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The agricultural sector is increasingly using various robotic systems that are characterized 

by diverse autonomy. Groups of drones largely ensure the implementation of sowing, 

harvesting, introduction of organic matter, and successful spraying of pesticides. The 

integration of many of the latest ground and aerial transportation equipment significantly 

expands the range of functional and sensor capabilities offered by robotic processing of 

almost any agricultural land. Therefore, this study aimed to develop a technique to 

calculate and select the optimal number of drones involved in agrarian land treatment, 

which should increase the efficiency of agricultural production. The proposed technique 

employs a multi-criteria structure to estimate the required number of unmanned aerial 

vehicles (UAVs) for cultivating a specific farm field. It can optimize the processing time 

and energy resources and provide cost estimation for UAVs. Testing the results of the 

proposed technique involved simulation modeling of UAV operations. The results showed 

that the proposed technique is correct, and its comparison with modeling demonstrates a 

high degree of convergence of the final values. The scientific novelty of this study lies in 

the multi-criteria calculation of the target characteristics, including considering the UAV 

charge using an algorithm for working with service platforms. 
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1. INTRODUCTION

The operation of traditional agricultural machines and 

mechanisms differs and involves the mandatory participation 

of professional operators, whose work largely depends on their 

skills, fatigue, and many other factors that reduce the 

operational efficiency and intellectual level of the agricultural 

sector [1-3]. 

Most robotic vehicles with various autonomies involved in 

agriculture provide seeding, fertilization, and harvesting. The 

combined use of multifunctional drones, which are capable of 

operating on the ground and in air, has expanded the range of 

sensory and functional capabilities of farmland cultivation. 

Many applications (for example, power system maintenance 

and air vehicle movement) require physical interaction 

between drones and autonomous ground-based robotic service 

platforms. The main difficulties of such interactions are 

landing, fixation, and mechanized processing of drone 

batteries, and it is essential to competently organize the service 

maintenance of drones operating as a group [4-7]. 

Therefore, each model and communication technique of 

multifunctional automated systems involved in farming is a 

relevant research area to improve drone operating time and 

reduce the time and costs of cultivating fields using specialized 

drones. 

The farmland cultivation provided by automated systems is 

a complex issue, including optimal maintenance, timely 

recharging or refueling of robots, adjusting their operation to 

the current situation, and selecting the optimal number of 

drones. This study focuses on a method to determine the 

optimal number of robots for farmland cultivation and the 

appropriate mode of operation. 

2. LITERATURE REVIEW

Today, global positioning and navigation, as well as the 

study of the specifics of the application of robotic systems in 

agriculture based on satellite positioning, have helped 

significantly expand the autonomy and functionality of the 

category of drones under consideration. One of the features of 

precision farming is the mandatory application of the latest 

high-tech samples to optimize all stages of agricultural 

production. 

Literature sources describe the design processes and basic 

parameters and consider the performance of a new series of 

small agricultural robots that can perform the elementary work 

of a standard rural enterprise [6-10]. Robot design is an 

autonomous and highly mobile system that independently 

determines locations and generates maps or observes a specific 

agricultural area. As a rule, drones use artificial intelligence 

(AI) to produce solutions that are appropriate for current 

conditions. Therefore, a drone can perform a particular list of 

actions by considering its surrounding environment. The 
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literature proposes the design of a relatively small agricultural 

drone that functions according to AI techniques and is 

implemented in an autonomous mobile system capable of 

independently determining the location and forming a map of 

the terrain or observing the treated areas [8]. One of the 

limitations of this study is that the author did not analyze the 

optimality of this type of robot and its efficiency in a specified 

agricultural area and did not conduct an economic analysis. 

Over the past decade, researchers have thoroughly studied 

the features of technology involving automatic harvesting to 

increase yield and minimize manual labor. The proposed 

technique provides autonomous drone navigation based on 

visual cues and fuzzy control. In this case, a new weighting 

factor enables the transformation of a color image into a 

halftone image, which significantly improves the 

identification of Lycium barbarum and includes the 

characteristics of the minimum positive rectangle in the 

contour description [9]. The least-squares methodology 

provides the fitting of the main navigation line and the 

corresponding calculation of the parameters of a particular 

sector based on the points of each contour under consideration, 

thereby improving the efficiency of online systems. The 

design of a fuzzy controller used in pneumatic systems 

responsible for steering control, which should implement 

autonomous navigation in online mode, has been developed. 

The results of many experiments with a classical static image 

showed that, with an average operation time of 160-165 

milliseconds, the level of accuracy of this technique was not 

less than 90%. These indicators provide high degrees of 

stability and performance. For example, at speeds of 1-2 

kilometers per hour, the highest value of lateral deviation does 

not exceed 6.20-6.25 cm, and its average value generally does 

not exceed 2.78-2.90 cm. The design of a relatively 

inexpensive and energy-efficient local motion planner was 

proposed to optimize labor and the associated costs in field 

agricultural enterprises. Its function relies on the information 

provided by the camera, ensuring depth perception and a two-

layer control methodology to realize autonomous navigation 

in a standard vineyard [11, 12]. 

Uncontrollable weather phenomena, including high winds, 

floods, high temperatures, drought, frost, and sandstorms, can 

lead to a substantial increase in operational complexity. To 

illustrate this point, we considered the impact of light intensity 

on machine vision technology. The system is particularly 

vulnerable to specular reflections and other forms of light 

pollution present on agricultural land, which can hinder the 

obstacle avoidance system's capacity to accurately recognize 

and assess obstacles owing to optical distortion and noise. In 

such instances, it is imperative that the machine vision 

obstacle avoidance technology be equipped with infrared 

technology to facilitate night vision [13]. 

In the context of agricultural operations, parameters such as 

flight speed and altitude exert a direct influence on factors 

such as droplet deposition and the efficacy of pest control 

measures. The configuration of these parameters is contingent 

on the type and growth characteristics of the plants in addition 

to the topographical and geographical characteristics of the 

terrain within the designated area of operation. Ensuring the 

safety of agricultural UAVs is paramount when conducting 

precision spraying operations at low altitudes and volumes. 

The complexity of the obstacle avoidance environment is 

further compounded by various factors, including plant 

protection nets, creeper support, residential buildings, green 

spaces, power lines and towers, communication and lighting 

structures, and all types of wildlife. This necessitates the 

development of advanced obstacle avoidance technologies to 

ensure the safety of agricultural UAVs. The distinct 

characteristics of obstacles, whether large, small, or medium 

in size, enable their detection by obstacle avoidance sensors 

within a designated safety zone, particularly when they fall 

within the warning or fulfilment zones. This facilitated the 

relatively straightforward avoidance of these obstacles by the 

drones. Conversely, microsized and uncharacteristic obstacles, 

which occupy a minute portion of the field of view, manifest 

randomly and irregularly. Consequently, when these obstacles 

enter the warning or execution zone, it remains challenging to 

identify and successfully avoid them [13]. 

When working with a group of unmanned aerial vehicles 

(UAVs), it is essential to consider their charge level and the 

recharging and movement systems of UAVs and mobile 

platforms. Because agricultural UAVs perform many tasks, 

and the cultivated land size can be large, it is necessary to 

provide facilities for recharging the battery of UAV and 

refueling UAVs with physical resources such as pesticides. 

There are different categories of UAVs based on various 

parameters, such as weight, altitude, airspeed, wing type, 

control system, takeoff and landing type, airspace, flight rules, 

and propulsion system. Battery-powered UAVs eliminate the 

need for nonrenewable energy sources, have a simple design, 

and are highly reliable, making them a primary focus of the 

UAV market [14]. 

However, the current energy management strategies used in 

UAVs are often immature. Thus, although hybrid power 

systems are relatively advanced in electric vehicles, their 

application in the UAV industry is still limited. By contrast, a 

ground base station must maintain communication for 

automatic battery charging or replacement. Wireless power 

transfer technology requires high-precision landing and 

wireless data transmission between the UAV and base station, 

which often requires a combination of battery information 

provided by battery management, flight control positioning, 

and data transmission between base stations [15-18]. 

Accurate estimation of the charge level during UAV flights 

is closely related to the flight duration, thus maximizing 

battery energy utilization and improving the overall flight 

duration. Manual battery replacement is the primary charging 

management method. However, studies on wireless and 

automated charging have been very active, particularly for 

large UAV fleets where charging automation is essential. 

Battery management systems for UAVs should consider the 

most appropriate automatic charging methods for their 

application scenarios [19]. 

Information technology plays a significant role in 

sustainable development. The application of the Internet of 

Things (IoT) in agriculture is a modern solution based on the 

latest advances in communication, computing (Internet, cloud 

computing, big data, and business intelligence), and sensor 

technologies (smart sensors and actuators). IoT has been 

studied more intensively, and agricultural application 

possibilities and specific solutions are becoming increasingly 

numerous [20, 21]. 

Adopting an intelligent sensor network offers undeniable 

advantages such as new network IoT devices, reliability or 

fault tolerance, flexibility (a fixed architecture of the sensor 

network), and low energy consumption. The use of an IoT 

device network has not yet become a standard practice in the 

agro-industrial context; specific solutions have only appeared 

in small experimental plots and greenhouses. The most 
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common reason for the limited application of IoT networks is 

their fixed location and many sensors, which entail high 

investment costs, particularly in large areas. Mobile robots and 

UAVs have been proposed as replacements for intelligent 

sensor networks in greenhouses [22-24]. 

UAVs are the only alternative to IoT networks for collecting 

and analyzing data in confined areas. The literature offers 

several solutions to the problem of selecting an optimal UAV 

for particular user criteria. For example, existing software 

makes it possible to calculate the most suitable UAV based on 

its weight, price, loading, control, and other criteria [25]. 

Battery state estimation algorithms used in current UAV 

applications are often simple, and most intelligent algorithms 

are still in the modeling stage without being implemented 

during flights. In the future, remote processing and analysis of 

collected data through cloud storage and network 

communications may provide more accurate state estimation, 

thereby improving safety and reliability. 

A primary trend in communication and data storage is the 

use of networks and their integration into cloud platforms. 

However, real-time and delay-free data transmission and 

processing remains challenging. In addition, ensuring the 

security of the data-transfer process is of utmost importance. 

Studies on UAV battery management fault diagnosis are 

still relatively limited because this field is comparatively new 

and lacks a comprehensive knowledge system. Future efforts 

may focus on collecting relevant historical data and expert 

opinions combined with data-driven fault prediction and 

diagnosis algorithms. 

The development of agriculture, according to the 4.0 model, 

implies the application of such tools as sensors, specialized 

information systems, improved machinery, and, of course, the 

principles of informed management. Practice shows that using 

such tools increases the efficiency of production, based on the 

calculation of specific arguments and the uncertainty that 

occurs in almost any agricultural system. Using robotic 

autonomous systems capable of working on the ground and in 

air significantly optimizes the solutions of many agricultural 

problems and reduces the duration of their implementation. 

For example, the combined use of ground- and aerial-based 

devices holds great promise for ensuring the accurate and 

highly efficient execution of almost any field operation [26]. 

Classical route planning involves a clear division of 

navigation tasks, reduced to global planning and then to local 

planning. Thus, global route planners ensure the generation of 

a local goal (i.e., each waypoint in the route), whereas local 

planners are responsible for generating a smooth and 

accessible main route. As global route planners are responsible 

for identifying targets based on previously established 

grids/maps that show the occupancy of each intermediate field 

regarding the initial and desired configurations, global 

planning typically applies graph search principles or builds a 

route based on particular selections. By contrast, a planner 

relying on interpolating curves usually plays the role of a local 

planner [27-30]. 

The interaction of a group of drones with hybrid robotic 

systems can solve several complex tasks. This principle, which 

has been realized in many practical applications, has 

demonstrated a high efficiency. In the agricultural field, where 

work is performed by autonomous ground and aerial drones 

that form a map, report the current location, and crop growth 

features, navigation focuses on obstacle avoidance and 

automatic localization of objects of interest (for example, 

fruits and trunks), which considerably simplifies the use of 

appropriate tools. However, the availability of limited 

computational resources in relatively inexpensive commercial 

or experimental autonomous vehicles and unequal speeds 

depending on the specificity of operation (for example, a 

vineyard or a land plot located on a slope) does not always 

allow simultaneous online automatic localization and mapping 

[31, 32]. 

Drones acting as groups parallel to rows of grapevines use 

highly specialized spraying systems to build a correct and 

highly efficient pattern of agrochemical distribution to crops, 

minimize spray drift, and reduce associated costs. A group of 

drones treats only the upper part of the vines to distribute the 

product evenly. Accordingly, this reduces the drift level 

dispersion, and the application becomes as uniform as possible 

[33, 34]. However, these studies did not consider the optimal 

number of UAVs for the treatment. 

Few researchers have addressed the problem of organizing 

the production of multiple UAVs in an agricultural area using 

multi-criteria analysis of particular criteria, such as UAV 

energy state, processing time (speed), and total equipment cost. 

Therefore, it is necessary to develop a method of interaction 

between UAVs that can reduce the time and resources required 

to process a particular agricultural field using multi-criteria 

processing. 

 

 

3. MATERIALS AND METHODS 

 

The structure of an agricultural area can be described by the 

following base characteristics: geometric passability of ground 

technical systems within the cultivated area, parameters of the 

growing crop, agrarian tasks with a sequence of actions for 

implementation, and meteorological conditions [35, 36]. 

Figure 1 shows the flowchart diagram developed to describe 

the sequence of further work. 

 

 
 

Figure 1. Flowchart diagram of the problem study and 

development process 

 

To formalize the interaction between the participants of the 

Start 

Presentation of the structure of the complex for work with 

UAVs 

Description of the interaction process of heterogeneous 

devices (UAVs and robots) 

Defining the control structure of heterogeneous systems 

Formation of an algorithmic model of UAV maintenance by 

means of ground platforms 

Definition of criteria and mathematical models for the 

processing of the agricultural field 

Algorithm for calculating the number of UAVs and robots 

End 

597



 

agricultural heterogeneous robotic complex and ensure the 

dispatching of drone maintenance by ground-based service 

platforms, the authors propose a scheme consisting of an 

agricultural area, drone, service platform, and ground center 

providing coordination. This scheme is a framework for 

coordinating and sharing a service platform located on the 

ground with a group of drones used in agriculture. 

The proposed technique requires a coordinating center 

based on the ground that ensures the interconnection of all 

involved heterogeneous robotic systems, plots their 

trajectories, and plans methods for solving tasks. The structure 

of the coordinating center assumes the presence of an 

automated shift operator. However, enhancing drones and 

their interactions increases their autonomy and eventually 

provides supervisory control and monitoring in abnormal 

situations. 

The functioning of ground-based service platforms includes 

the following characteristics: their operation modes, list of 

coordinates, speed, states of systems that provide drone power 

supply, filling of containers with working substances, and the 

number of drones serviced by the platform. Figure 2 shows the 

base components and their interrelationships as conceptually 

defined by the authors of this study. 

 

 
 

Figure 2. Conceptual representation of the complex 

correcting heterogeneous robotic system used in agriculture 

 

A formalized model for coordinating the interaction of each 

heterogeneous agricultural robotic system in the complex, as 

presented below, was developed to analyze the obtained 

results. Suppose that the work occurs in agricultural area S, 

which is described by the following characteristics. 

 

𝑆 =< 𝐻, 𝑂, 𝐺, 𝐶 > 

 

Here, 𝐻 = (ℎ1, ℎ2, … , ℎ𝑖 , … , ℎ𝐼) is the total of all the plots 

of cultivated land. 

𝑂 = (𝑜1, 𝑜2, … , 𝑜𝑗 , … , 𝑜𝐽)  are objects that provide 

processing. 

𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑙 , … , 𝑔𝐿)  are all facilities in which the 

robotic devices are based and stored. 

𝐶 = (𝑐1, 𝑐2, … , 𝑐𝑘 , … , 𝑐𝐾), 𝐶 = represents all crops grown. 

In addition, 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑚, … , 𝑜𝑀)  is a group of 

drones and 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛, … , 𝑝𝑁)  are service platforms 

operating at a given location.  

Let us apply such characteristics to describe the current state 

of the drone 𝑢𝑖: 

 

𝑢𝑖 =< 𝐶𝑖, 𝑉𝑖 , 𝐸𝑖 , 𝑇𝑖 , 𝑓𝑖 > 

 

Here, 𝐶𝑖 – a list of current drone coordinates, 𝑉𝑖 – current 

drone speeds, 𝐸𝑖  – a drone battery charge level, 𝑇𝑖  – the 

duration of drone stay in the air, and 𝑓𝑖  – selected robot 

operation modes. 

Let us use the following characteristics to describe the 

current state of non-land-based service platforms 𝑝𝑗: 

 

𝑝𝑗 =< 𝐶𝑗, 𝑉𝑗 , 𝐸𝑗 , 𝑁𝑗 , 𝑓𝑗 > 

 

Here, 𝐶𝑗 – a list of current drone coordinates, 𝑉𝑗 – current 

drone speeds, 𝐸𝑗 – a current energy status of the platforms, 𝑁𝑗 

– the number of drones serviced by the platform, and 𝑓𝑗 – a 

current mode of the platform functioning. 

Formally, the problem is reduced to a scheme that provides 

model algorithmic coordination and interaction of a group of 

drones U with a set of ground-based service platforms P. This 

scheme should provide service to working location S 

considering resource constraints L, including a given number 

of robots, limited water and mineral resources, the workload 

of each processing facility, a safe route for drone movement, 

and many other factors. 

 

 

4. RESULTS 

 

The structure of technical equipment of ground-based 

service platforms includes: 

1) A system controlling all components of the platform (a 

module responsible for interaction and navigation, a module 

providing power supply to the robots, a set of sensors, and a 

module coordinating all embedded technical systems. 

2) The drone service system includes a module for take-

off/landing, orientation in space, monitoring of the charge of 

the drone battery, and loading/unloading of a working 

substance (for example, pesticides and fertilizers). 

Currently, a particular functionality realized by mobile 

platforms has been developed, and its design features are 

expressed as follows. 

 

𝐹 = {𝑓1, 𝑓2, 𝑓3, . . . , 𝑓8} 

 

Here, 𝑓1 - movement of platforms: 1) movement from the 

starting point to the work site and back, 2) movement within 

the agricultural area to solve the current task; 𝑓2 - battery 

charge level realized by: 1) contact connection of the battery 

of the drone directly to the platform; 2) replacement of the 

battery of the drone; 3) wireless charging of the battery; 𝑓3 - 

order of contact interaction between platforms and a group of 

drones, including docking of each drone to a platform, drone 

movement within platforms, takeoff/landing; 𝑓4 - degree of 

robot loading with working substances from the corresponding 

platform containers; 𝑓5  - cargo receipt (harvested crops or 

stones from clearing a land plot) from the drone; 𝑓6  – 

interconnection of mobile platforms with a group (groups) of 

drones and the primary station; 𝑓7  - navigation of mobile 

platforms considering the specifics of the global spatial 

orientation system using heterogeneous sensors; 𝑓8  - the 
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coordination of steps taken during the planning and actions of 

mobile platforms interacting with a group of drones. 

The specificity of the created concept series of robotic 

platforms is that the platform has parking spaces for several 

drones simultaneously. Platform design includes the following 

components: 

1) A running gear that enables the platforms to move within 

an agricultural location; 

2) A multi-sensor system that detects local obstacles during 

the movement of the platforms; 

3) A power supply system that provides electricity to the 

platform and all drones; 

4) A navigation system that monitors the movement of the 

platforms from the starting point to a given point (global 

navigation), and a local system deployed at a given location 

before the start of the main work; 

5) A communication system providing interconnection of 

mobile platforms, drones, and the primary station; 

6) A body with parking spaces for drones and containers 

with working substance. 

To operate the developed algorithm, it was necessary to 

consider the structural model of the interaction of the robotic 

systems presented in Figure 3. 

Figure 4 shows an external view of the functional model of 

the platform, its functionality in performing an autonomous 

agricultural mission, and the interaction of robots during the 

processing of a rural object. Using the communication system, 

each member of the drone group reports the following 

characteristics to the ground station: maximum duration of 

operation, current charge of the battery(s), and coordinates of 

the current location. Simultaneously, the drone received a list 

of coordinates for the current positions of the ground stations 

and their readiness to serve the drone under consideration. 

When the battery of the drone is low or the built-in container 

with a working substance (for example, pesticides) needs 

refueling, the drone generates a landing request. After 

receiving permission, the robot lands on the parking space of 

the service platform, and the module that corrects the landing 

of the drone ensures the fulfilment of all the landing steps. 

The capabilities of the communication system ensure data 

exchange between the robot and platform, considering the 

current drone location, station location, current drone battery 

charge, and maintenance requirements. The platform, based on 

the ground, has a special compartment (for fertilizers or other 

payloads) and a docking point where the drone lands, if 

necessary. The docking points consist of a system that 

monitors the landing of the robot, a system that provides the 

spatial orientation and blocking of the drone, a device that 

recharges/replaces the battery of the drone, and a system that 

monitors the readiness of the robot to takeoff. 

A landing point with a size of approximately 75 cm provides 

service for drones with landing slots of up to half a metre. 

Blocking and fixation systems are located along the contours 

of service platforms, ensuring their timely opening through 

hydraulic lifting mechanisms. The system that monitors the 

robot landing checks each step of the landing action and 

confirms whether the drone has landed. Furthermore, it 

ensures the transmission of characteristics such as the 

coordinates of the current location of the drone to the module, 

correcting the platform operations. 

The drone fixation and blocking module receives a signal 

confirming the drone landing, which is necessary to correct the 

operation of the spatial orientation module and the module 

blocking the robot body on the landing site, and unblocking 

the drone after it receives confirmation for the drone takeoff. 

 

 
 

Figure 3. External view of the structural diagram, which ensures the interaction of each agricultural heterogeneous robotic 

system operating as part of the complex 
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Figure 4. External view of the standard model of mobile platform functioning 

 

The system responsible for the readiness of the robot for 

takeoff receives information about the current battery charge 

and the main goals of the upcoming mission and sends the 

corrective information to other modules of the platform. 

The module that monitors the battery of the drone 

charging/replacement receives a corresponding signal, 

confirming that the drone group member has landed, after 

which battery recharging/replacement begins, followed by 

data transmission on the remaining battery charge. 

The module that monitors the landing of the robot generates 

a signal confirming the landing of the drone if it has completed 

all the landing steps on the service site. These data are 

transmitted to the module that provides the spatial orientation, 

and to the blocking module that fixes the drone in the relevant 

position at the appropriate location. The module that monitors 

the readiness of the drone for takeoff checks the battery charge, 

and then sends a corresponding signal to the battery 

charging/replacing module. It happens until the module 

monitoring the readiness of the drone for takeoff receives 

confirmation from the module of the readiness of the drone for 

takeoff that the battery is fully or partially charged. The 

module controlling the readiness of the drone for takeoff 

received a signal regarding the main tasks of the upcoming 

mission. After confirming that the drone is ready for takeoff, 

the module that blocks the body of the drone receives the 

corresponding signal, after which it unblocks. When the drone 

takes off, the module monitoring the landing generates a signal 

confirming a successful takeoff and a signal that the site has a 

free place for the next drone to land. 

The specificity of the spatial orientation of drones 

connected to the power-supply module of service platforms is 

of particular interest. The robot battery was held at a certain 

position. The drone requires fixation immediately after 

landing to interact with the battery. This study assumes that 

the service platform is in an open area; therefore, weather 

conditions make accurate landing difficult. Therefore, we 

focused on the spatial robot orientation after landing with 

insignificant errors. The modules correcting the flight of the 

drone may allow tolerable errors explained by weather 

conditions and small inaccuracies of the previously plotted 

route. In this case, the task complexity is due to moving the 

robot from the erroneously calculated route point to the 

landing position, that is, to the battery replacement area. 

The module that holds the battery pack in the drone body 

has relatively low weight. In addition, it should guarantee 

reliable battery retention during missions of varying 

complexities by withstanding shocks, keeping the electrical 

contacts of the drone battery closed, and providing an easy 

option for battery installation and removal. The module design 

includes a body equipped with elastic-angled latches to lock 

the battery securely. At the moment of actuation, each latch 

bends, allowing the battery to move freely owing to the series 

of notches on the battery housing, making it possible for the 

latches to lock the battery securely. Now, let us consider the 

maintenance of drones located in platform parking spaces. 

Considering the almost continuous improvement in the 

service station design that provides contactless charging or 

replacement of the robot battery, we modeled the process of 

interaction between a group of drones and robotic service 

platforms based on the ground. The drone goes to a specified 

platform site when the battery is low. Next, the robot was 

serviced based on the current battery charge. Upon receiving a 

signal from the drone regarding the need to charge its battery, 

the service platform sends drone data, confirming the 

availability of a parking space for service. Upon receipt of the 

corresponding signal, the drone lands with acceptable errors 

were automatically eliminated by the module responsible for 

spatial orientation. 

After completing all landing steps, the module orients the 

drone in a predetermined position and securely blocks the 

drone. Next, the battery is automatically removed from the 

drone, charged, and then the fully charged battery is fixed in 

UAV control system 

Communication system 

Payload 

compartment 

UAV landing 

control system 

UAV locking 

mechanism 

UAV battery 

recharging 

mechanism 

UAV readiness 

control system for 

take-off 

Position, capacity and 

mission of the UAV 
Controlling 

Controlling UAV landing site 

UAV position and 

control 

UAV position and 

control 

Battery capacity, 

take-off 

parameters and 

controls 

Battery capacity 

and management 

600



 

the body of the drone. Once this process was complete, the 

robot was undocked and removed. 

When the drone 𝑢𝑗interacts with the corresponding modules 

of platform 𝑝𝑛, service 𝑄(𝑢𝑗) in agricultural space S includes 

charging the battery of the drone 𝑒𝑢𝑚  or filling the containers 

with the working substance 𝑟𝑢𝑚. 

 

𝑄(𝑢𝑚) = 𝑓(𝑒𝑢𝑚 , 𝑟𝑢𝑚 , 𝑝𝑗 , 𝑆) 

 

Let us investigate robot services from the perspective of a 

mass maintenance system (MMS) [37, 38]. All ground-based 

service platforms represent a multichannel complex with the 

number of channels equal to the number of parking spaces. Let 

us consider a list of possible variations of using traditional 

MMS [39]. Figure 5 shows the algorithmic model of the 

service platform functioning, which provides power to drone 

batteries while implementing target agricultural tasks. In the 

first process, the current charge of the drone battery is 

monitored. 

The system functionality, with the option of waiting by the 

drone for free landing space, implies that the robot must land 

to wait to complete all activities to service other drones by the 

platform under consideration. In our situation, with several 

stations, the MMS variant under consideration is inefficient 

because these platforms may service the robot. 

Failure of the system functionality (if there are no available 

landing places for servicing the robot) implies the selection of 

other platforms with free sites. Because service platforms, in 

addition to servicing drones, also transport them, the number 

of robots involved cannot exceed the total number of parking 

spaces in the list of stations. Considering the MMS 

categorization, it is necessary to consider the limited number 

of robots allowed for service by closed systems. Therefore, for 

the timely service of any drone during station identification, it 

is essential to consider the distance from the station, degree of 

congestion, and limited resource base of the functioning 

platforms. Additionally, each service platform is 

homogeneous; therefore, an MMS with parallel channels 

should be used. 

During drone battery maintenance, the charged batteries 

move to the containers of the drones and the old batteries move 

to the appropriate cells in the service station. When applying 

fertilizer, drones can refill their containers with the working 

substances available on the platform. When harvesting crops, 

drones unload their containers into larger containers. 

The module for charging the battery of the drone removes it 

from the body of the drone after the orientation of the drone in 

space and landing. Next, the battery moves to the battery-

replacing space and the fully charged battery sits in the drone 

body with the following preparation and subsequent takeoff 

activities. 
 

 
 

Figure 5. Schematic representation of the technique for maintenance of drones by ground-based service platforms
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Figure 6 displays the basic robot operating options and 

several possible transitions during agricultural missions. The 

simulation uses an MMS with heterogeneous nodes; however, 

we assume that their docking mechanisms are multipurpose 

systems and that the landing places can be busy with robots to 

change a battery or to service a container with the working 

substance. Robot maintenance by service platforms includes 

sequential mutual exchange of physical and energy resources, 

as shown in Figure 7. After all the service activities, the robot 

connects to one of the resource containers to fill the containers 

of the drones with the working substance. This mode provides 

significant time and energy savings for moving the robot from 

a land plot with the following takeoff and landing operations. 

Therefore, it is an approximately closed multichannel and 

multiphase MMS with heterogeneous nodes. The study of the 

regularities found in the distribution of time intervals 

separating the requests arriving at the electronic complex and 

the regularities determining the distribution of the processing 

of each request have shown that the created concept shows the 

presence of a Poisson incoming flow and a deterministic 

distribution of the duration of service activities. Using the 

notation proposed by Kendall, MMS patterns can be expressed 

as M/D/n/n. 

In solving specific agricultural tasks, in addition to all the 

activities related to battery maintenance, drones must refill a 

working substance, such as pesticides, or transfer harvested 

crops. For this purpose, the platform has an inbuilt container 

that sends a certain mass of working substance to the robot 

during maintenance. A ground service platform was selected 

if the drone required service. For this purpose, the availability 

was analyzed, and the resource base of the platforms was 

evaluated (to charge the battery or to refill the container with 

the working substance). A platform without a sufficient 

working substance (charge) can only land a drone that can then 

return to the primary station. 

After battery charging and replacement, loading, or 

unloading from the respective platforms, the robot signals that 

it will be ready for the next mission. If resources on the 

respective platforms are absent, the drones land on the nearest 

platforms and switch to transport mode. If the drone sprays all 

working substances or achieves all targets, it takes the 

transport position, and the service platforms move to the base 

centers. 

Figure 8 shows an external view of the algorithmic model 

that corrects the operation of a drone in an agricultural field. If 

the battery is low and the container is empty or full, the drone 

searches for the nearest platform or checks for free parking 

space. When there are free parking spaces, the drone assesses 

the energy resources of the site (if the battery needs 

charging/replacement) or the working substance resources of 

the site (if the drone needs loading/unloading of working 

substances). 

 

 
 

Figure 6. List of probable states of drone operation 

 

 
 

Figure 7. Drone maintenance in the energy and working substance exchange process 
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Figure 8. External view of the algorithmic model, which corrects the operation of the drone to maintain it by service platforms 
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lower or corresponds to the minimum charge 𝑒𝑡
𝑢𝑚 ≤

𝑒𝑚𝑖𝑛
𝑢 required to return to the station, or if the working 

substance containers 𝑟𝑡
𝑢𝑚 = 0 are empty, the drone moves to 

the platform for servicing. 

To correctly estimate the required number of robots that can 

cultivate a particular agricultural plot, we propose using the 

following characteristics. 

1) Total cultivation time 𝑡𝑠𝑢𝑚; 

2) Total energy consumed 𝑒𝑠𝑢𝑚; 

3) The total cost of the drones used 𝑐𝑠𝑢𝑚. 

In calculating the total cultivation time 𝑡𝑠𝑢𝑚 , we assume 

that some service platforms and nearby drones are 

simultaneously traveling to the farmland. Therefore, the 

majority of the time cost is spent on moving a notional 

platform to and from the land plot, and it is essential to 

consider the duration 𝑡𝑜of cultivation of a particular plot and 

the maintenance time 𝑡𝑢of the robots: 

 

𝑡𝑠𝑢𝑚 = 2𝑡𝐶𝑃 + 𝑡𝑜 + 𝑡𝑢 

 

Here, 𝑡𝑜 =
𝑠𝑜

𝛥𝑠𝑛𝑚
 is the average period of operation of all the 

involved drones at a particular agricultural location, 𝑛 ∈
(0, 𝑁] is the number of drones, and 𝑚 ∈ (0, 𝑀] is the number 

of stations. Calculating the time spent on robot maintenance 

requires setting the time interval 𝑡𝑜, during which the drone 

receives energy and physical resources: 

 

𝑡𝑢 =
𝑡𝑜

𝑟𝑚𝑎𝑥
𝑈 𝑃𝑆

𝑝

𝑢 𝑡𝑜

𝑒𝑚𝑎𝑥
𝑈 𝑃𝑆

𝑝

𝑢
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In the context of replenishing the resources of UAV, it is 

imperative to consider the rate of charging and the rate of 

filling with physical resources. In this study, the maximum 

values of these parameters are denoted as 𝑒𝑚𝑎𝑥
𝑢  and 𝑟𝑚𝑎𝑥

𝑢 , 

respectively, and the total amount of time spent on UAV 

maintenance is denoted as 𝑡𝑚𝑎𝑥
𝑢 . These parameters directly 

affect the efficiency of agricultural field-processing systems. 

When calculating the total energy resources required to 

process a particular area O, it is essential to consider the 

movement of the stations from and back to the central bases, 

and the time interval necessary to maintain the batteries of 

each robot during its operation: 

 

𝑒𝑠𝑢𝑚 = 𝑛2𝑒
𝑚𝑖𝑛

𝑃
𝑠𝑜

𝛥𝑠𝑛𝑚𝑒𝑚𝑎𝑥
𝑈

𝑚𝑖𝑛

𝑃
𝑠𝑜
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The total cost of the machinery involved must consider the 

cost of maintaining the platform and each serviced robot: 

 

𝑐𝑠𝑢𝑚 = 𝑛𝑐𝑃 + 𝑚𝑐𝑈 

 

An improvement in the aforementioned relationships was 

made to minimize the impact of negative factors. 

𝑡𝑈
𝑟 = 𝑟𝑚𝑎𝑥

𝑈
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𝛥𝑟 is the time during which the physical resource of 

the drone is minimal. 
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) is the time during which the energy resource 

of the drone is minimal. 

Considering the consumption of the total resource base, the 

time interval for cultivating the field and the energy consumed 

are calculated as follows: 
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When 𝑡𝑈
𝑟 < 𝑡𝑈

𝑒 , the volume of physical resources decreases 

faster than the energy. When 𝑡𝑈
𝑟 = 𝑡𝑈

𝑒 , the consumption of the 

physical and energy resources is parallel to 𝑟𝑚𝑎𝑥

𝑈
𝛥𝑡

𝛥𝑟
|(𝑒𝑚𝑎𝑥

𝑈𝑚𝑖𝑛
𝑈

)
𝛥𝑡

𝛥𝑒
|

. 

Therefore, it is possible to optimize the indicator describing 

the amount of energy resources required for one takeoff, 

thereby minimizing the cumulative number of takeoffs 

required to solve the tasks in a particular mission. 

The multi-criteria evaluation required to make decisions 

regarding the necessary number of robots is a linear 

combination of the previously discussed values: 

 

𝜀(𝑆𝑜, 𝑛, 𝑚) = 𝑡𝑠𝑢𝑚𝑤𝑡 + 𝑒𝑠𝑢𝑚𝑤𝑒 + 𝑐𝑠𝑢𝑚𝑤𝑐 

 

Here, 𝑤𝑡 , 𝑤𝑒 , 𝑤𝑐  are a list of weighting indicators that 

describe the prioritization of time, energy, and economics. The 

weights are responsible for prioritizing a particular parameter 

in the calculation and can be varied according to the 

requirements based on the output parameters obtained in the 

calculation. This adaptable system facilitates the attainment of 

the requisite values when priorities are defined. By 

categorizing the values required for the multi-criteria 

evaluation, values describing the number of stations and 

drones for a specific land 𝑒𝑜𝑝𝑡 were selected: 

 

𝐴𝑟𝑔 𝑚𝑖𝑛
𝑛∈𝑁,𝑚∈𝑀

(𝜀(𝑆𝑜, 𝑛, 𝑚)) =< 𝑛∗, 𝑚∗ > 

 

The weight of each component is selected according to the 

expressions: 

𝑤𝑡 = 3, 𝑤𝑒 = 1, 𝑤𝑐 = 1  – if the priority is to reduce the 

processing time; 

𝑤𝑡 = 1, 𝑤𝑒 = 2, 𝑤𝑐 = 3  – if the priority is to reduce the 

processing costs.  

Given the small number of characteristics and low 

complexity of the calculations, the proposed technique relies 

on a complete enumeration of variations in the number of 

drones and service stations involved in agricultural operations. 
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Figure 9. Technique to calculate and select the optimal 

number of processing drones 

 

The technique shown in Figure 9 is a schematic 

representation of modeling and the subsequent determination 

of the number of robots. An evaluation of the advantages of 

the proposed algorithm in calculating the required number of 

drones shows that it is essential to consider the effectiveness 

of the proposed criteria. Because of the multi-criteria 

evaluation, it was possible to determine the number of robots 

necessary to cultivate a specific plot of land, considering the 

combination of values representing the weights, that is, 

𝑤𝑡 , 𝑤𝑒 , 𝑤𝑐  = (one, one, one). Figure 10 displays a function 

describing the multi-criteria evaluation of the required number 

of drones, given equal weights, and an optimal platform/drone 

ratio of 1/4. Accordingly, when considering weights, the 

essential criterion should have the highest value. The obtained 

results were compared with the modeling results to assess the 

accuracy of the proposed technique for calculating the optimal 

drone number. Figure 11 shows the results of the comparison. 

 

 
 

Figure 10. External view of the multi-criteria evaluation of 

the required number of drones 

 

 
 

Figure 11. Comparison of calculated values with the list of 

simulation parameters 
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containers of drones with working substances should occur in 

parallel. 
 

 

5. DISCUSSION 
 

Numerous drones have been successfully used in the 

agricultural sector to monitor land, generate maps, analyze 

crop yields, and plan the application of mineral substances and 

pesticides. Today, we observe the emergence of new 

prototypes that physically interact with many surrounding 

objects, which naturally suggest the consumption of large 

amounts of energy. Owing to the interaction of drones 

functioning on the ground and in the air, it was possible to 

significantly increase the duration of the autonomous 

operation of these categories when performing missions of 

varying complexity. 

This study analyzed investigations related to the behavior of 

UAVs in agriculture, including recharging UAVs using 

various methods [15, 16]. The current investigation closes 

definite gaps in the literature by presenting a method for 

operating UAVs with charging platforms, by algorithmizing 

the charging process while working with a group of drones. 

A simulation program was developed for utilization across 

diverse agricultural terrains. During the experimental process, 

data pertaining to diverse field sizes were analyzed, and the 

results indicated no discrepancy in performance [40]. 

It is imperative to acknowledge that inclement weather 

conditions present considerable challenges for the autonomous 

navigation of agricultural Unmanned Aerial Vehicles. Strong 

winds have been shown to have the potential to destabilize 

UAVs, resulting in deviations from planned flight paths and 

an elevated risk of collision. Rainfall introduces moisture, 

which can interfere with onboard electronics and sensors, 

causing malfunctions or failures. Fog and low-visibility 

conditions have been shown to impair the ability of UAVs to 

detect and avoid obstacles, thereby compromising their 

operational safety. Furthermore, certain weather phenomena, 

such as thunderstorms, can cause electromagnetic interference, 

disrupting the communication between the UAV and its 

control systems, leading to potential loss of control. To address 

the aforementioned issues, it is imperative that UAV launches 

consider prevailing weather conditions during both the takeoff 

and operational phases [41]. 

The prevailing trend in the domains of communication and 

data storage is towards the utilization of networks and their 

integration with cloud platforms. Nevertheless, the challenge 

of achieving real-time data transmission and processing 

without delay persists. Ensuring the security of the 

communication process is of utmost importance [42]. 

It has been demonstrated that, given that the system under 

scrutiny can accommodate expansion without compromising 

efficiency, an augmentation of the working space, that is, an 

increase in field size, is not expected to engender a decline in 

efficiency. In conclusion, the proposed method is deemed a 

suitable tool for scaling up and application in large-scale 

agricultural projects. It is predicted to provide resource 

optimization and improve the efficiency of agricultural 

operations. The presented algorithms have the capacity for 

straightforward adaptation and scaling to accommodate a 

variety of decision-making problems, thus engendering 

flexibility and wide applicability. Multi-criteria decision-

making methods are effective tools for solving complex 

decision-making problems. A number of key advantages, 

including a structured approach, versatility of application, and 

ability to effectively handle both qualitative and quantitative 

information [43], characterize the utilization of multi-criteria 

decision-making methodologies. 

Recent scientific investigations in the field of UAV 

optimization for agricultural applications have highlighted the 

efficacy of evolutionary algorithms, specifically Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO), in 

addressing complex path planning and resource allocation 

challenges. Research indicates that GAs, which emulate 

natural selection mechanisms such as selection, crossover, and 

mutation, offer robust global search capabilities while 

maintaining diversity in candidate solutions to avoid local 

optima in non-linear and multimodal agricultural 

environments. Conversely, PSO exhibits rapid and efficient 

convergence by dynamically updating candidate positions 

based on individual experience and social learning, rendering 

it particularly effective for continuous optimization problems, 

such as UAV trajectory planning [44]. However, when UAVs 

operate in precision agriculture, they must balance multiple 

conflicting objectives including fuel efficiency, area coverage, 

obstacle avoidance, and real-time data acquisition. In such 

scenarios, multi-criteria evaluation (MCE) techniques have 

been shown to excel, as they integrate diverse performance 

metrics into a unified framework for holistic route assessment, 

enabling decision-makers to prioritize critical factors via 

weighted evaluation schemes. 

Many studies have addressed the problem of UAV groups 

operating on agricultural sites. Several methods have been 

proposed to optimize the performance of UAVs when 

processing rural sites. Such methods often describe the 

calculation of the optimal UAV movement strategy and its 

operation with different heterogeneous ground systems, 

considering the problem of optimal loading of UAVs with 

various types of resources. The purpose is to optimize the 

process [45]. The proposed technique makes it possible to 

determine the optimal parameters for the number of vehicles 

for cultivation of an agricultural field and to select the priority 

direction for optimization. 

 

 

6. CONCLUSION 

 

6.1 Scientific novelty 

 

The novelty of the proposed technique for analyzing the 

required number of drones for farmland cultivation lies in the 

multi-criteria evaluation using a linear combination of 

parameters, such as the total duration of cultivation, electricity 

consumption, and the cost of applied drones. The proposed 

technique makes it possible to model and optimize the number 

of drones used in autonomous mode. 

The creation of models and techniques capable of adjusting 

the work of agricultural multifunctional mechanisms in 

interaction with robotic platforms has made it possible to 

optimize the performance of specific tasks, namely, to replace 

the battery in a minimum time and move various cargoes. The 

optimization of the time spent on the maintenance of service 

platforms for drones made it possible to reduce the duration of 

recharging their batteries and increase the duration of 

autonomous operation. 

 

6.2 Theoretical contributions 

 

The developed multi-criteria model of the interaction 
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between heterogeneous systems and UAVs makes it possible 

to expand our understanding of the interaction between drone 

architectures and heterogeneous devices. The proposed 

algorithm helps understand the possibilities of using such 

systems in agriculture and presents possible methods for 

farmland processing. 

 

6.3 Practical implications 

 

The developed multi-criteria model of the interaction 

between heterogeneous systems and UAVs makes it possible 

to expand the understanding of the interaction between drone 

architectures and heterogeneous devices. The proposed 

algorithm provides a better understanding of the possibilities 

of using such systems in agriculture, and presents possible 

methods for farmland processing. 

 

6.4 Research limitations 

 

However, this technique also has several limitations. An 

analysis of these methods implies the application of multirotor 

UAVs, as they are the most common choice for the task 

considered in this study. However, this technique cannot work 

with the same efficiency as that of airplane-type UAVs. The 

developed methodology is intended for the cultivation of 

agricultural land in open spaces and has not yet been subjected 

to real-world testing under conditions such as wind, fog, or 

inclement weather. To ensure the effectiveness of the 

methodology, it is necessary to conduct trials in fields with 

different sizes. It is important to take into account the fact that 

the geological structure of the field can significantly affect the 

optimality of the routes and the overall treatment time. 

Conducting such trials will facilitate the adaptation of the 

methodology to a range of conditions, thereby enhancing its 

practical applicability in agricultural contexts but is intended 

to treat agricultural land in an open space. 

 

6.5 Future research directions 

 

In further research on this topic, the proposed technique 

should be verified and supplemented by calculations for all 

types of modern UAVs used in agriculture. It is also necessary 

to improve the proposed technique by considering 

environmental parameters, thus creating an even more 

versatile algorithm for the optimal operation of agricultural 

UAVs and their interactions with heterogeneous devices. In 

subsequent studies, it is envisaged that the proposed 

methodology will be subjected to empirical testing in real-

world scenarios, with conditions that incorporate a variety of 

parameters such as weather, field volume and its 

characteristics, objects with which collisions are possible, and 

so forth. 
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