to parameter changes. In [33-
35], reduced-order, linear extended state, and linear extended 
high-gain observers have been employed to accomplish 
satisfactory performance under load torque disturbances and 
provide strong robustness versus several parameter 
uncertainties. Nevertheless, some parameters still need to be 
precisely known. 

To enhance the performance of controllers based on 
observer that relies on accurately known parameters, 
techniques insensitive to system parameters have been 
adopted [38-49]. Such methods not only offer strong 
robustness under load torque disturbance but also enhance 
performance with system parameter uncertainties. In [38, 39], 
extended sliding-mode and terminal sliding-mode observers 
have been introduced to estimate load torque and mechanical 
PMSM parameters. As electrical parameters can be measured 
more easily by employing sensors or instruments compared 
to mechanical parameters, the focus is primarily on 
estimating the mechanical parameters. However, electrical 
parameters often change with time due to factors such as 
temperature fluctuations, cross-saturation effects, and 
magnetic saturation, making them difficult to accurately 
determine during operation [40-42]. A combination of SMC 
and a disturbance observer has been adopted to tackle time-
varying disturbances and parameters [43]. However, the 
controllers’ and observers’ parameters tuning is complicated 
and time-demanding, and it also lacks validation under 
parameter uncertainties. In [44, 45], disturbance observer-
based techniques have been designed to improve the PMSM 
control performance under disturbances and uncertainties, but 
test results for parameter uncertainties have not been 
provided. In [46, 47], nonlinear disturbance and extended 
nonlinear observers have been introduced for estimating 
specific parameters and load torque, but practical results were 
missing. A design of an automatic disturbances’ rejection 
controller based on an extended state observer has been 
explored for high-performance PMSM robust motion control, 
focusing on the control of position [48]. An innovative 
control structure utilizing dual proportional-integral (PI) 
observers has been developed to maintain operation with 
high performance in the presence of parameter uncertainties 

and slowly varying disturbances [49]. In [34, 50, 51], a high-
order sliding mode observer, a comprehensive disturbance 
observer, and an adaptive observer of stator current and 
disturbance have been proposed to improve the PMSM 
control performance, ensuring high robustness under 
disturbances and parameter uncertainties. Beyond the 
aforementioned techniques, a nonlinear adaptive control 
approach incorporating high-gain states and an observer of 
perturbation has been successfully implemented in various 
applications [52, 53]. This method ensures acceptable 
performance even versus model or parameter uncertainties, 
as well as load disturbances. 

Furthermore, to improve the robustness of the SMC, a 
design of a sliding mode speed controller considering a novel 
variable rate exponential reaching law is suggested [54]. 
Subsequently, an extended state observer is employed to 
extract and compensate for parameter mismatches and 
external disturbances. This approach results in a novel sliding 
mode predictive current control strategy, which not only 
maintains the fast dynamic response of the current control but 
also significantly improves the system's robustness. 

Considering this literature review, the primary objective of 
our research is to develop a control law for the PMSM that 
enhances performance in trajectory tracking, disturbance 
rejection, stability, robustness against parameter uncertainties, 
adherence to physical, and computational efficiency while 
preserving the inherent non-linear characteristics of the 
system. In addition, it is known that the control by 
linearization between outputs strategy suffers from a lack of 
robustness to external disturbances and model imperfections. 
Therefore, a novel hybrid adaptive nonlinear control with a 
specifically tailored DO technique is proposed in this paper, 
aiming to enhance the control performance of PMSMs. The 
key innovation lies in the integration of linear and nonlinear 
control methodologies, facilitated by the utilization of a DO 
for real-time state estimation. Unlike traditional control 
approaches, which often struggle to adapt to the dynamic and 
nonlinear characteristics of PMSMs, the proposed method 
aims to provide a more effective and robust solution. The 
novelty of our approach is represented by its ability to 
dynamically adapt to system variations and disturbances 
while maintaining precise control over PMSM. By leveraging 
the real-time state estimation capabilities of the DO, the 
proposed strategy can generate control signals that accurately 
track desired references, even in the presence of changing 
load conditions and speed fluctuations. This adaptive nature 
of the proposed strategy makes it particularly well-suited for 
applications where precise control of PMSMs is essential, 
such as electric vehicles, industrial automation, and RESs.  

2. DESCRIPTION OF THE PMSM SYSTEM AND ITS
CONTROL SCHEME

Figure 1 depicts the structure of the PMSM with the 
proposed control scheme. The PMSM is fed by a DC source 
via an inverter. A PWM block that handles the voltage 
references in the abc frame provides the switches' commands 
of the inverter. The abc voltage references are obtained by 
transferring the dq voltage references generated by the 
proposed ANLC scheme. The proposed ANLC scheme is 
composed of (i) two PI regulators intended for controlling the 
current direct component, id, and the rotor motor speed, ωr, to 
their references, and (ii) an incertitude calculation block in 
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charge of determining the incertitude of the speed and current. 
Note that the ANLC voltage references in the dq frame result 
from adding the output voltage of the two regulators to the 
voltages generated by the uncertainty block. The proposed 
DO in this scheme is responsible for estimating the motor 
speed and the current in the dq frame from the measured 
currents.  

The PMSM’s modeling is provided in the following 
subsection, while the detailed analysis of the blocks within 
the developed control scheme will be presented in the next 
section. 

2.1 PMSM model 

Given the simplifying PMSM assumptions, the PMSM 
model in the dq frame is given by: 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼𝑑𝑑 = −

𝑅𝑅𝑠𝑠
𝐿𝐿𝑑𝑑
𝐼𝐼𝑑𝑑 + 𝒑𝒑𝜔𝜔𝑟𝑟

𝐿𝐿𝑞𝑞
𝐿𝐿𝑑𝑑
𝐼𝐼𝑞𝑞 +

𝑢𝑢𝑑𝑑
𝐿𝐿𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼𝑞𝑞 = −

𝑅𝑅𝑠𝑠
𝐿𝐿𝑞𝑞
𝐼𝐼𝑞𝑞 − 𝒑𝒑𝜔𝜔𝑟𝑟

𝐿𝐿𝑑𝑑
𝐿𝐿𝑞𝑞
𝐼𝐼𝑑𝑑 −

1
𝐿𝐿𝑞𝑞
𝜑𝜑𝑓𝑓𝜔𝜔𝑟𝑟 +

𝑢𝑢𝑞𝑞
𝐿𝐿𝑞𝑞

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜔𝜔𝑟𝑟 =  

𝐾𝐾𝑇𝑇
𝐽𝐽
𝐼𝐼𝑞𝑞 +

𝐾𝐾𝑇𝑇(𝐿𝐿𝑑𝑑 −  𝐿𝐿𝑞𝑞)
𝐽𝐽 𝜑𝜑𝑓𝑓

𝐼𝐼𝑑𝑑𝐼𝐼𝑞𝑞  −
𝑓𝑓
𝐽𝐽
𝜔𝜔𝑟𝑟 +

𝑇𝑇𝑟𝑟
𝐽𝐽

(1) 

where, 𝐼𝐼𝑑𝑑𝑞𝑞  and 𝑢𝑢𝑑𝑑𝑞𝑞  are the inverter output current and 
voltage in the dq frame, 𝐿𝐿𝑑𝑑𝑞𝑞  is the stator inductance, 𝑅𝑅𝑠𝑠  is 
stator resistance,  𝑇𝑇𝑟𝑟  is the resistive torque, 𝜔𝜔𝑟𝑟  is the rotor 
speed, f is the viscous friction coefficient, J is the machine's 
total moment of inertia, 𝑝𝑝 denotes the number of pole pairs, 
𝐾𝐾𝑇𝑇 is a constant which equals 3

 2
𝒑𝒑𝜑𝜑𝑓𝑓, and 𝜑𝜑𝑓𝑓 is magnetic flux.

Figure 1. Structure of the studied PMSM system with the 
proposed adaptive nonlinear control with a deadbeat observer 

[39] 

3. PROPOSED ADAPTIVE NONLINEAR CONTROL
SCHEME WITH DEADBEAT OBSERVER

In the context of the control of complex dynamic systems, 
such as the system of a PMSM, the application of the 
proposed non-linear adaptive control with a DO offers a 
robust and efficient solution. This approach, specifically 
adapted to the PMSM, enables the control parameters to be 
dynamically adjusted to suit variations in the system while 
guaranteeing fast and accurate estimation of the internal 
states, thanks to the DO. By combining these advanced 
techniques, it is possible to achieve optimum performance 
even in dynamic and non-linear environments in automotive 
electric propulsion. In the proposed scheme, the adaptive 
nonlinear controller combines the nonlinear technique of 
input-output looping linearization and the adaptive linear 
control method to ensure the tracking of system reference 
trajectories with parametric uncertainties. 

Meanwhile, the DO is introduced to ensure an accurate 
estimation of the current dq components and the PMSM 
speed using the actual measured currents.  

In the following subsections, the design of the nonlinear 
controller is described in detail, considering variations of the 
system's parameters and load disturbances for non-adaptive 
and adaptive controller cases. In addition, the operation 
principle of the adopted DO is discussed. 

3.1 Design of the adaptive nonlinear controller 

The design of the nonlinear controller is established by 
considering the uncertainty of the different parameters. The 
first case considers a linear uncertainty of stator resistance 
and load torque. The second one inspects the inductances and 
moment of inertia uncertainty, which are non-linear, as they 
are difficult to measure exactly. In these studied cases, both 
non-adaptive and adaptive controllers are investigated. 

3.1.1 Case of variations on R and Tr 
Here, the aim is to design an adaptive non-linear controller 

that guarantees speed regulation of the PMSM with constant 
but unknown stator resistance Rs and resistive torque Tr. To 
achieve this, we start by designing a controller using the 
linearization method applied to the input-output dynamics of 
the nominal PMSM model. Then, we derive the adaptation 
law to extract the vector of uncertain parameters. The vector 
of uncertain parameters, 𝜆𝜆, is considered as follows: 

Then, the system of (1) can be rewritten in the expression 
given in (3), which proposes an adaptive scheme for 
estimating Rs and Tr. By replacing (2) in (1), we get: 

[𝜆𝜆] = �𝜆𝜆1𝜆𝜆2
� = �𝑅𝑅  − 𝑅𝑅𝑛𝑛

𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑟𝑟𝑛𝑛
� (2) 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝑑
𝑑𝑑𝑑𝑑 𝐼𝐼𝑑𝑑 = −

𝑅𝑅𝑛𝑛
𝐿𝐿𝑑𝑑

𝐼𝐼𝑑𝑑 + 𝝀𝝀1
𝐼𝐼𝑑𝑑
𝐿𝐿𝑑𝑑

+ 𝑝𝑝𝜔𝜔𝑟𝑟
𝐿𝐿𝑞𝑞
𝐿𝐿𝑑𝑑
𝐼𝐼𝑞𝑞 +

𝑢𝑢𝑑𝑑
𝐿𝐿𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑 𝐼𝐼𝑞𝑞 = −

𝑅𝑅𝑠𝑠
𝐿𝐿𝑞𝑞
𝐼𝐼𝑞𝑞 − 𝝀𝝀1

𝐼𝐼𝑑𝑑
𝐿𝐿𝑑𝑑

− 𝒑𝒑𝜔𝜔𝑟𝑟
𝐿𝐿𝑑𝑑
𝐿𝐿𝑞𝑞
𝐼𝐼𝑑𝑑 −

𝒑𝒑𝜔𝜔𝑟𝑟
𝐿𝐿𝑞𝑞

𝜑𝜑𝑓𝑓 +
𝑢𝑢𝑞𝑞
𝐿𝐿𝑞𝑞

𝑑𝑑
𝑑𝑑𝑑𝑑 𝜔𝜔𝑟𝑟 =  

𝐾𝐾𝑇𝑇
𝐽𝐽 𝐼𝐼𝑞𝑞 +

𝐾𝐾𝑇𝑇(𝐿𝐿𝑑𝑑 −  𝐿𝐿𝑞𝑞)
𝐽𝐽 𝜑𝜑𝑓𝑓

𝐼𝐼𝑑𝑑𝐼𝐼𝑞𝑞  −
𝑓𝑓
𝐽𝐽 𝜔𝜔𝑟𝑟 −

𝑇𝑇𝑟𝑟𝑛𝑛
𝐽𝐽 −  

𝝀𝝀2
𝐽𝐽

(3) 

where, the subscript 𝑛𝑛 denotes nominal values. 
In a compact form: 
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�̇�𝛸 = 𝑓𝑓(𝛸𝛸, 𝜆𝜆) + �𝑔𝑔𝑖𝑖(𝛸𝛸, 𝜆𝜆)
2

𝑖𝑖=1

𝑢𝑢𝑖𝑖 (4) 

�̇�𝛸 = 𝑓𝑓0(𝛸𝛸) + �𝑔𝑔𝑖𝑖(𝛸𝛸, 𝜆𝜆)
2

𝑖𝑖=1

𝑢𝑢𝑖𝑖 +   �𝜆𝜆𝑗𝑗𝑓𝑓𝜆𝜆𝑗𝑗

2

𝑖𝑖=1

(𝑥𝑥) (5) 

Non-adaptive controller case 
This subsection provides the design of the controller’s 

non-adaptive version, where the vector of uncertain 
parameters is known. The objective is to ensure PMSM speed 
control while maintaining operation at maximum torque (Id= 
0). To this end, a linearization law in the input-output 
directions is applied to its model, which guarantees total 
decoupling between inputs and outputs. The system outputs 
are the mechanical speed ωr and the current Id, which are 
defined as follows: 

� 𝑦𝑦1 = ℎ1 = 𝐼𝐼𝑑𝑑
𝑦𝑦2 = ℎ2 = 𝜔𝜔𝑟𝑟

 (6) 

These two outputs should follow the reference trajectories. 
For the current (Id), it is zero (Id = 0), while the speed 
reference may be a step or any trajectory. 

To establish the decoupling matrix  𝐷𝐷(𝑥𝑥) , we start by 
determining the relative degree of each output to be 
controlled. 

a) Relative degree: For current 𝐼𝐼𝑑𝑑  with 𝑦𝑦1 = ℎ1 = 𝐼𝐼𝑑𝑑 ,
𝛻𝛻ℎ1= [1 0 0], using (4), we get: 

�̇�𝑦1 = 𝐿𝐿𝑓𝑓ℎ1(𝑥𝑥) + �𝐿𝐿𝑔𝑔𝑖𝑖

2

𝑖𝑖=1

ℎ1(𝑥𝑥)𝑢𝑢𝑖𝑖 (7) 

Note that the 𝑢𝑢𝑑𝑑 input appears in (7); stop here and take 
the relative degrees of this output 𝑟𝑟1 = 1. 

For speed 𝜔𝜔𝑟𝑟 with 𝑦𝑦2 = ℎ2 = 𝜔𝜔𝑟𝑟 and 𝛻𝛻ℎ2 = [𝟎𝟎 𝟎𝟎 𝟏𝟏]; 
Note that if the problem involves finding a linear 

relationship between input and output, derive the output until 
at least one input appears by using the following expression: 

𝑦𝑦𝑗𝑗
(𝑟𝑟𝑗𝑗)

= 𝐿𝐿𝑗𝑗
(𝑟𝑟𝑗𝑗)

ℎ𝑗𝑗(𝑥𝑥) + ∑ 𝐿𝐿𝑔𝑔𝑖𝑖 �𝐿𝐿𝑗𝑗
(𝑟𝑟𝑗𝑗−1)

ℎ𝑗𝑗(𝑥𝑥)�𝑝𝑝
𝑖𝑖=1 𝑢𝑢𝑖𝑖; 

𝑖𝑖 = 1,2, … … . 𝑝𝑝 
(8) 

If 𝐿𝐿𝑗𝑗
(𝑟𝑟𝑗𝑗−1)

ℎ𝑗𝑗(𝑥𝑥) ≠ 0, so 𝑢𝑢𝑖𝑖  does not appear in the

𝑦𝑦𝑗𝑗 , �̇�𝑦𝑗𝑗, … .𝑦𝑦𝑗𝑗
(𝑟𝑟𝑗𝑗−1)

and appears in the equation of 𝑦𝑦𝑗𝑗
(𝑟𝑟𝑗𝑗)

.
In this case,  (𝑟𝑟𝑗𝑗 ) is called the system relative degree. 

According to the following definition, using (9), we get: 

�̇�𝑦2 = 𝐿𝐿𝑓𝑓ℎ2(𝑥𝑥) + �𝐿𝐿𝑔𝑔𝑖𝑖

2

𝑖𝑖=1

ℎ2(𝑥𝑥)𝑢𝑢𝑖𝑖 (9) 

Note that no input appears in (10), so we are forced to 
derive another time: 

From (10), 𝑟𝑟2 = 2 for this output. 
The total relative degree (global or vector) 𝑟𝑟1  + 𝑟𝑟2  = 𝑟𝑟 = 3, 

so the system is exactly linearizable for non-linear state 
feedback. There are no internal or unobservable zero 
dynamics to consider. By putting together (7) and (10), we 
obtain the following form 

�̈�𝑦2 = 𝐿𝐿2𝑓𝑓ℎ2(𝑥𝑥) + �𝐿𝐿𝑔𝑔𝑖𝑖

2

𝑖𝑖=1

ℎ2(𝑥𝑥)𝑢𝑢𝑖𝑖 (10) 

[�̇�𝑦1 �̈�𝑦2]𝑇𝑇 = 𝜁𝜁(𝑥𝑥)+ D(x) u (11) 

where, the decoupling matrix is invertible if the determinant 
det (D(x) ≠ 0), which equals: 

|𝐷𝐷(𝑥𝑥)| = 3𝑝𝑝
2𝐽𝐽𝐿𝐿𝑞𝑞𝐿𝐿𝑑𝑑

(𝜑𝜑𝑓𝑓 + 𝐼𝐼𝑑𝑑(𝐿𝐿𝑑𝑑 −  𝐿𝐿𝑞𝑞)  ≠0 (12) 

The linearizing control law that guarantees decoupling 
between inputs and outputs (i.e., a linear relationship) is: 

�
𝑢𝑢𝑑𝑑
𝑢𝑢𝑞𝑞� = 𝐷𝐷−1(x) ��

𝑣𝑣1
𝑣𝑣2� −𝜻𝜻

(𝒙𝒙)� (13) 

Replacing the linearizing control law (13) in (10) gives: 

��̇�𝑦1�̈�𝑦2
� = � 𝐼𝐼�̇�𝑑𝜔𝜔�̈�𝑟2

� = �
𝑣𝑣1
𝑣𝑣2� (14) 

So, in the case of a trajectory tracking problem, the new 
control vector is designed. 

b) Conception of the new control vector: For the
reference trajectory tracking problem, the vector 𝑣𝑣  must 
satisfy: 

𝑣𝑣𝑗𝑗 = 𝑦𝑦𝑑𝑑𝑗𝑗
(𝑟𝑟𝑗𝑗)

+ 𝐾𝐾𝑟𝑟𝑗𝑗 �𝑦𝑦𝑑𝑑𝑗𝑗
�𝑟𝑟𝑗𝑗−1� − 𝑦𝑦𝑗𝑗

�𝑟𝑟𝑗𝑗−1�� + ⋯

+ 𝐾𝐾1 �𝑦𝑦𝑑𝑑𝑗𝑗 − 𝑦𝑦𝑗𝑗�1 ≤  𝑗𝑗 ≤ 𝑝𝑝
(15) 

where, the vectors (𝑦𝑦𝑑𝑑𝑗𝑗  ,𝑦𝑦𝑑𝑑𝑑𝑑̇ , . . . ,𝑦𝑦𝑑𝑑𝑗𝑗
�𝑟𝑟𝑗𝑗−1�,𝑦𝑦𝑑𝑑𝑗𝑗

�𝑟𝑟𝑗𝑗�)  are the 
reference trajectories imposed for each output. 

So, according to (15), we have: 
The Laplace transformation of (16) leads to: 

𝑣𝑣1 = 𝐼𝐼𝑑𝑑∗ + 𝐾𝐾𝑑𝑑(𝐼𝐼𝑑𝑑∗ − 𝐼𝐼𝑑𝑑) (16) 

𝑣𝑣2 = �̈�𝜔𝑟𝑟∗ + 𝐾𝐾2(�̇�𝜔𝑟𝑟∗ − �̇�𝜔𝑟𝑟) + 𝐾𝐾1(𝜔𝜔𝑟𝑟∗ − 𝜔𝜔𝑟𝑟) (17) 

𝑠𝑠 + 𝐾𝐾𝑑𝑑 = 0 (18) 

Also, applying the Laplace transformation to (17) gives: 

𝑠𝑠2 + 𝐾𝐾2𝑠𝑠 + 𝐾𝐾1 = 0 (19) 

To determine the coefficients 𝐾𝐾𝑑𝑑, 𝐾𝐾1, and 𝐾𝐾2𝑆𝑆 we use the 
pole placement method so that the system is stable and its 
output responds without any overshoot. If the reference 
trajectory (the imposed trajectory) is a step, we have 𝐼𝐼𝑑𝑑∗ =
�̈�𝜔𝑟𝑟∗ = �̇�𝜔𝑟𝑟∗ = 0, and the control vector becomes: 

𝑣𝑣1 = 𝐾𝐾𝑑𝑑(𝐼𝐼𝑑𝑑∗ − 𝐼𝐼𝑑𝑑)
𝑣𝑣2 = −𝐾𝐾2�̇�𝜔𝑟𝑟 + 𝐾𝐾1(𝜔𝜔𝑟𝑟∗ − 𝜔𝜔𝑟𝑟) (20) 

Accordingly, the block diagram of the linearized closed-
loop model can be derived, as shown in Figure 2. 
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Figure 2. Block diagram of the linearized closed-loop model 

Adaptive controller case 
Since 𝝀𝝀 is unknown, it is replaced by its estimate �̂�𝜆, which 

is proposed for the design. Accordingly, the output vectors 
are: 

[𝑦𝑦1 𝑦𝑦2]𝑇𝑇 = [𝐼𝐼𝑑𝑑 𝜔𝜔𝑟𝑟]𝑇𝑇 = [𝜑𝜑1 𝜑𝜑2]𝑇𝑇 = [ℎ1 ℎ2]𝑇𝑇  (21) 

The change of coordinates according to �̂�𝜆  is defined as 
follows: 

[�̂�𝑧] = �
𝐿𝐿𝑓𝑓0𝜑𝜑1
𝐿𝐿𝑓𝑓0𝜑𝜑2
𝐿𝐿2𝑓𝑓0𝜑𝜑3

� +   �
𝐿𝐿𝑔𝑔1𝜑𝜑1 0

0 0
𝐿𝐿𝑔𝑔1𝐿𝐿𝑓𝑓0𝜑𝜑2 𝐿𝐿𝑔𝑔2𝐿𝐿𝑓𝑓0𝜑𝜑2

� �
𝑢𝑢𝑑𝑑
𝑢𝑢𝑞𝑞� (22) 

According to expression (22), we have: 

� 𝑅𝑅 =  𝜆𝜆1 + 𝑅𝑅𝑛𝑛
𝑇𝑇𝑟𝑟 = 𝜆𝜆2 +  𝑇𝑇𝑟𝑟𝑛𝑛

 (23) 

By replacing Eq. (22) in (23), we obtain the dynamics of 𝑍𝑍 
as follows: 

�
�̂̇�𝑍1
�̂̇�𝑍2
�̂̇�𝑍3

�

= �

𝐿𝐿𝑓𝑓0𝜑𝜑1  + 𝜆𝜆1𝐿𝐿𝑓𝑓𝛿𝛿1𝜑𝜑1
𝐿𝐿𝑓𝑓0𝜑𝜑2 + 𝜆𝜆2𝐿𝐿𝑓𝑓𝛿𝛿2𝜑𝜑2

𝐿𝐿2𝑓𝑓0𝜑𝜑3 + 𝜆𝜆1𝐿𝐿𝑓𝑓𝜆𝜆1𝐿𝐿𝑓𝑓0𝜑𝜑2 + 𝜆𝜆2𝐿𝐿𝑓𝑓𝜆𝜆2𝐿𝐿𝑓𝑓0𝜑𝜑2 + �̂̇�𝜆2𝐿𝐿𝑓𝑓𝛿𝛿2𝜑𝜑2

�

+ �
𝐿𝐿𝑔𝑔1𝜑𝜑1 0

0 0
𝐿𝐿𝑔𝑔1𝐿𝐿𝑓𝑓0𝜑𝜑2 𝐿𝐿𝑔𝑔2𝐿𝐿𝑓𝑓0𝜑𝜑2

� �
𝑢𝑢𝑑𝑑
𝑢𝑢𝑞𝑞�

(
24)

where, the decoupling matrix is given by: 

𝐿𝐿𝑓𝑓𝜆𝜆1𝜑𝜑1 = −
1
𝐿𝐿𝑑𝑑
𝐼𝐼𝑑𝑑 

𝐿𝐿𝑓𝑓𝜆𝜆1𝐿𝐿𝑓𝑓0𝜑𝜑2 = −(
𝐾𝐾𝑇𝑇
𝐽𝐽 𝐿𝐿𝑞𝑞

𝐼𝐼𝑞𝑞 +
𝐾𝐾𝑇𝑇(𝐿𝐿𝑑𝑑 −  𝐿𝐿𝑞𝑞)

𝐽𝐽 𝜑𝜑𝑓𝑓𝐿𝐿𝑞𝑞
𝐼𝐼𝑞𝑞𝐼𝐼𝑑𝑑)

− (
𝐾𝐾𝑇𝑇(𝐿𝐿𝑑𝑑 −  𝐿𝐿𝑞𝑞)

𝐽𝐽 𝜑𝜑𝑓𝑓𝐿𝐿𝑑𝑑
𝐼𝐼𝑞𝑞𝐼𝐼𝑑𝑑) 

𝐿𝐿𝑓𝑓𝜆𝜆2𝐿𝐿𝑓𝑓0𝜑𝜑2 =
𝑓𝑓
𝐽𝐽2

𝜆𝜆2𝐿𝐿𝑓𝑓𝜆𝜆2𝜑𝜑2 = −
1
𝐽𝐽 

(25) 

Our controller depends on 𝜆𝜆, which is not yet determined, 
so the linearizing law becomes, in this case: 

�
𝑢𝑢�𝑑𝑑
𝑢𝑢�𝑞𝑞
� = 𝐷𝐷−1(𝑥𝑥)(−𝜁𝜁0(𝑥𝑥) − 𝜁𝜁𝛿𝛿 �𝑋𝑋, �̂�𝜆, �̂̇�𝜆� + 𝑣𝑣�) (26) 

To adjust our adaptive controller using the Lyapunov-
based adjustment mechanism, we need to define the state 
error vector, which is given by: 

That should satisfy the following condition: 

𝑒𝑒 = �
𝐼𝐼𝑑𝑑 − 𝐼𝐼𝑑𝑑∗
ω𝑟𝑟 − ω𝑟𝑟

∗

ω𝑟𝑟 − ω̇𝑟𝑟
∗
� = �

𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
� (27) 

𝑒𝑒 = 𝐾𝐾𝑒𝑒 + 𝑊𝑊1̇ ∆𝝀𝝀 (28) 

where, 𝐾𝐾 is a matrix that depends on the desired poles, and 
from (24), we define 𝑊𝑊1 as follows: 

𝑊𝑊1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

1
𝐿𝐿𝑑𝑑
𝐼𝐼𝑑𝑑 0

0 −
1
J

−�
𝐾𝐾𝑇𝑇
𝐽𝐽 𝐿𝐿𝑞𝑞

𝐼𝐼𝑞𝑞 +
𝐾𝐾𝑇𝑇(𝐿𝐿𝑑𝑑 −  𝐿𝐿𝑞𝑞)

𝐽𝐽 𝜑𝜑𝑓𝑓𝐿𝐿𝑞𝑞
𝐼𝐼𝑞𝑞𝐼𝐼𝑑𝑑� − �

𝐾𝐾𝑇𝑇(𝐿𝐿𝑑𝑑 −  𝐿𝐿𝑞𝑞)
𝐽𝐽 𝜑𝜑𝑓𝑓𝐿𝐿𝑑𝑑

𝐼𝐼𝑞𝑞𝐼𝐼𝑑𝑑�
𝑓𝑓
𝐽𝐽2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

(29) 

Thus, the adaptation law can be determined using the 
following Lyapunov function: 

𝑉𝑉 = 𝑒𝑒𝑇𝑇𝑃𝑃𝑒𝑒 + ∆𝝀𝝀𝑇𝑇Γ∆𝝀𝝀 (30) 

where, its derivative is given by: 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= −𝑒𝑒𝑇𝑇𝑄𝑄𝑒𝑒 + 2∆𝝀𝝀𝑇𝑇(𝑊𝑊1
𝑇𝑇𝑃𝑃𝑒𝑒 + Γ∆𝝀𝝀)̇ (31) 

and Γ and P are positive-definite matrices defining the 
adaptation gain and the solution to the Lyapunov equation, 
respectively. 

So that  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≤ 0 it is necessary: 

𝑊𝑊1𝑃𝑃𝑒𝑒 +  Γ∆�̇�𝝀 = 0 →  ∆�̇�𝝀 = −Γ−1𝑊𝑊1
𝑇𝑇𝑃𝑃𝑒𝑒 (32) 

where, ∆�̇�𝝀 represents the adaptation act, which ensures: 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= −𝑒𝑒𝑇𝑇𝑄𝑄𝑒𝑒 ≤ 0 (33) 

In this case, according to the Barbalat lemma, we have: 

lim
𝑑𝑑→∞

‖𝑒𝑒(𝑑𝑑)‖ = 0 (34) 

So, now it remains to determine the matrix 𝑃𝑃 , which 
verifies the following equation: 

𝐾𝐾𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐾𝐾 = −𝑄𝑄 (35) 

where, 𝑄𝑄  is a positive-definite symmetric matrix that is 
generally an identity matrix. 

3.1.2 Case of variations on (Ld = Lq) and J 
In this case, the steps to design the controller are similar to 

those in the previous section, considering L and J variations, 
which are involved within the PMSM model in a non-linear 
way. Thus, the vector of uncertain parameters is considered 
as follows: 
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𝝀𝝀 =  �𝝀𝝀1𝝀𝝀2
� =

⎣
⎢
⎢
⎡
1
𝐿𝐿
−

1
𝐿𝐿𝑛𝑛

1
𝐽𝐽
−

1
𝐽𝐽𝑛𝑛 ⎦
⎥
⎥
⎤
 (36) 

⎩
⎨

⎧𝐿𝐿 =
𝐿𝐿𝑛𝑛

𝐿𝐿𝑛𝑛𝝀𝝀1 + 1

𝐽𝐽 =
𝐽𝐽𝑛𝑛

𝐽𝐽𝑛𝑛𝝀𝝀2 + 1

 (37) 

Note that from (36), the vector λ denotes the difference 
between the uncertain parameters and their nominal values, 
so to obtain the values of 𝐿𝐿  and 𝐽𝐽  from  𝜆𝜆1  and 𝜆𝜆2 , the 
following expressions can be used: 

3.2 Deadbeat state observer 

The DO is designed to estimate the unmeasured states of 
the system at each instant. In the case of the PMSM, the 
states typically estimated are the stator currents, 𝐼𝐼𝑑𝑑  and 𝐼𝐼𝑞𝑞 , 
and the rotational speed 𝜔𝜔�𝑟𝑟. The state estimates equations of 
the DO can be formulated as follows: 

�𝑥𝑥�
(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘) − 𝐶𝐶𝑥𝑥�(𝑘𝑘)�

𝑥𝑥�(0) = 𝑥𝑥0
(38) 

with: 𝑥𝑥�(𝑘𝑘): the vector of the estimated states at time 𝑘𝑘; 𝐴𝐴: 
the system state matrix; B: the control matrix; 𝑢𝑢(𝑘𝑘) : the 
control vector at time 𝑘𝑘; 𝐿𝐿: the DO gain matrix; 𝑦𝑦(𝑘𝑘): the 
output vector measures at time 𝑘𝑘; and 𝐶𝐶: The output matrix. 

3.2.1 Design of the control parameters for the DO 
The system state matrix can be derived from its dynamic 

model in the dq frame, which is defined as follows: 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝐼𝐼𝑑𝑑
𝐼𝐼𝑞𝑞
𝜔𝜔𝑟𝑟
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

𝑅𝑅
𝐿𝐿𝑑𝑑

𝜔𝜔𝑟𝑟 0

−𝜔𝜔𝑟𝑟 −
𝑅𝑅
𝐿𝐿𝑞𝑞

1
𝐿𝐿𝑞𝑞
𝜑𝜑𝑓𝑓

0 −
1
𝐽𝐽
𝑑𝑑𝐿𝐿
𝑑𝑑𝜔𝜔𝑟𝑟

−𝑓𝑓
𝐽𝐽 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

�
𝐼𝐼𝑑𝑑
𝐼𝐼𝑞𝑞
𝜔𝜔𝑟𝑟
�

+

⎣
⎢
⎢
⎢
⎡

1
𝐿𝐿𝑑𝑑

0

0
1
𝐿𝐿𝑞𝑞

0 0 ⎦
⎥
⎥
⎥
⎤

�
𝑢𝑢𝑑𝑑
𝑢𝑢𝑞𝑞�

(39) 

The state matrix 𝐴𝐴 is, therefore, the part of the dynamic 
model that determines the evolution of system states over 
time. Using the equations above, we can extract the elements 
of the 𝐴𝐴 matrix: 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

𝑅𝑅
𝐿𝐿𝑑𝑑

𝜔𝜔𝑟𝑟 0

−𝜔𝜔𝑟𝑟 −
𝑅𝑅
𝐿𝐿𝑞𝑞

1
𝐿𝐿𝑞𝑞
𝜑𝜑𝑓𝑓

0 −
1
𝐽𝐽
𝑑𝑑𝐿𝐿
𝑑𝑑𝜔𝜔𝑟𝑟

−𝑓𝑓
𝐽𝐽 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (40) 

For a PMSM, the state vector estimates 𝑥𝑥� and the matrix B 
can be obtained as: 

𝑥𝑥� = �
𝐼𝐼𝑑𝑑
𝐼𝐼𝑞𝑞
𝜔𝜔�𝑟𝑟
�, 𝐵𝐵 =

⎣
⎢
⎢
⎡
1
𝐿𝐿𝑑𝑑

0

0 1
𝐿𝐿𝑞𝑞

0 0 ⎦
⎥
⎥
⎤
 (41) 

In the matrix 𝐵𝐵, each column represents the effect of the 
input voltage on the corresponding states of the system. 
Rows 1 and 2 correspond to the currents 𝐿𝐿𝑑𝑑 and 𝐿𝐿𝑞𝑞, 
respectively, while row 3 corresponds to the rotational speed 
𝜔𝜔𝑟𝑟. The non-zero elements of this matrix 𝐵𝐵 indicate how the 
input voltage components influence the different state 
variables of the system. For example, the input voltage 𝑢𝑢𝑑𝑑 
affects only the current (𝐼𝐼), so only the first column of matrix 
𝐵𝐵 has non-zero elements corresponding to 𝐿𝐿𝑑𝑑. Similarly, the 
input voltage 𝑢𝑢𝑞𝑞 affects only the current, so only the second 
column of matrix 𝐵𝐵 has non-zero elements corresponding to 
𝐿𝐿𝑞𝑞. The rotational speed 𝜔𝜔𝑟𝑟 is not directly affected by the 
input voltage, so the third column of matrix 𝐵𝐵 is zero. The 
matrix 𝐵𝐵 is important in designing control laws for PMSMs 
because it indicates how the system inputs (the voltages 𝑢𝑢𝑑𝑑 
and 𝑞𝑞 in this case) influence the system states, which is 
essential for designing an effective controller. 

Observation matrix C 
The matrix 𝐶𝐶 is used to select the states that can be 

measured. In the case of the PMSM, let's assume we can 
directly measure the currents as well as the mechanical 
rotational speed 𝜔𝜔𝑟𝑟. Then, the matrix 𝐶𝐶 would be: 

𝐶𝐶 = �
1 0 0
0 1 0
0 0 1

� (42) 

Design of the gain matrix L of the DO 
To design the gain matrix L of the DO for a PMSM, we 

can use the classical state observer design method, such as 
the pole placement method. This method consists of placing 
the poles of the estimation error dynamics where we want 
them to obtain a fast and stable observer’s convergence. The 
estimation error dynamics is given by the equation: 

�̇�𝑥� = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑥𝑥� (43) 

In which 𝑥𝑥� defines the estimation error vector: 

𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥� (44) 

where, 𝒙𝒙  and 𝑥𝑥� are the actual state vector and the state 
estimate vector. 

The matrix L can be calculated for an n-dimensional 
system using: 

𝐿𝐿 = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)−1𝐵𝐵 (45) 

Thus, to calculate the matrix L, we need to follow the 
following steps: 

Choose the desired eigenvalues λ1, λ2….λn: 
• Calculate the matrix (𝑨𝑨-𝑳𝑳𝑳𝑳) by substituting the

values of A and assuming L as an unknown matrix; 
• Calculate the inverse of (𝑨𝑨 − 𝑳𝑳𝑳𝑳). Suppose we want

to place the observer poles at specific positions. We choose 
the desired eigenvalues λ1, λ2.λ3 and form the characteristic 
matrix (𝒛𝒛𝒛𝒛 − (𝑨𝑨 − 𝑳𝑳𝑳𝑳)); 
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• Next, we equalize the determinant of the
characteristic matrix to zero to obtain the characteristic 
equations. Solving these equations, we obtain the elements of 
the matrix L. 

More precisely, for a nonlinear dynamic system such as 
that of a PMSM, the eigenvalues 𝜆𝜆 of the matrix 𝐴𝐴-𝐿𝐿𝐶𝐶 
determine the dynamics of the state observer's estimation 
errors: 

𝑑𝑑𝑒𝑒𝑑𝑑(𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)) = 0 (46) 

�̇�𝑥� = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑥𝑥� (47) 

If the eigenvalues λ have a negative real part, this means 
that the estimation errors will decrease over time, indicating 
stable convergence of the estimation to the real values of the 
system states. In other words, the PMSM will tend to track 
the real values of its states quickly and accurately with a 
well-designed observer. 

By judiciously choosing the eigenvalues λ, we can control 
the observer's performance, such as speed of convergence 
and robustness to disturbances. For example, if faster 
response times are required, we can choose eigenvalues with 
a more negative real part, which will speed up the observer's 
convergence. The approach proposed in this article enables 
the matrix L to be calculated as a function of the specific 
PMSM’s parameters and the observer’s specifications, 
providing an accurate estimate of the internal states of the 
PMSM for fast, stable convergence of the observer. 

3.2.2 Application of the nonlinear adaptive deadbeat control 
Before delving into the integration process, it's crucial to 

understand the context of designing and applying nonlinear 
adaptive input-output feedback control with DO for PMSMs. 
This control approach aims to regulate PMSM performance 
effectively using advanced control and state estimation 
methods. The system relies on a DO to estimate unmeasured 
states, enabling precise and rapid feedback. The integration 
of this control occurs in four distinct steps, each playing a 
crucial role in the overall dynamics of the system. The main 
steps of the DO are given as follows. 
• Step 01: State Estimation: At each instant k, the DO

is used to estimate the state of the system from the 
measurements of the output y(k) and the input u(k): 

𝒙𝒙�(𝑘𝑘 + 1) =  𝐴𝐴𝒙𝒙�(𝑘𝑘) +  𝐵𝐵𝑢𝑢(𝑘𝑘)  +  𝐿𝐿(𝑦𝑦(𝑘𝑘)  −  𝐶𝐶) (48) 

• Step 02: Linearized control calculation: The
linearized control signal v(k) is computed using the estimated 
state 𝑥𝑥� (𝑘𝑘) and the PI controller gains: 

𝑣𝑣(𝑘𝑘)  =  −𝛤𝛤𝒙𝒙� (𝑘𝑘) (49) 

where, Γ is the adaptive gain matrix cited in the above part. 
• Step 03: Control calculation: The control u(k) is then

computed from the linearized control signal v(k), the position 
set point 𝑦𝑦𝑟𝑟𝑒𝑒𝑓𝑓(𝑘𝑘), and the integrals of past errors: 

𝑢𝑢(𝑘𝑘)  =  −𝐾𝐾𝑝𝑝 (𝑦𝑦(𝑘𝑘)  −  𝑦𝑦𝑟𝑟𝑒𝑒𝑓𝑓(𝑘𝑘))  

− 𝐾𝐾𝑖𝑖 �(𝑦𝑦(𝑘𝑘)  −  𝑦𝑦𝑟𝑟𝑒𝑒𝑓𝑓(𝑘𝑘))  𝑑𝑑𝑑𝑑

+ 𝑣𝑣(𝑘𝑘)

(50) 

• Step 4: Updating adaptive parameters contribution:
The adaptive parameters of the matrix Γ are updated using 
the Least Mean Squares (LMS) algorithm: 

�
𝛤𝛤(𝑘𝑘 + 1)  =  𝛤𝛤(𝑘𝑘)  +  𝜇𝜇(𝑦𝑦(𝑘𝑘)  −  𝑦𝑦𝑟𝑟𝑒𝑒𝑓𝑓(𝑘𝑘)𝒙𝒙� (𝑘𝑘)𝑇𝑇 

𝜀𝜀 = 𝑦𝑦(𝑘𝑘)  −  𝑦𝑦𝑟𝑟𝑒𝑒𝑓𝑓(𝑘𝑘) (51) 

where, 𝜇𝜇 is the learning factor. 
The equation for the learning factor (μ) in the LMS with 

the stochastic gradient descent (SGD) algorithm for updating 
the adaptive parameters of the Γ(x) matrix is as follows: 

𝜇𝜇 =  𝛿𝛿 / ||𝑥𝑥�(𝑘𝑘)||2 (52) 

with 𝛿𝛿 is a positive parameter that controls the learning speed 
and ||𝑥𝑥�(𝑘𝑘)||2 is the Euclidean norm of the state estimation 
vector 𝑥𝑥�(k). 

Note that δ controls the learning speed. A larger δ means a 
faster update of the adaptive parameters, while a smaller δ 
means a slower update. While ||𝑥𝑥�(𝑘𝑘)||2 is used to normalize 
the updating of adaptive parameters. This prevents the 
adaptive parameters from becoming too large or too small. 

4. SIMULATION RESULTS

To validate the performance of the developed control
strategy, simulation tests are established in MATLAB 
software. In the first test, a comparative study with an ANLC 
technique is conducted to check the effectiveness of the 
proposed controller under mechanical rotation speed 
variation and load torque disturbance. The second test 
verifies the robustness of the control proposal considering the 
system parameters variation. Note that our study focuses on 
non-salient PMSM and the corresponding parameters are 
provided in Table 1. 

4.1 Control performance assessment under speed 
variation and load torque disturbance 

In this simulation test, a comparative study between the 
proposed control and a simple ANLC technique for three 
different scenarios is performed. These scenarios are 
presented hereafter, which consider constant values and 
variations of the mechanical rotation speed and load torque 
disturbance as well. 

4.1.1 Scenario 1: Fixed mechanical rotational speed with 
unknown load torque perturbation:  

Here, we subject the system to a gradually varying 
unknown load torque perturbation with an unchanged 
mechanical rotational speed to evaluate the system control 
robustness versus these disturbances. The load torque, Tr, the 
mechanical speed, ωr, and its reference are portrayed in 
Figures 3(a) and (b). Figures 3(b) and (c) reveal the superior 
performance of the developed control approach in tracking 
the mechanical speed, even under a significant perturbation 
in load torque. Moreover, both methods keep the current at 
zero. 

The maximum relative error, expressed as �𝜔𝜔𝑟𝑟−𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟

� ×

100%, is approximately 8% and 6% for the ANLC and the 
proposed method, respectively, at time 0.4 s. In addition, at 
time 1 s, the error decreases to 1.2% and 0.7% for the ANLC 
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and the proposed control scheme, respectively. 

Table 1. PMSM parameters 

Parameter Value 
Nominal power (Pn) 1,1 kW 

Number of pole pairs (p) 4 
Stator resistance (Rs) 1.8 Ω 

Direct inductance component (Ld) 2.89 mH 
Quadrature inductance component (Lq) 2.89 mH 

Magnet flux 0.416 Wb 
Friction coefficient (fr) 0.000125 Nms/rad 
Moment of inertia (J) 0.011 kgm2 
Nominal speed (Nn) 1500 tr/mn 

Table 2. Simulation results; control performance indices 
comparison in maximum relative speed error under different 

scenarios 

Scenario Time (s) ANLC Proposed Method 

Case 1 0.4 8% 6% 
1 1.2% 0.7% 

Case 2 

0.5 2% 1.98% 
0.75 1.8% 1.82% 

1 1.8% 1.8% 
1.5 0.2% 0.1% 
1.7 0.2% 0.2% 

In a steady state, the maximum relative error is 
approximately 0.5% and 0.2% using the ANLC and the 
proposed method, respectively. This discrepancy arises from 
the inability of the ANLC to effectively handle unknown load 
torque disturbances resulting from load torque variations. 
The numerical results are summarized in Table 2, which 
provides the relative speed error of the proposed method 
compared to the ANLC for the three scenarios. The results in 
this table exhibit the proposed control method's efficiency in 
ensuring high tracking performance even under rapidly 
fluctuating load torque disturbances. 

4.1.2 Scenario 2: Time-varying of (a form of a staircase) 
mechanical rotational speed with unknown load torque 
perturbation:  

In this case, a time-varying mechanical rotational speed 
variation (in the form of a staircase) is considered while 
introducing an unknown load torque disturbance as Dirac 
impulses at 1.5 s and 1.7 s. This application of load torque as 
an impulse rather than a step is intended to rigorously test the 
robustness of the two control methods. Figure 4 illustrates the 
PMSM’s responses under mechanical rotational speed 
variation while considering unknown load torque disturbance. 
The results of Figure 4 and Table 2 demonstrate that the 
proposed control strategy achieves satisfactory tracking 
performance of 𝜔𝜔𝑟𝑟  and id while exhibiting high robustness 
against load torque disturbances. Particularly during the 
Dirac impulse application at times 1.5 s and 1.7 s. In addition, 
during these instances, the tracking performance of ωm 
exhibits a maximum relative error of approximately 0.1% and 
0.07% with the ANLC and the suggested control scheme, 
respectively. As 𝜔𝜔𝑟𝑟 fluctuates, both the DO and ANLC 
methods consistently exhibit tracking performance, yielding 
identical maximum relative errors of approximately 2%, 
1.8%, and 1.8% at times 0.5 s, 1 s, and 1.5 s, respectively. 
The comparison between the ANLC and the proposed 
method under this scenario highlights the effectiveness of the 
DO-based proposed control scheme in ensuring satisfactory 

performance and robustness versus load torque disturbances. 

4.1.3 Scenario 3: Time-varying mechanical rotation speed 
without any perturbation in load torque:  

This case study examines the effects of variation in 
mechanical speed, represented by a positive sine wave. This 
analysis aims to evaluate the control system's robustness 
against significant speed variations. As depicted in Figure 5 
and Table 2, the relative error is measured at 1.18% and 
0.82% for the ANLC and the proposed method, respectively. 
Notably, the proposed method consistently maintains a lower 
error compared to the ANLC. 

4.2 Robustness to parameters variations Rs and Lq 

This case study assesses the robustness of the proposed 
control scheme for three key parameters variations. In the 
first test, variation of the stator resistances (Rs) is considered, 
while the second and third cases adopt the inductance (Lq) 
and moment of inertia variation. 

4.2.1 Case 1: Variation of the stator resistance Rs 
A test with three different values of the stator resistance, Rs, 

2⨉Rs, and 3⨉Rs is conducted considering a load of 3N.m and 
unknown step-change load torque disturbance applied to the 
PMSM. Figure 6 displays the PMSM response to the three 
values of Rs, depicting the resistive torque (a), PMSM 
mechanical rotation speed (b), and speed relative error (c). 
From Figure 6(c), it can be observed that the peak relative 
error during the start phase for 100%, 200%, and 300% of Rs, 
are 6%, 5%, and 4.2%, respectively. Moreover, during 
steady-state operation, the relative errors do not exceed 0.8%. 
This indicates a high level of accuracy and stability in the 
control system, as evidenced by the near-zero speed response 
relative error even amidst variations in the stator resistance. 
Such robustness underscores the system's ability to maintain 
precise speed control despite fluctuations in stator resistance, 
highlighting its efficacy in real-world applications. 

4.2.2 Case 2: Variation of the stator inductance Ls 
Similarly, three different values of the inductance Lq are 

considered in this test also with applying a load of 3N.m to 
the PMSM. Figure 7 shows the PMSM system response to 
time-varying speed with load torque disturbances, 
emphasizing Lq variations, and it visualizes the same 
variables as the previous test. According to Figure 7(c), the 
peak relative errors during the start phase for different Lq 
variations, namely 100% Lq, 200% Lq, and 300% Lq, are 
about 6%, 7%, and 7.4%, respectively. Furthermore, during 
steady-state operation, the relative errors do not exceed 0.5%. 
The minimal speed response relative error observed during Lq 
variations underscores the system's resilience, accuracy, and 
stability, demonstrating its capability to uphold precise speed 
control despite changes in the inductance Lq. 

4.2.3 Case 3: Variation of the moment of inertia J 
Figure 8 demonstrates the speed response of the system 

using the proposed ANLCDO under different moment of 
inertia (J) values. The results show that the controller 
effectively tracks the reference speed with minimal deviation, 
ensuring robustness. Higher inertia (300% J) leads to slower 
acceleration and deceleration, enhancing stability but 
reducing responsiveness, while lower inertia (100% J) allows 
faster reactions but increases sensitivity to disturbances. 
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Despite these differences, all responses accurately reach the 
reference speed, confirming the controller's adaptability and 

efficiency in maintaining stable and precise speed control 
across varying inertia conditions. 

(a) (b) (c) 

(d) (e) (f) 

Figure 3. System response under a fixed mechanical speed and load torque with an unknown step-change; (a) load torque Tr, (b) 
mechanical rotational speed ωr, (c) relative speed error, (d)/(e) dq currents Idq, and (f) Electromechanical torque 

(a) (b) (c) 

(d) (e) (f) 

Figure 4. System response under variable mechanical speed and load torque with an unknown step-change; (a) load torque Tr, (b) 
mechanical rotational speed ωr, (c) relative speed error, (d)/(e) dq currents Idq, and (f) Electromechanical torque 
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(a) (b) 

Figure 5. Responses for mechanical speed change without perturbation in load torque; (a) mechanical speed 𝜔𝜔𝑟𝑟 and (b) relative 
speed error 

(a) (b) (c) 

Figure 6. Responses for three different values of stator resistance; (a) load torque Tr, (b) mechanical speed 𝜔𝜔𝑟𝑟, and (c) relative 
speed error 

(a) (b) 

Figure 7. Simulation results for three different values of the inductance (a) mechanical speed 𝜔𝜔𝑟𝑟, and (b) relative speed error 

Figure 8. Speed response with the proposed ANLCDO for three different values of the moment of inertia (J)
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5. CONCLUSION

In this paper, an ANLC with a DO was proposed for
regulating PMSMs within automotive electric propulsion 
systems. Our findings underscore the proposed method's 
effectiveness in ensuring robust and efficient control, even in 
the case of dynamic and nonlinear environments encountered 
in real-world applications. Through a series of simulation 
scenarios, we have demonstrated the superior performance of 
the suggested control approach compared to a conventional 
adaptive nonlinear control technique. In scenario 1, involving 
a gradually varying load torque disturbance, the proposed 
strategy exhibited significantly lower error rates and superior 
tracking performance of mechanical rotational speed (ωr) and 
stator current (𝐼𝐼𝑑𝑑) compared to ANLC. In addition, in 
scenario 2, where both load torque and mechanical speed 
changes were introduced, the proposed strategy consistently 
outperformed ANLC, maintaining stability and achieving 
satisfactory tracking performance even during critical 
instances of disturbance. Here, the proposed method 
consistently maintained lower error rates compared to ANLC, 
showcasing its ability to handle dynamic system changes 
effectively. The results further validate the efficacy of the 
developed controller in maintaining high accuracy and 
stability, with peak relative errors during the start phase not 
exceeding 7.4% and 7% for stator resistances and inductance 
variations, respectively, and the steady-state errors remaining 
below 0.8% and 0.5%, respectively. The integration of 
nonlinear adaptive control with a DO within the proposed 
method provides a promising solution to enhance the 
performance, stability, and robustness of automotive electric 
drive systems. These results provide valuable insights into 
the practical implementation of advanced control strategies 
and pave the way for further research and development in 
this area. 

The study's limitations include reliance on simulation-
based validation and specific PMSM parameters, which may 
not generalize to all motors. Future work should focus on 
experimental validation, enhancing adaptive algorithms, real-
time implementation, and comprehensive disturbance testing. 
Additionally, comparative studies with other control 
techniques and integration with broader system components 
are recommended to ensure the robustness, adaptability, and 
practical applicability of the developed control approach in 
various real-world scenarios. 
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