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The goal of this study was to create a machine-learning model that could predict the growth 

patterns of hydroponically grown lettuce crops in the Nutrient Film Technique (NFT) 

system. To determine the best model for reliably and efficiently forecasting the growth 

patterns of lettuce crops, a comparison of four machine learning algorithm models was 

carried out. Four techniques were used to model machine learning: Support Vector 

Machines (SVM), K-Nearest Neighbors (K-NN), Random Forests (RF), and Gradient 

Boosting Classifiers (GB). The evaluation findings showed that the SVM algorithm had 

the lowest accuracy value of 80.5%, while the GB method was the most effective, with the 

greatest accuracy value of 93.4%. The K-NN algorithm's accuracy is 84.8%, whereas the 

RF method's is 90.4%. To increase the algorithm model's correctness, hyperparameter 

optimization was done. In addition to cross-validation, root mean square error (RMSE) 

measurements were conducted to determine the closest match between the observed data 

value and the model forecast. 
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1. INTRODUCTION

Hydroponics is becoming recognized as a feasible 

technique for fulfilling rising global food demand while 

reducing soil scarcity by 2050 [1]. Contemporary agricultural 

methods allow for the development of plants without soil by 

using a nutrient solution, leading in an increase in hydroponics 

practices [2]. However, certain factors influence plant growth 

in a hydroponic system. To achieve optimal growth in a 

hydroponic arrangement, these hydroponic variables must be 

recognized and handled in accordance with each plant's 

individual patterns.  

Machine learning has been utilized in agriculture for a 

considerable duration. It improves the effectiveness and 

efficiency of several agricultural practices. It is employed to 

fulfill several agricultural needs, including data analysis, 

weather forecasting, plant selection suggestions, fertilizer 

assessment, disease identification in plants, and further uses 

[3]. Developing a high-performance prediction model through 

machine learning involves numerous challenges, such as 

choosing appropriate algorithms and ensuring that both the 

algorithms and the underlying platforms can handle large data 

quantities [4]. 

Several studies have applied machine learning to 

hydroponic agriculture, focusing on different predictive 

models and evaluation techniques. For example, Iniyan et al. 

[4] employed regression-based models to forecast crop yields,

illustrating the efficacy of feature-engineering-based long

short term memory (LSTM) with an accuracy of 86.3% [4].

Sulaiman et al. [1] examined predictions of phosphorus 

content utilizing Random Forests (RF), Support Vector Machines 

(SVM), and K-Nearest Neighbors (K-NN) classifiers, resulting 

in notable enhancements in precision [1]. However, most 

existing studies either focus on single machine learning 

models or apply limited feature selection techniques. Unlike 

these approaches, this study compares different classification 

models Gradient Boosting (GB), RF, SVM, and K-NN while 

also using hyperparameter adjustment to increase prediction 

accuracy. Furthermore, the dataset employed in this work is 

unusual in that it includes primary data from four harvest 

periods, resulting in high-resolution real-world application. 

These variables distinguish this study from earlier ones and 

add to the growing body of knowledge in the use of machine 

learning for hydroponic systems. 

This study predicted the growth patterns of lettuce crops 

using machine learning. In order to assess the growth pattern, 

a classification strategy was utilized, which consisted of four 

different machine learning algorithms: GB, RF, K-NN and 

SVM.  

The goal is to construct a model that can predict the growth 

of lettuce with high precision. Following the model's 

evaluation, a straightforward prediction test was run to 

determine how well the prediction model works in predicting 

the vegetable's growth pattern depending on the value of the 

entered variable. This model will assist in identifying the 

growth patterns of lettuce crops in hydroponic environments. 

This study evaluated the efficacy of four distinct machine 

learning algorithms in developing a robust predictive model.  
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The data included in the machine learning modelling 

comprises hydroponic plant growth variable data gathered 

from a site located at coordinates 4°00'32.9″ S, 103°14'48.1″ 

E, employing the NFT technology. There are three water 

storage reservoirs with varying capacities and nutrient 

profiles.  

This research is novel due to its comparative evaluation of 

different machine learning models and its specific application 

to hydroponic NFT systems, utilizing a primary dataset 

gathered from four harvest cycles across three distinct growth 

patterns. Daily measurements were conducted, averaging eight 

data points per day, using calibrated instruments to ensure high 

precision. This high-resolution dataset, derived from real-

world hydroponic systems, represents a unique and valuable 

contribution to the field, establishing a solid and pragmatic 

basis for the building and assessment of machine learning 

models intended for thorough plant growth monitoring.  

Iniyan et al. [4] employed multiple regression models for 

crop yield estimation and found that the feature-engineering-

based LSTM model exhibited the greatest efficiency, 

achieving an accuracy of 86.3% and yielding the lowest mean 

absolute error and root mean square error relative to other 

methods.  

Sulaiman et al. [1] investigated the prediction of phosphorus 

concentrations in hydroponic solutions through the application 

of both individual and hybrid machine learning models. The 

prediction technique utilized three classification algorithms: 

SVM, RF, and K-NN. 

Rahmadi et al. [3] conducted a study on crop prediction by 

amalgamating machine learning with the CRISP-DM 

approach, employing five distinct machine learning 

algorithms: Xtreme Gradient Boost (XGBoost), Decision 

Tree, Naïve Bayes, K-NN, and RF.  

A novel methodology has been introduced to predict key 

physiological attributes of leaf lettuce (Lactuca sativa L.), 

including leaf count, leaf contour area, and dry mass. The 

investigation of the hydroponic system was conducted 

utilizing Artificial Intelligence (AI) approaches, 

encompassing fuzzy logic, neural networks, and a hybrid 

neural-fuzzy model [5]. 

Debroy and Seban [6] formulated two prediction models for 

forecasting tomato biomass in an aquaponics system utilizing 

an artificial neural network (ANN) and an adaptive neuro-

fuzzy inference system (ANFIS), which combines ANN with 

fuzzy logic. 

Abdullah et al. [7] introduced a prediction framework for 

examining the purchase behavior of online shoppers, 

employing several classification algorithms such as Decision 

Tree (DT), Multilayer Perceptron (MLP), XGBoost, SVM, 

and RF. The experimental findings indicate that the XGBoost 

classifier, which incorporates feature selection and 

oversampling techniques, demonstrated a significantly larger 

area under the curve. 

Cedric et al. [8] developed a machine learning-based 

predictive method to estimate the national yield of rice, maize, 

cassava, seed cotton, yams, and bananas in West Africa 

throughout the year. Consolidated meteorological, climatic, 

agricultural, and chemical databases to assist policymakers 

and farmers in predicting annual crop yields at the national 

level. They developed a prediction system employing decision 

trees, multivariate logistic regression, and K-NN algorithms 

[8]. 

Another study used machine learning to examine farm-level 

wheat yield fluctuations using high-resolution satellite 

imaging, environmental, and topographical data. Using the 

scikit-learn machine learning framework, the forecasting 

procedure made use of regression models such as linear 

regression (LR), decision tree (DT), and RF. The training and 

validation of the models were conducted using over 10,000 

data points sourced from 45 farms in the Fergana Valley, 

Central Asia [9]. 

Akhter and Sofi [10] examined the transformative role of 

emerging technologies such as Internet of Things (IoT), 

wireless sensor networks, data analytics, and machine learning 

in the context of smart agriculture. The study proposed an IoT-

enabled predictive model for apple disease detection in the 

orchards of Kashmir using machine learning and conducted 

field surveys to assess technological awareness among 

farmers. The integration of these tools is shown to improve 

crop yield, monitor environmental conditions in real-time, and 

optimize decision-making in precision agriculture [10]. 

While high-resolution optical sensors have demonstrated 

promise in crop yield prediction, their broader application has 

been constrained by several challenges, including cloud 

interference, difficulties in identifying crop phenology, high 

computational demands, and the complexity of statistical 

modeling. As a result, the accuracy of yield predictions 

increased with the integration of these restored values into the 

regression analysis. Generalized Linear Regression (GLM) 

and RF are two baseline models that have shown better 

predictive ability than other ensemble and base models, as 

pointed out by Tesfaye et al. [11]. 

Four machine learning models XGB, RF, SVR, and Deep 

Neural Networks (DNN) were used in a 2022 study by 

Mokhtar et al. to forecast lettuce yield. The study examined 

three input variable combinations: dry weight, stem length, 

leaf count, water consumption, and stem diameter. Among the 

models, XGB, employing all input variables, attained the 

highest predictive accuracy, succeeded by SVR and RF. All 

models demonstrated robust predictive efficacy, with scatter 

index (SI) values consistently below 0.1 [12]. 

In 2023, Godwin Idoje et al. compared machine learning 

methods for four hydroponic system datasets: floating (FL), 

aggregate (AG), NFT, and aeroponic (AER). They utilized 

XGBoost, Federated Split Learning, Deep Neural Networks, 

and Linear Regression methodologies to forecast the width of 

garlic bulbs based on several factors, including days post-

transplant, temperature, and nutrient composition. The results 

showed variations in algorithm performance with different R-

squared and mean absolute errors values. The difference with 

this research lies in the focus on hydroponic systems and plant 

types. This research focuses on predicting the growth patterns 

of celandine crops using the NFT system and different 

algorithms for data modeling and analysis [13]. 

 

 

2. MATERIALS AND METHODS 

 

In this section, a detailed assessment of the essential 

literature on key concepts and theories connected to 

hydroponics, machine learning, techniques, and various 

machine learning algorithms is presented. The K-NN 

algorithm, the SVM algorithm, the RF algorithm, and the Boost 

Gradient Classifier algorithm are presented and discussed. 

 

2.1 Machine learning 

 

The field of computer science known as machine learning 
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(ML) is a subfield that grants computers the ability to learn 

from data without the need for explicit programming. As a 

fundamental approach to Artificial Intelligence (AI), it 

enhances predictive accuracy by leveraging various features 

[11]. ML identifies patterns and correlations within data and 

extracts meaningful insights from datasets by training models 

based on prior experience [11]. 

When applied to the agricultural industry, machine learning 

has the potential to dramatically improve efficiency and 

simplify processes. This is accomplished by moving through 

three crucial stages: data collecting, model creation, and 

generalization procedures. Datasets that are typically 

complicated are typically processed and analyzed by machine 

learning algorithms [14]. Machine learning's main goal is to 

create computational algorithms that can use analytical or 

probabilistic models to extract predictive information from 

both static and dynamic data sources. These algorithms' 

performance is continuously improved through training and 

feedback. 

 

2.2 Algorithm 

 

The algorithms that are used in machine learning make 

predictions by studying and interpreting a variety of datasets, 

which may include test data or data that has not been 

investigated before. In the event that the accuracy that was 

achieved does not live up to the expectations, the algorithm is 

then subjected to larger datasets during which parameter 

modification can be utilized to improve its accuracy [3]. The 

process is repeated until the amount of accuracy that is 

required is achieved, at which point the algorithm is 

considered to have attained its maximum potential [3]. Based 

on how they learn, machine learning algorithms are generally 

separated into two major categories. The first category is 

supervised learning, which builds predictive models by 

classifying or predicting new, unseen data using labeled data. 

The second group is unsupervised learning, which finds 

patterns or hidden structures in unlabeled data, producing 

descriptive models [15]. Unlike traditional IT methods, 

machine learning techniques rely on a learning process that 

enables them to extract specific behaviours from data, making 

them highly effective in addressing various problems. Their 

flexibility and capability to enhance performance through data 

input make them useful tools in various fields [16]. 

 

2.2.1 Key Nearest Neighbors (K-NN) 

The K-NN algorithm represents a straightforward and 

efficient approach utilized in instance-based learning, 

frequently employed in classification and regression tasks. It 

works by finding the closest data points within a specific 

feature space. By utilizing a specific distance measurement 

and preserving the training data, the K-NN approach finds 

these nearest neighbors [15]. In classification tasks, the K-NN 

algorithm determines the label of a new instance by analyzing 

the nearest k data points in the dataset. In regression, the 

estimation of a new instance's value is achieved through the 

calculation of a weighted ratio based on the values of its 

nearest neighbors [7]. 

The K-NN process involves a series of essential steps: (1) 

Distance Calculation, (2) Neighbor Selection, (3) Prediction 

Determination and (4) Assessment and Parameter Adjustment 

[17]. K-NN is well-known for being simple and easy to 

interpret, which makes it useful in many fields. However, its 

computational requirements can rise as the dataset becomes 

larger. K-NN still works well, though, in applications like 

pattern recognition, anomaly detection, and recommendation 

systems, providing a straightforward and adaptable answer to 

machine learning problems [18]. 

 

2.2.2 Support Vector Machine (SVM) 

For issues involving regression and classification, a SVM is 

an effective learning algorithm. Its objective is to optimize a 

hyperplane, which serves as a boundary that separates data 

points into two categories [17]. SVM uses a hyperplane in a 

multidimensional space to categorize the data vectors. The 

maximal margin classifier, a fundamental variant of SVM, 

identifies the hyperplane that optimizes the margin when 

training data is linearly separable using binary classification 

[15]. 

To obtain an ideal hyperplane, the SVM determines the 

classification limits by optimizing support vectors, 

particularly near across classes [19]. Hyperplanes are chosen 

to maximize the distance to the nearest data points, referred to 

as support vectors. A fundamental term in SVM is the margin, 

defined as the minimum distance between the hyperplane and 

the nearest data points of each class. The SVM seeks to 

maximize this margin, as bigger margins signify improved 

generalization of previously unobserved data [20]. 

The SVM is a widely used mathematical formulation that 

aims to find a hyperplane with parameters w (weight vector) 

and b (bias) that minimizes the length of the weight vector. 

This optimization problem is the quadratic programming 

problem (QP). The goal is to ensure that the constraint 

𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 is satisfied for each data point (𝑥𝑖 , 𝑦𝑖) in 

the training set [20]. 

 

2.2.3 Random Forest (RF) 

RF is a prevalent and adaptable method in machine learning, 

recognized for its efficacy in classification and regression 

tasks. A decision tree partitions the data into smaller groupings 

according to the most significant features for predicting the 

target [21]. 

RF can easily handle classification and regression tasks on 

complex and large datasets. It deals with noise in the data and 

lost data and works well without requiring too many 

assumptions about the data distribution [20]. To construct a Rf 

model, multiple random decision trees are generated using a 

subset of the training data. Each tree is constructed utilizing a 

random selection of training features and data, operating 

independently from one another [21]. 

RF successfully address overfitting by merging predictions 

from numerous trees by majority voting or averaging. They 

can also provide feature importance scores, making them 

useful for feature selection, regression, and classification tasks 

[15]. The versatility, scalability, and outstanding performance 

of Rf render them a favored option for generating accurate and 

interpretable outcomes across various machine learning 

challenges [22]. 

 

2.2.4 Gradient Boost Classifier (GB) 

The GB is an efficient machine learning method for solving 

classification and regression issues. Gradient boosting is a 

state of the art prediction technique that sequentially produces 

a model in the form of linear combinations of simple 

predictors typically decision trees by solving an infinite 

dimensional convex optimization problem [23].  

The fundamental premise of the GB is to improve model 

performance by rectifying the flaws of prior predictions by the 
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incorporation of new models that particularly address these 

residual errors. This iterative process continues until the 

prediction error reaches an acceptable threshold or the 

predefined number of iterations is completed [24]. The 

procedure commences with a preliminary weak classifier, 

followed by the computation of residuals, which denote the 

discrepancies between predicted and actual values. A novel 

weak classifier is subsequently trained on these residuals, and 

this process is reiterated until the residual errors are adequately 

minimized [25]. The GB algorithm utilizes a sequential 

ensemble methodology, commencing with a basic decision 

tree model featuring few splits and subsequently enhancing it 

by incorporating additional trees [26].  

 

2.3 Confusion matrix 

 

One machine learning method for evaluating the 

effectiveness of categorization models is the confusion matrix 

[20]. This facilitates the assessment of the model's accuracy in 

classifying things by juxtaposing its predictions with actual 

outcomes. The confusion matrix shows how many false 

positives, false negatives, and true positives there were [27]. 

Although the confusion matrix offers detailed information 

about model performance, using a single metric makes it easier 

to quickly compare the effectiveness of multiple classifiers 

[28]. Table 1 presents an illustration of a confusion matrix. 

 

Table 1. Example of confusion matrix 

 
Prediction Actual Value 

Positive TP FP 

Negative FN TN 

 

Evaluation metrics for binary classification frequently 

employ a confusion matrix for every model (refer to Table 1). 

The four primary components of the confusion matrix are false 

positives (FP), false negatives (FN), true positives (TP), and 

true negatives (TN). True positives refer to positive instances 

that have been accurately classified, whereas true negatives 

denote negative instances that have been correctly identified. 

False positives arise when negative instances are misclassified 

as positive, while false negatives occur when positive 

instances are misclassified as negative. 

Based on Table 1, this study employed several performance 

metrics to evaluate model effectiveness [23]. Accuracy 

measures a classifier's overall correctness by evaluating the 

proportion of properly predicted outcomes to total predictions 

produced. It expresses how frequently the model produces 

right answers as the proportion of correctly classified instances 

among all evaluated instances. Accuracy values approaching 

100% imply higher model reliability. The accuracy calculation 

formula is presented in the following Eq. (1): 

 

𝐴𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

The ratio of accurately detected positive instances to all 

instances projected to be positive is known as precision. 

Perfect precision is indicated by a precision value of 1, which 

goes from 0 to 1. The formula used to calculate precision is 

presented in the following Eq. (2): 

 

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

The percentage of accurately detected positive cases 

compared to all real positive instances is known as recall, 

sometimes called sensitivity or the True Positive Rate (TPR). 

The following equation contains the recall calculation formula 

(3): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

The F1 Score denotes the harmonic mean of Precision and 

Recall, so providing a balanced evaluation of these two 

metrics. The value ranges from 0 to 1, with rising scores 

indicating enhanced performance. The computation of the F1 

Score is illustrated in the subsequent Eq. (4): 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

2.4 Hydroponics 

 

Hydroponics is an advantageous agricultural technique for 

cultivating fresh vegetables, particularly in regions with 

limited arable land or densely populated urban areas. In 

comparison with conventional soil-based agriculture, 

hydroponics provides a number of significant benefits, 

including more precise nutrient management, suitability for 

non-arable regions, efficient water and fertilizer usage, ease of 

sterilizing the growing medium at a low cost, and the ability to 

support high-density planting, which leads to greater yields per 

acre [29]. 

The ratio of the ideal value of the environmental indicator 

to the water content of hydroponic plants is related to the 

relationship between the growing environment and the content 

of water in hydroponic plants. The pH of the nutrient solution, 

nutrient content, ambient temperature, relative humidity, light 

intensity, and air CO2 are some crucial environmental 

indicators in hydroponics. The optimal value for each indicator 

must be evaluated in the appropriate ratio to guarantee that the 

plant's water content remains within ideal parameters [30]. 

Typically, plants absorb water and minerals from the soil; 

however, they still require these resources even when grown 

in soilless media. To comprehend plant interactions within 

hydroponic systems, it is essential first to understand the 

natural relationships plants have with the soil environment 

where they commonly thrive [29]. 

In planting using hydroponic systems, nutrient water quality 

is very important and should be considered. This example 

refers to the nutrient concentration (PPM = Part per million) 

used to calculate the concentration of a liquid solution [31]. 

Nutrient formulations are typically quantified in parts per 

million (ppm) for each vital component. One ppm indicates the 

presence of one unit of a specific substance per one million 

units of another substance [31]. 

Electrical conductivity (EC), or electrical conducting 

power, describes the heat concentration of dissolved nutrients 

in a solution. Each element has an electrical charge (cation to 

anode and anion to cathode), and the unit of measurement used 

to measure EC is mS/cm [32].  

Total dissolved solids (TDS) are the water-soluble nutrient 

content of TDS, which determines the nutrients that the plant 

will absorb; therefore, it is necessary to monitor and maintain 

the nutrient content under ideal conditions for the plant. The 

amount of soluble substance compared to the solvent is called 

the solute concentration or known as the term part per million 
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(ppm) with the unit mg/l, 1 ppm=1 mg/L,=1 gram/1,000 liters 

[32]. 

The pH scale quantifies the acidity of a solution. pH 

specifically measures the concentration of hydronium ions 

(H3O+). The scale operates logarithmically, extending from 0 

to 14. The pH of pure water is 7.0. Water is considered acidic 

when the pH is below 7. The pH variable is significant as it 

influences the availability and absorption of certain essential 

atomic elements required for plant growth [32]. 

Each vegetable plant has different pH, EC, and TDS 

requirements, according to the characteristics of each 

vegetable. The water content can also be impacted by 

environmental elements as planting site, temperature, and 

humidity [33]. Table 2 presents the ideal TDS, EC, and pH 

values for different vegetable crops, guiding optimal nutrient 

management. 

 

Table 2. TDS, EC and PH need for vegetables 

 
Vegetable TDS (ppm) EC (mS/cm) pH Ideal 

Lettuce 560-840 0,8-1,2 6,0-7,0 

Lettuce Endive 1.400-1.680 2,0-2,4 5,5 

Lettuce Lororosa 560-840 0,8-1,2 6,0-7,0 

Water Lettuce 560-840 0,8-1,2 6,0-7,0 

Lettuce butterhead 560-840 0,8-1,2 6,0-7,0 

Celery 1.260-1.680 1,8-2,4 6,5 

 

However, nutritional development in plants also needs to 

consider the age of plant nutrition according to the plant age. 

The addition or increase in nutrient PPM is adjusted to the 

plant age, the older the plant life, and the higher the PPM 

required [30]. 

 

2.5 NFT systems 

 

The NFT, a hydroponic specialty, was established in the late 

1960s by Dr. A.J. Cooper of the Glasshouse Crops Research 

Institute in Littlehampton, England. It became commercially 

available in the early 1970s [34]. The NFT approach involves 

growing plants with their roots in a plastic film trough or rigid 

channel that continually circulates nutritional solution [35]. 

The fundamental principle of NFT is to nurture plants by 

enabling their roots to develop in a shallow, recirculating 

nutrient solution, which supplies adequate water, nutrients, 

and oxygen. Plants develop in polyethylene layers, with roots 

submerged in nutritional liquids that are perpetually cycled by 

a pump [36]. Figure 1 illustrates the fundamental principle of 

the NFT system, wherein a nutrient solution perpetually 

circulates via channels to facilitate plant growth. 

 

 
 

Figure 1. NFT systems [29] 

 

The basic workings of the NFT hydroponic system are 

depicted in Figure 1, where the nutrient solution travels via a 

main PVC pipeline to distribution headers that are placed at 

the top ends of the NFT channels. The solution is then poured 

into each planting channel or gully using short, flexible drip 

tubing. By gravity, the solution passes through the channels 

and empties into a catchment pipe at the bottom, which then 

returns it to the cistern. These channels are frequently set up 

on benches for simpler plant care and are used to cultivate low-

profile crops [35].  

 

2.6 Methodology 

 

This section describes the research process, including data 

exploration, visualization, preprocessing, and machine 

learning model development. It explains the data used, the 

preparation techniques applied, and the evaluation of the 

methodology. Figure 2 offers a comprehensive graphic 

depiction of these stages. 

 

 
 

Figure 2. Research stages 
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Figure 2 delineates the study phases, outlining the 

progression from data acquisition to model assessment. 

 

2.7 Dataset description 

 

The dataset used in this study is hydroponic NFT System 

variable experimental data for lettuce crops collected at the 

location coordinates 4°00'32.9″ "S 103°14'48.1"″ E.  

Four hydroponic growth cycles, each 28 days from seedling 

to harvest, were studied. Eight preset time points every day 

measured environmental changes during the photoperiod. To 

document microenvironmental growth pattern alterations, 

high-frequency data collection was necessary. 

Hydroponic systems need accurate sensors to collect high-

quality data. Key environmental factors were measured 

precisely using various equipment. A Hygro Meter measured 

temperature and humidity with ±0.5℃ and ±3% RH precision, 

ensuring consistent climate tracking. The Lux Meter assessed 

light intensity with ±5% precision, enabling precise tracking 

of diurnal light exposure fluctuations. pH levels were 

measured with a Digital pH Meter, providing ±0.1 pH unit 

precision for reliable nutrition solution acidity tracking. 

Furthermore, an EC/TDS Meter accurately assessed Electrical 

Conductivity (EC) and Total Dissolved Solids (TDS) with 

±2% precision, revealing nutrient concentration stability. 

These calibrated sensors kept environmental data correct for 

machine learning training. 

Standard pH buffer solutions and known conductivity 

solutions for EC and TDS were used regularly to calibrate all 

sensors for dependability. Our strict calibration techniques are 

justified by prior studies linking incorrect calibration to model 

discrepancies [2]. 

Structured preprocessing was used to manage missing 

values, detect and eliminate outliers, and standardize feature 

scales to improve data quality and model accuracy. These 

steps improved the dataset for machine learning modeling. 

The K-NN imputation approach was employed to estimate 

missing values since they made up less than 1% of the dataset 

[18]. Filling gaps with statistically meaningful values rather 

than eliminating useful data preserves data integrity. Outliers 

were found. Min-max normalization standardised values 

between 0 and 1 to ensure all variables contributed equally to 

the model. By preserving consistency across all input 

variables, this prevented bias from features with broader 

numerical ranges like EC and TDS and enhanced model 

performance. Preprocessing ensured a clean, balanced, and 

optimal dataset, improving machine learning predictions [11]. 

Values above 1.5 times the Interquartile Range (IQR) were 

considered abnormal and deleted. This phase was necessary to 

preserve model accuracy since excessive sensor values (e.g., 

EC and pH levels) could affect predictions. 

The data were collected using three hydroponic NFT 

systems used to plant and raise lettuce with three different 

patterns of enlargement and nutrition. Each NFT System 

consisted of two pipes with 40 plant holes. An illustration of 

the hydroponics of the NFT system used to collect data is 

shown in Figure 3. 

Figure 3 illustrates the hydroponic NFT system, depicting 

the arrangement of plants within nutrient-enriched channels. 

 

 
 

Figure 3. Hydroponics NFT system illustration 

 

In this study, three patterns of plant enlargement and 

nutrition were used for lettuce in hydroponic NFT Systems. 

Each pattern is used in one hydroponic NFT system: the NFT 

1 system is used for Pattern 1, the NFT 2 system is applied to 

Pattern 2, and the NFT 3 system for Pattern 3. Differences in 

lettuce enlargement and nutrition pattern for each pattern were 

found in the time and nutrition ratio within the reservoir of 

each NFT System. The differences between the enlargement 

and nutritional patterns of each pattern are shown in the 

following Table 3. Table 3 compares the three different growth 

patterns in the study, showing variations in nutrient 

concentration and pH levels over time. 

 

Table 3. Patterrn comparison 

 

Pattern 
Nutrition Day 1-7 

(ppm)  

Nutrition Day 8-14  

(ppm) 

Nutrition Day 15-21 

(ppm) 

Nutrition Day 22-Harvest 

(ppm) 
pH 

EC 

mS/cm 

Pattern 1 400-500 400-500 800-1100 800-1100 6.0 – 7.0 800-2500 

Pattern 2 100-200 300-400 500-600 700-840 6.0 - 7.0 300-1900 

Pattern 3 600-800 600-800 1100-1400 1100-1400 6.0 – 7.0 1200-3000 

 

These three patterns have different approaches to provide 

nutrition to lettuce crops in hydroponic NFT Systems. The first 

is a general growth pattern, which is a common choice in 

hydroponic farms. This pattern often follows general 
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guidelines for providing plant nutrition without paying too 

much attention to specific nutrient ratio details. The second 

pattern is ideal, based on theory and references from various 

scientific journals and related books. This pattern emphasizes 

the importance of providing nutrients in the right proportions 

to suit the needs of plants at each growth stage. This approach 

has the potential to yield more optimal results in terms of 

growth, health, and productivity of hydroponic crops. The 

third pattern, known as the excess enlargement pattern, 

involves supplying nutrients in higher ratios and greater 

quantities compared to the first and second patterns. Although 

it can provide plants with more nutrients, this pattern can 

potentially lead to problems such as excess salt accumulation 

in the hydroponic system.  

Figure 4 depicts the lettuce hydroponic NFT system used 

for data collection, including its structure and measurement 

setup. 

 

 
 

Figure 4. Lettuce hydroponics NFT system to collect data 

 

Figure 4 shows the NFT Hydroponic Illustration System 

deployment in Figure 3. There are six pipelines connecting to 

three reservoirs with hydroponics. Each hydroponic NFT 

system contains information about nutrient enlargement, plant 

types, and planting days. The collected data were assembled 

into a dataset and prepared for the next process. The dataset 

consists of 10 columns and 5005 rows before cleaning. All 

processes, including data collection, compilation, and data 

preparation, are one stage in data preparation. 

 

 

3. RESULT AND DISCUSSION 

 

3.1 Exploratory data analysis (EDA) 

 

Conducting a thorough data analysis throughout the data-

understanding step is critical to obtain the most accurate 

predictions for the processed dataset. An examination of the 

data's structure and descriptive qualities should be undertaken 

to achieve a comprehensive knowledge, employing diverse 

insights obtained from the dataset. In order to obtain a deeper 

understanding of the dataset and enable a more thorough 

assessment of its structure and properties, exploratory data 

analysis, or EDA, is carried out during the data understanding 

phase. To facilitate data comprehension, exploratory data 

analysis (EDA) provides insights into data descriptions, 

formats, and structures through various visual representations, 

including graphs, plots, descriptions, and maps [3]. 

Table 4 provides a statistical summary of numerical 

variables, including temperature, humidity, light, pH, EC, 

TDS, and water temperature. 

Based on the statistics of data descriptions from the data 

frame in Table 4, we can obtain a variety of insights into the 

data used. The data had 10 attributes (before cleaning) and 

5005 rows. The dataset contains 5005 unique data points for 

each attribute or variable temperature, humidity, light, pH, EC, 

TDS, and water temperature.  

An illustration of the correlations between several variables 

in tabular form is called a correlation matrix. The correlation 

coefficient, which ranges from -1 to 1, signifies the degree and 

direction of the relationship between certain variables. For 

example, there is a high positive correlation between variables 

X and Y when the correlation coefficient value is 0.8. By 

analyzing the correlation matrix, patterns that may not be 

apparent when studying individual variables can be detected 

in the data. These patterns can provide additional insights into 

how variables interact with each other. 

The quantity of cells in the correlation matrix aligned with 

the total count of variables in the dataset. For example, if there 

are five variables in the dataset, the correlation matrix has 25 

cells (5 × 5). This makes it an efficient tool for exploring 

relationships among variables in complex datasets [37]. 

The correlation matrix can be visualized as a color matrix, 

displaying the correlation values using a color scale. This 

allows researchers to identify the correlation patterns in the 

dataset visually. The correlation matrix for the dataset is 

depicted in Figure 5 demonstrating the connections between 

important hydroponic parameters such as pH, TDS, and 

Electrical Conductivity (EC). 

A correlation exists between Electrical Conductivity (EC) 

and Total Dissolved Solids (TDS). The lowest TDS value was 

recorded at a ratio of 161, while the lowest EC value was 

observed at a ratio of 336. In contrast, the highest TDS value 

was 1934 and the highest EC value was 3178. It is worth 

noting that the EC value is closely related to nutritional value 

because electrical conductivity has a strong positive 

relationship with the nutritional value, which is described by 

the total number of dissolved solids. 

 

 
 

Figure 5. Correlation matrix 
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Figure 6. Boxplot each variable by pattern 

 

Table 4. Statistic description of numerical variable 

 
 Temp Humidity Light pH EC TDS WaterTem 

count 5005 5005 5005 5005 5005 5005 5005 

mean 28.9 76.7 34558.56 6.52 1675.3 837.8 26.2 

std 75.2 22.9 49156.29 0.26 728.3 364.7 2.3 

min 21.8 0 560 5.7 336 161 3.6 

25% 24.8 62 8300 6.4 1143 571 24.5 

50% 26.3 83 18840 6.5 1587 793 26.1 

75% 28.0 99 39420 6.7 2248 1124 27.5 

max 2619.0 99 70200 7.1 3178 1934 34.2 

 

A boxplot is useful for graphically visualizing data 

distribution by showing key values, such as quarters, medians, 

and potential outliers. By utilizing boxplots, researchers can 

detect key patterns in hydroponic data, which serve as valuable 

insights for developing machine learning models [38]. Using 

a box plot, researchers can visually evaluate the distribution 

and comparison of hydroponic variables, which will provide 

valuable insights into the modeling of the growth of celery 

crops [39]. Figure 6 visualizes the distribution of each 

hydroponic variable using boxplots, comparing data variations 

across different growth patterns. 

Figure 6 shows the visualization of patterns for each 

variable supplied in the box plot. The boxplot allows us to 

understand the range of values for each variable from lowest 

to highest based on the data used. By understanding the 

distribution and variation of hydroponic variables using a 

boxplot, we can select the most significant features to be 

included in the predictive model [33]. By understanding the 

distribution of data and patterns using a boxplot, researchers 

can develop a more accurate machine learning model for 

predicting plant growth, which, in turn, can improve efficiency 

and productivity in hydroponic cultivation [40]. 

The boxplot of each variable against a pattern shows a 

visualization of each variable value range against each pattern. 

EC variables and TDS variables have significant variable 

value ranges that differ from each pattern, it can be seen that 

pattern one and pattern 2 for EC variable and TDS have a value 

range that is not in a long row, but for the value range on 

pattern 3 has a distant value range. This indicates that in 

Pattern 3, there is a higher value ratio range than in Patterns 1 

and 2. This describes the magnitude of the correlation between 

EC and TDD variables. For other variables, there was no 

overly distant range of values. The pH variable for each pattern 

has a different variable ratio because the nutrient concentration 

level in the water is also different. In pattern 3, the pH ratio 

values tended to be wider because in pattern 3, the nutrient 

concentration was much higher than in patterns 1 and 2.  

Each growth pattern had its variable movement, EC, and 

TDS. To determine the movement of variables TDS and EC 

for each pattern, we can see Figures 7 to 9 below. Figure 7 

shows the fluctuation of EC and TDS values for Pattern 1, 

illustrating how nutrient levels change over time. 

Figure 8 displays the movement of EC and TDS variables 

for Pattern 2, highlighting variations in nutrient concentration. 

Figure 9 presents the fluctuation of EC and TDS in Pattern 

3, indicating more extreme variations in nutrient 

concentrations. 
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Figure 7. Variable EC and TDS for pattern 1 

 

 
 

Figure 8. Variable EC and TDS for pattern 2 

 

 
 

Figure 9. Variable EC and TDS for pattern 3 

 

Figure 7 shows the movement activity of the EC and TDS 

variables for Pattern 1. We can see that the value of TDS does 

not exceed 1000 ppm in pattern 1, and the EC value is not more 

than 2000 mS/cm. For Pattern 2, Figure 8 shows that the 

movement of the variables EC and TDS is wider and more 

variable. This is because the nutrition and enlargement of 

pattern 2 depend on the age of the plant, which is different 

from pattern 1. For Pattern 3's movement of the EC and TDS 

variables is shown in Figure 9. In Pattern 3, the ratio of the 

variable distance between EC and TDS was larger than that of 

Patterns 1 and 2. The maximum variable values for TDS are 

between 1200-1600 ppm with some highly variable leap 

points. The maximum EC values were between 2600 -3400 

mS/cm. 

 

 
 

Figure 10. Histogram of each variable 
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A histogram was utilized to depict the study variables' 

frequency distribution. Histograms are one of the most 

commonly used techniques in statistical analysis to explore 

data distributions in various research fields, including 

agriculture. By identifying distribution patterns, such as a 

normal distribution or skewness, Researchers can get 

important knowledge that will help them choose the right 

characteristics and create machine learning models that are 

suitable for the task [41] . 

Data visualization, particularly histograms, is a crucial 

component of data analysis as it facilitates the comprehension 

of variable interactions and the evaluation of model validity. 

By comparing the histogram of the actual data with the 

distribution predicted by the model, researchers can assess 

how well the model captures patterns in hydroponic data and 

identify potential areas for improvement to enhance its 

predictive accuracy [42]. Histograms have become an 

important tool for visually analyzing the distribution of 

hydroponic data. As a graphical method, histograms enable 

researchers to see data spreads clearly, thus facilitating an in-

depth understanding of the datasets' characteristics [41]. 

Figure 10 provides histograms for each variable, helping to 

visualize the frequency distribution of hydroponic data. 

From the histogram of each variable in Figure 10, we can 

perform a simple analysis to identify several things. The shape 

of the data frame consisted of 5005 and 10 columns. No 

missing values were in the data frame, and strong positive 

correlations were observed between the EC and TDS. Three 

patterns in the dataset were used, with details of pattern 1 

having 1714 occurrences, pattern 2 having 1533 occurrences, 

and pattern 3 having 1758 occurrences. The dataset's key 

features are light, humidity, electrical conductivity (EC), water 

temperature, pH, total dissolved solids (TDS), and temperature 

because these elements are critical in determining plant 

growth. Monitoring and controlling these parameters can help 

establish optimal conditions for plant growth. 

 

3.2 Preprocessing 

 

Data preprocessing serves as a crucial phase in any data 

science endeavor, focused on refining and organizing the 

dataset to ensure its optimal application in predictive 

algorithms. This process ensures data consistency, enhances 

model accuracy, and improves overall analytical reliability 

[43]. Data preprocessing renders the dataset more consistent 

and structured, hence improving the overall performance of 

the generated model [44]. A significant problem in data the 

data's appropriateness for modeling, it is important to identify 

absent characteristics, pinpoint the impacted entries, and 

implement proper handling procedures according to the 

variable type. cleansing is the management of absent values. 

To guarantee This is important because the disappeared 

features may strongly predict the algorithm's outcome [43]. In 

building plant growth prediction models, the preprocessing 

stage, particularly data cleaning, is crucial for transforming 

raw data into usable data for the model. Data cleaning removes 

noise, outliers, and errors that could compromise the quality 

and accuracy of the predictive model, ensuring more reliable 

and effective analysis [28]. During data analysis and 

modeling, most of the time (80% or more) is devoted to data 

preparation such as loading, cleaning, transforming, and 

rearranging. Sometimes, the data are not in the correct format 

for a specific task because of the way they are stored in files 

or databases [45]. 

In the preprocessing phase of plant growth prediction 

models, data cleaning is a critical process for ensuring data 

quality. Data cleaning involves several steps such as handling 

missing values, detecting and removing outliers, data 

transformation, handling inconsistent data, and removing 

duplicate entries [26]. The initial step focused on identifying 

and addressing missing values within the dataset. This 

procedure can be completed by either eliminating rows or 

columns that include missing data or by using imputation 

techniques, which include substituting the mean, median, or 

mode of the available data for missing values [26]. 

In accordance with an 80:20 distribution ratio, the datasets 

were divided into two primary categories: training data and 

test data with 20% (1001 rows) set aside for testing and 80% 

(4004 rows) for training. For the purposes of this divide, eighty 

percent of the dataset was designated for training purposes, 

with the goal of assisting the model in learning patterns and 

relationships. The remaining twenty percent of the dataset was 

reserved for testing, with the intention of evaluating the 

model's performance and its capacity to generalize. 

 

3.3 Modeling 

 

In machine learning, the modeling stage is essential to 

creating models that can analyze intricate data patterns and 

generate precise predictions. Choosing a suitable model is 

essential for creating a successful machine learning system. 

Various factors, such as the data type, problem complexity, 

and accuracy requirements, should be considered when 

selecting a model [28]. Four machine learning methods were 

employed to create predictive models of vegetable 

development patterns: RF, SVM, K-NN, and GB. 

The selection of machine learning algorithms is pivotal for 

attaining precise and dependable predictions of hydroponic 

lettuce growth patterns. This study employed K-NN, SVM, 

RF, and GB due to their efficacy in managing structured 

agricultural data, interpretability, and demonstrated success in 

hydroponic and agricultural modeling. 

This necessitates machine learning algorithms capable of 

effectively capturing non-linear relationships and adapting to 

dynamic conditions [3]. Another critical aspect is feature 

importance and interpretability, as understanding which 

environmental factors have the most significant impact on 

plant growth is essential for optimizing hydroponic conditions 

and improving nutrient management strategies [2]. 

Considering these factors, the selection of machine learning 

algorithms was guided by their ability to manage complex data 

interactions, offer interpretability, and scale efficiently, 

ensuring robust and reliable predictions for hydroponic growth 

modeling. 

In small-to-medium agricultural datasets, where pattern 

identification is essential, the distance-based method K-NN is 

frequently employed for classification tasks. This algorithm 

was chosen because of its capacity to handle missing values 

and noisy data, which are frequent problems in sensor-based 

datasets.  

Additionally, K-NN performs well in identifying subtle 

variations in plant growth by analyzing environmental feature 

similarities, making it a suitable choice for hydroponic 

systems [46]. Another advantage of K-NN is its effectiveness 

in classifying lettuce growth stages, as it assigns labels based 

on the closest matching data points, allowing for accurate 

differentiation between various growth phases.  
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The SVM was chosen for its robust capacity to manage 

high-dimensional feature spaces and its efficacy in classifying 

non-linearly separable data. In hydroponic systems, where pH, 

electrical conductivity (EC), humidity, and nutrient 

concentrations interact in complex and dynamic ways, SVM 

provides robust generalization ability, making it particularly 

effective for small-to-moderate datasets [2].  

Furthermore, by using kernel functions like the Radial Basis 

Function (RBF) to capture and describe non-linear interactions 

between environmental factors, SVM efficiently define 

distinct decision bounds for growth classification [1]. Another 

advantage of SVM is its ability to reduce overfitting, which is 

achieved by optimizing key hyperparameters such as C 

(regularization) and gamma, allowing the model to balance 

complexity and performance.  

RF was selected for its robust performance in structured 

datasets with multiple interacting variables, making it 

particularly suitable for hydroponic growth prediction. A key 

advantage of RF is its capability to rank feature importance, 

enabling researchers to determine which environmental 

factors, such as pH, electrical conductivity (EC), and 

temperature, exert the most significant influence on lettuce 

growth [6].  

GB was chosen as one of the most effective classification 

methods for structured datasets due to its strong predictive 

performance and ability to handle complex patterns, 

particularly for hydroponic sensor data, due to its iterative 

learning process that continuously refines predictions and 

minimizes errors over time. This approach enhances 

classification accuracy by allowing the model to learn from 

previous mistakes and make necessary adjustments in 

subsequent iterations.  

GB is also well-suited for handling complex non-linear 

relationships, which is essential in hydroponic systems where 

variables such as electrical conductivity (EC), pH, and 

temperature interact in intricate ways that significantly 

influence plant growth. Unlike simpler models, GB has the 

advantage of adaptive error correction, enabling it to improve 

classification performance with each boosting cycle [3]. 

To validate our selection, Table 5 presents a comparative 

analysis of default and tuned accuracy scores is provided: 

 

Table 5. Comparative analysis of default and tuned accuracy 

 

Model 
Default 

Accuracy 

Tuned 

Accuracy 

Accuracy 

Gain 

K-NN 79.9% 84.8% +4.9% 

SVM 75.8% 80.5% +4.7% 

RF 89.6% 90.4% +0.8% 

GB 92.2% 93.4% +1.2% 

 

By combining these four models, this study ensures a 

comprehensive approach to hydroponic growth prediction, 

balancing accuracy, computational efficiency, and model 

interpretability to optimize decision-making in controlled 

agricultural environments. 

Upon defining the machine learning model, it may be 

trained utilizing the specified training data. In this instance, 

80% of the pre-divided entire dataset was employed for 

training. This approach entailed refining the model's 

parameters to discern patterns in the data. Model training is a 

crucial phase in machine learning, allowing models to learn 

and adjust proficiently to the provided dataset [47]. 

We divided the training model into two groups: 

hyperparameter tuning and without hyperparameter tuning. 

The initial group utilized default parameters to train the model, 

whereas the subsequent group investigated several 

hyperparameter setups to identify the optimal combination for 

enhanced model accuracy and performance. This split 

facilitates a precise assessment of the impact of 

hyperparameter tuning on the model's efficacy. Four distinct 

models Gradient Boosting Classifier, RF, SVM, and K-NN 

constitute a compendium of machine learning models, each 

associated with a certain classifier, facilitating quick access 

and comparison of various models. This approach provides 

flexibility for experimenting with various algorithms and 

facilitates exploring different model performance. 

Once the model training process was completed, the 

subsequent step involved evaluating its performance using 

various assessment metrics. The confusion matrix is one of the 

most often utilized evaluation metrics.  

This method is frequently utilized to evaluate classification 

models that forecast categorical event labels. The matrix is a 

grid that displays the true positives, false positives, true 

negatives, and false negatives that were produced during the 

testing phase [48]. 

 

3.4 Evaluation 

 

Evaluation is an essential component of the modeling 

process, as it assesses the performance of the constructed 

model. Evaluation's main objective is to determine how well 

the model predicts observed data while making sure the 

outcomes align with the study's goals [44]. The assessment 

metrics described in this section are crucial markers for 

gauging the prediction accuracy of the model in classifying 

data. These metrics provide a comprehensive assessment of 

the alignment between the model's predictions and the data 

labels. Validation of an independent dataset is essential for an 

accurate evaluation of the model's performance. 

To better understand model errors, we analyzed 

misclassified samples using the confusion matrix for each 

algorithm. K-NN struggled with distinguishing Pattern 2 and 

Pattern 3 due to overlapping nutrient concentrations, while 

SVM had difficulty separating Pattern 1 and Pattern 2 due to 

non-linearly separable data. RF misclassified some Pattern 3 

samples, likely overfitting to extreme variations in electrical 

conductivity (EC) and total dissolved solids (TDS). Despite 

achieving the highest accuracy, GB still faced 

misclassification issues with borderline nutrient values, 

particularly between Pattern 2 and Pattern 3, indicating a need 

for further refinement in feature selection and dataset 

diversity. 

Several factors contributed to these errors, including feature 

overlap, where similar environmental conditions (e.g., pH and 

temperature) made classification difficult, and sensor 

measurement variability, where slight inaccuracies in readings 

(e.g., ±10 ppm for TDS) introduced noise.  

Table 6 presents more detailed evaluation and classification 

reports for each algorithm model. It summarizes the 

classification report for each algorithm, displaying precision, 

recall, and F1-score for different growth patterns. 

Table 7 shows the Key Insights from Pattern-Based 

Performance Analysis. 
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Table 6. Classification report for each algorithm 

 

PatertPatere 

Pattern 

Precision Recall F1-score Support 

GB RF SVM 
K-

NN 
GB RF SVM 

K-

NN 
GB RF SVM 

K-

NN 
GB RF SVM 

K-

NN 

1 0.94 0.93 0.67 0.72 0.92 0.91 0.76 0.84 0.93 0.92 0.71 0.77 354 354 354 354 

2 0.85 0.83 0.66 0.74 0.92 0.90 0.69 0.69 0.88 0.87 0.68 0.72 304 304 304 304 

3 0.97 0.96 1.00 0.97 0.92 0.92 0.81 0.85 0.94 0.94 0.89 0.90 343 343 343 343 

Macro Avg 0.92 0.89 0.77 0.81 0.92 0.89 0.75 0.79 0.92 0.89 0.76 0.80 1001 1001 1001 1001 

Weighted 

Avg 
0.92 0.89 0.78 0.81 0.92 0.89 0.76 0.80 0.92 0.89 0.76 0.80 1001 1001 1001 1001 

Accuracy   0.92 0.91 0.76 0.80 1001 1001 1001 1001 

 

Table 7. Performance variation across growth patterns 

 

Growth Pattern 
Best Performing 

Model 

Accuracy 

(%) 
Key Observations 

Pattern 1 (Standard Growth) Gradient Boosting 94.2 Stable growth conditions led to high classification accuracy. 

Pattern 2 (Controlled pH & 

EC) 
Random Forest 91.8 RF captured variability better under controlled conditions. 

Pattern 3 (Nutrient-Rich 

System) 
Gradient Boosting 92.7 

Excessive nutrient variation caused minor prediction 

inconsistencies. 

 

Model performance varied across the three hydroponic 

growth patterns, with GB and RF consistently achieving high 

accuracy. In Pattern 1 (General Growth Pattern), the GB model 

achieved the highest performance, with a precision of 0.94, a 

recall of 0.92, and an F1-score of 0.93, highlighting its 

effectiveness in predicting growth patterns, with most 

misclassifications occurring between Pattern 1 and Pattern 2 

due to overlapping environmental factors like temperature and 

humidity. The superior performance of GB and RF suggests 

that ensemble methods work well in cases where feature 

similarities exist. 

In Pattern 2 (Optimized Growth Pattern), the Gradient 

Boosting (GB) model once again outperformed the other 

models, achieving a precision of 0.85, a recall of 0.92, and an 

F1-score of 0.88, demonstrating its superior predictive 

performance, while SVM and K-NN struggled due to non-

linear dependencies in the dataset. RF faced challenges 

distinguishing Pattern 2 from Pattern 3, likely due to variations 

in electrical conductivity (EC) and pH levels, which 

significantly impact nutrient absorption. This indicates that 

boosting techniques like GB adapt better to small nutrient ratio 

changes, while SVM and K-NN are less effective due to 

feature overlap. 

In Pattern 3 (Excessive Nutrient Growth Pattern), GB 

showed the highest precision (0.97) and F1-score (0.94), while 

RF and SVM misclassified some samples as Pattern 2, likely 

due to extreme EC and TDS fluctuations. GB and RF were 

better suited for handling complex nutrient environments 

where feature distributions are skewed. Feature importance, 

hyperparameter sensitivity, and data overlap were identified as 

key factors influencing model performance, with GB excelling 

due to its iterative error correction capability. 

GB consistently delivered the best performance, especially 

in Pattern 3, where variability was highest. RF was also 

effective but showed misclassification issues in Pattern 2 and 

3, potentially due to overfitting. SVM and K-NN were less 

reliable in complex growth environments but acceptable for 

simpler cases like Pattern 1. These findings confirm that 

ensemble-based models, particularly GB, best suit hydroponic 

systems where environmental and nutrient conditions fluctuate 

significantly. 

It is crucial to validate a model to ensure that it can perform 

well on data that has never been encountered before [49]. The 

Gradient Boosting (GB) approach utilizes a progressive 

ensemble of decision trees, commencing with the training of 

an initial weak tree characterized by minimum splits. 

Subsequently, fresh trees are incrementally introduced, each 

rectifying the faults of its predecessors, hence improving the 

overall model performance and predicted accuracy [26]. The 

RF method constructs multiple decision trees using tree-based 

algorithms, enhancing prediction accuracy through ensemble 

learning. In order to assess the importance of variables and 

ascertain how much they contribute to the predictive 

performance of the model, the Gini index is utilized [50]. 

The SVM is a versatile algorithm adept at managing many 

classification tasks, including those with high-dimensional 

data and nonlinear decision boundaries. However, one of its 

most significant drawbacks is that it requires precise 

adjustment of numerous hyperparameters in order to obtain 

optimal classification performance [51]. These 

hyperparameters include the kernel type, the regularization 

parameter, and the margin restrictions. 

 

Table 8. Model comparison evaluation 
 

Algortihm Accuracy Precision Recall 
F1-

Score 

Gradient Boosting 

Classifier 
0.92 0.92 0.92 0.92 

Random Forest 0.89 0.89 0.89 0.89 

Support Vector Machine 0.76 0.77 0.75 0.76 

K-Nearest Neighbors 0.8 0.81 0.8 0.8 

 

K-NN is an effective machine learning algorithm that can 

be utilized in multiple fields. Its key advantages include 

simplicity, interpretability, and ease of implementation. 

However, as dataset size grows, K-NN's computational 

complexity may become a limitation due to its reliance on 

distance calculations. Nonetheless, K-NN is exceptionally 

effective for anomaly detection, pattern identification, and 

recommendation systems, providing a versatile and intuitive 

methodology for addressing machine learning challenges [19]. 

To compare the evaluation results for each model, refer to 

Table 8. Table 8 presents a comparative analysis of model 

evaluation metrics, including accuracy, precision, recall, and 
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F1-score, across various machine learning algorithms. This 

comparison provides insights into the effectiveness and 

reliability of each model in predicting outcomes. 

The evaluation and validation of each machine learning 

algorithm were compared to assess their performance. The GB 

achieved the highest accuracy at 0.92, demonstrating its 

effectiveness in prediction. In contrast, the SVM exhibited the 

lowest accuracy, recording a score of 0.76. For more 

information on the difference between the training accuracy 

and the comparison for each model, please refer to Table 8. 

Table 9 presents training and test accuracy for each model, 

highlighting differences before and after hyperparameter 

tuning. 

The RF model demonstrated the highest accuracy during 

training, achieving a precision score of 1.0. However, in 

contrast, the Gradient Boosting Classifier exhibited the best 

performance on the test dataset, indicating its superior 

generalization ability. 

 

Table 9. Model evaluation accuracy 

 

Model 
Train 

Accuracy 

Test 

Accuracy 

Gradient Boosting 

Classifier 
0.942308 0.919081 

Random Forest 1.000000 0.896104 

Support Vector Machine 0.766484 0.757243 

K-Nearest Neighbors 0.868132 0.799201 

 

3.4.1 Hyper parameter tuning 

Hyperparameter Tuning is a technique used to optimize 

parameters that the model cannot learn during training, process 

for creating effective systems [52]. Grid Search is a common 

method used for Hyperparameter Tuning, where we define a 

set of possible values for each hyperparameter and 

systematically combine them to find the best one. Random 

Search is another method in which we randomly select the 

values for each hyperparameter within a specified range. This 

approach is more efficient than the Grid Search for large 

parameter spaces [53]. To prevent overfitting, cross-validation 

was employed to fine-tune the hyperparameters and identify 

the optimal model configuration. This approach ensured that 

the model generalized well to unseen data by balancing bias 

and variance effectively [36]. 

Hyperparameter tuning was conducted in this study using 

Grid Search and Random Search to optimize machine learning 

models. Grid Search systematically tested predefined 

parameter combinations for each model, including 

n_neighbors and distance metrics for K-NN, kernel functions, 

C, and gamma values for SVM, n_estimators, max_depth, and 

split criteria for RF, and learning rate, n_estimators, and depth 

for Gradient Boosting. Since Grid Search is computationally 

intensive, Random Search was also applied to explore a 

broader parameter space efficiently. The best hyperparameters 

were selected using 5-fold cross-validation, with the final 

optimized parameters significantly improving model accuracy 

and reducing overfitting. This detailed tuning process 

enhances model reliability and facilitates replication by other 

researchers. 

Table 10 demonstrate the impact of hyperparameter tuning, 

the following comparison was conducted between default 

settings and optimized models. 

The results indicate that GB achieved the highest accuracy 

gain, whereas SVM and K-NN showed the most significant 

relative improvements due to the nature of their parameter 

sensitivity. These findings align with previous research 

indicating that boosting algorithms benefit most from 

hyperparameter tuning due to their iterative error correction 

mechanism [11]. 

 

Table 10. The comparison tuned accuracy 

 

Model 
Default 

Accuracy 

Tuned 

Accuracy 

Accuracy 

Improvement 

Gradient 

Boosting 
92.2% 93.4% +1.2% 

Random 

Forest 
89.6% 90.4% +0.8% 

Support 

Vector 

Machine 

75.8% 80.5% +4.7% 

K-Nearest 

Neighbors 
79.9% 84.8% +4.9% 

 

Table 11. Model evaluation accuracy after fine-tuning 

 

Model 
Train 

Accuracy 

Test 

Accuracy 

Gradient Boosting 

Classifier 
1.000000 0.934066 

Random Forest 1.000000 0.904096 

Support Vector Machine 0.842408 0.806194 

K-Nearest Neighbors 1.000000 0.848152 

 

Hyperparameter tuning has demonstrated a notable increase 

in accuracy, precision, and recall, making models more robust 

for hydroponic system applications. However, it is worth 

noting that while Grid Search provides a systematic way to 

find optimal parameters, it is computationally expensive. 

Bayesian Optimization and Adaptive Hyperparameter Search 

could further improve efficiency by intelligently exploring 

parameter space rather than evaluating all combinations [53]. 

The dataset was randomly partitioned into multiple subsets, 

with one subset designated as the test set while the model was 

trained on the remaining subsets. This process was repeated 

iteratively, ensuring each subset served as the test set once, and 

the final model was derived by averaging the results from all 

iterations [36]. The data was split using an 80/20 ratio, where 

80% was allocated for training and 20% for testing. Model 

fine-tuning was performed by adjusting hyperparameters to 

enhance accuracy. As demonstrated in Table 11, the accuracy 

of the machine learning algorithms improved following the 

tuning process. Table 11 lists the model accuracy after fine-

tuning, showing improvements in GB, RF, SVM, and K-NN 

models. 

Figure 11 presents a detailed visualization of the combined 

accuracy results for all algorithms, enabling a comparison of 

model performance before and after hyperparameter tuning. 

This illustration highlights the improvements in prediction 

accuracy achieved through parameter optimization. 

After fine-tuning the hyperparameters, the gradient 

boosting classifier improved testing accuracy. This suggests 

the optimization process led to a more effective model for the 

given task. The total change in accuracy was +1.2%, with an 

initial test accuracy of 92.2% and fine-tuned test accuracy of 

93.4%. The RF model also showed a slight increase in testing 

accuracy after hyperparameter tuning, indicating that the 

optimization contributed to the enhanced model performance. 

The initial accuracy test results were 89.6%, which increased 

to 90.4% after fine-tuning, resulting in a change in accuracy of 

+0.8%. 
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Figure 11. Result accuracy comparison 

 

Hyperparameter tuning significantly improved the SVM's 

testing accuracy, indicating that fine-tuned parameters led to a 

more accurate and effective model. The initial Test Accuracy 

score was 75.8%, which improved by +4.7% after fine-tuning 

to 80.5%. The K-NN model demonstrated the greatest increase 

in testing accuracy after hyperparameter tuning, with an 

accuracy increase of +4.9% from the initial accuracy test 

results of 79.9%–84.8% after fine-tuning. 

This comparison emphasizes the role of hyperparameter 

tuning in improving the testing accuracy of machine learning 

models. It offers valuable insights into how parameter 

optimization influences overall model performance and 

effectiveness. 

A simple deployment code prompt is created to test the 

growth pattern prediction model. The user enters values for 

specific features used in the machine-learning model, which 

are stored in a dictionary called input_values. Predictions are 

made using the transformed input values, and the code prints 

the prediction Table 11 showing the model names and their 

corresponding predictions based on the user input values. 

In addition to performing cross validation during the 

evaluation phase, Root Mean Squared Error (RMSE) 

calculations were performed. The RMSE measures the model 

prediction's closeness to the observed data's actual value. The 

RMSE was determined by computing the square root of the 

mean squared difference between the actual and predicted 

values. The RMSE was computed using validation or test data 

that were independent of the training dataset. Lower RMSE 

values indicate better model performance, as they reflect 

higher accuracy in predicting previously unseen data. The 

RMSE results for all algorithms are presented in Table 12. 

Table 12 compares RMSE values before and after 

hyperparameter tuning, evaluating prediction error reduction 

across models. 

 

Table 12. Evaluation use RMSE for each model 

 

Model 

Without 

Hyperparameter 

Tuning 

With Hyperparameter 

Tuning 

RMSE 

Train 

RMSE 

Test 

RMSE 

Train 

RMSE 

Test 

Gradient 

Boosting 
Classifier 

0.104343 0.271978 0 0.286213 

Random Forest 0.288096 0.300735 0 0.369375 

Support Vector 
Machine 

0.589781 0.617412 0.477255 0.527941 

K-Nearest 
Neighbors 

0.362283 0.443895 0 0.466671 

A model's performance can be enhanced by identifying the 

optimal set of hyperparameters through systematic tuning, 

which helps optimize accuracy and generalization. This helps 

us create a more accurate and reliable model to predict new 

data better. Tuning hyperparameters usually results in a lower 

RMSE value, indicating that the model is better at forecasting 

data. Table 12 shows the RMSE values for all the algorithm 

models used. It reveals that the lifting decreases are smaller for 

the entire model, especially for the Gradient Boost Classifier 

and RF. This suggests that tuning the hyperparameters leads to 

a more accurate data prediction. 

A thorough assessment of machine learning models requires 

the integration of multiple performance metrics to effectively 

evaluate prediction accuracy, error magnitude, and overall 

model reliability. Although Root Mean Square Error (RMSE) 

is a widely used evaluation metric, relying exclusively on it 

may not fully capture a model’s overall performance. To 

overcome this limitation, incorporating additional metrics 

such as Mean Absolute Error (MAE) and the Coefficient of 

Determination (R²) is crucial for a more comprehensive 

assessment of model effectiveness, especially in predicting 

hydroponic lettuce growth patterns. 

One of the primary limitations of RMSE is its sensitivity to 

large errors, as it penalizes extreme deviations more heavily 

than smaller ones. This characteristic makes RMSE 

particularly vulnerable to the influence of outliers, which can 

skew model evaluation and create a misleading impression of 

overall predictive performance [24]. Furthermore, RMSE 

alone does not provide insights into whether a model's 

predictions exhibit systematic bias or consistent 

overestimation or underestimation trends [54]. By 

incorporating Mean Absolute Error (MAE), which offers a 

clear measure of the average error magnitude without 

excessively emphasizing large deviations, along with R², 

which assesses the model's ability to explain variance in the 

target variable, a more comprehensive and balanced 

assessment of predictive accuracy can be attained. Table 13 

below compares three key metrics: 

 

Table 13. Three key metrics comparision 

 
Model RMSE MAE R² 

Gradient Boosting 0.286 0.142 0.92 

Random Forest 0.369 0.187 0.89 

Support Vector Machine 0.527 0.261 0.80 

K-Nearest Neighbors 0.466 0.232 0.84 
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The comparative evaluation of model performance 

highlighted several important insights into the effectiveness of 

various machine learning algorithms for predicting 

hydroponic lettuce growth patterns. Among the assessed 

models, Gradient Boosting (GB) exhibited the highest 

predictive accuracy, achieving the lowest RMSE (0.286) and 

the highest R² (0.92). This result confirms GB's superior 

capability in capturing complex, effectively capturing non-

linear relationships within the dataset, establishing it as the 

most reliable model for predicting hydroponic growth. 

Additionally, the comparison of MAE and RMSE values 

across models showed that MAE values were consistently 

lower than RMSE, indicating that while extreme 

mispredictions existed, they were not dominant enough to 

significantly impact overall model performance. This suggests 

that the models performed well in general but may have had 

occasional outliers affecting RMSE more than MAE. 

Conversely, the SVM demonstrated the lowest predictive 

performance, recording an RMSE of 0.527 and an R² value of 

0.80. This underperformance is likely attributed to SVM’s 

sensitivity to high-dimensional feature spaces and the lack of 

adequate kernel tuning, which may have prevented the model 

from effectively separating complex hydroponic growth 

patterns. These findings underscore the critical role of 

selecting appropriate machine learning techniques and fine-

tuning model parameters to enhance predictive robustness and 

reliability in hydroponic systems. 

 

3.4.2 Comparison with the existing works 

This section compares the proposed algorithm model with 

similar studies conducted previously. Three studies were 

chosen for comparison: Sulaiman et al [1], Mokhtar et al. [12], 

Musleh et al. [16] , and Ahsain et al [55]. These studies were 

considered comparative because they used similar algorithm 

models. In a survey by Musleh et al. [16], the machine learning 

algorithms employed in this study included K-NN, SVM, RF, 

and GB. Among these, the SVM achieved the highest accuracy 

of 87% without the application of hyperparameter tuning. In 

comparison, the proposed model attained the highest accuracy 

of 93% using the Gradient Boosting Classifier following 

hyperparameter tuning. Sulaiman et al. [1] used multiple 

machine-learning algorithms, including the four used in this 

study. The Gradient Boost Classifier achieved the highest 

accuracy with an accuracy of 89% without performing 

hyperparameter tuning. Ahsain et al. [55] used an ensemble 

technique with the same three algorithms as the proposed 

model: K-NN, SVM, and RF. The highest accuracy (99.6 %) 

was achieved using the SVM algorithm. 

Table 14 presents a comparison of the accuracy results 

obtained from the algorithm model used in the proposed study 

with those of previous work. 

 

Table 14. Model evaluation accuracy after fine-tuning 

 

Model 
Musleh et al. [1] 

Accuracy 

Ahsain et al. [52] 

Accuracy 

Sulaiman, et al. [1] 

Accuracy 

Mokhtar et al. [53] 

Accuracy (RMSE) 

This Study 

Accuracy 

Gradient Boosting 

Classifier 
82% 89% - 8.88g (XGBoost) 93% 

Random Forest 80% 89% 98% 12.89g 90% 

Support Vector 

Machine 
87% 84% 99% 

9.55 (Support Vector 

Regressor) 
80% 

K-Nearest 

Neighbors 
83% 85% 99% - 84% 

 

As presented in Table 14, which summarizes the model 

evaluation accuracy after fine-tuning, Musleh et al. [16] found 

that the SVM algorithm was the most effective in their study, 

achieving a total accuracy of 87%. Similarly, Ahsain et al. [55] 

applied multiple algorithms, including four used in this study. 

They reported that the GB and RF models attained an accuracy 

of 89%. Meanwhile, Sulaiman et al. [55] did not employ the 

Gradient Boosting Classifier but instead utilized three similar 

algorithms. Their study leveraged ensemble learning 

techniques to develop hybrid predictive models, integrating 

techniques such as bootstrap aggregating (bagging), voting, 

and stacking. These ensemble methods were chosen for their 

effectiveness in improving model accuracy and reducing 

overfitting by combining predictions from multiple models. 

The ensemble approach demonstrated high accuracy, with the 

K-NN and SVM models attaining an accuracy rate of 99%. In 

the proposed study, among the four algorithm models used, the 

GB proved to be the most effective model following 

hyperparameter tuning, reaching an accuracy of 93%. Mokhtar 

[12] also conducted research on yield prediction for celery 

utilized four machine learning models: Deep Neural Networks 

(DNN), Xtreme Gradient Boosting (XGB), RF, and Support 

Vector Regressor (SVR). Their study collected harvest data 

from three hydroponic systems 50 days after planting over two 

years, using three scenarios that combined measured input 

variables. The key distinction between Mokhtar's study and 

the present research lies in the focus areas, collected datasets, 

and machine learning modelling methods. Regarding model 

evaluation, Mokhtar's study employed Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), and R² as 

evaluation metrics to assess model performance, whereas the 

present study employed evaluation metrics, a confusion 

matrix, and RMSE. The results from Mokhtar's study indicated 

that in Scenario 3, The XGBoost (XGB) model yielded the 

lowest RMSE value of 8.88 g, followed by the Support Vector 

Regression (SVR) model with an RMSE of 9.55 g. In contrast, 

the RF model in Scenario 1 exhibited the highest RMSE value 

at 12.89 g. 

 

 

4. CONCLUSIONS 

 

Four machine learning methods were used in this study to 

estimate lettuce crop growth patterns in a NFT hydroponic 

system: GB, RF, K-NN and SVM. Hyperparameter tuning was 

performed to optimize model performance, significantly 

improving accuracy across all models. GB showed the highest 

improvement in testing accuracy, increasing from 92.2% to 

93.4% (+1.2%), followed by R F, which improved from 89.6% 

to 90.4% (+0.8%). The SVM model showed a 4.7% increase 

from 75.8% to 80.5%, while K-NN achieved the highest 

improvement, rising from 79.9% to 84.8% (+4.9%). These 
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findings underscore the significance of fine-tuning in 

improving predictive accuracy, thereby enhancing the 

reliability of the models for monitoring hydroponic crop 

growth. 

The Root Mean Square Error (RMSE) was computed as a 

measure to evaluate the performance of the model, with lower 

values indicating higher prediction accuracy. Gradient 

Boosting (GB) had the lowest RMSE (0.286), confirming its 

strong predictive ability, followed by RF (0.369), K-NN 

(0.466), and SVM (0.527), which had the highest error. 

Additionally, comparisons with Mean Absolute Error (MAE) 

and R² scores provided a broader evaluation, The results 

indicate that Gradient Boosting (GB) demonstrated the highest 

overall performance, achieving an R² value of 0.937, while R 

F ranked second with an R² of 0.904. These findings suggest 

ensemble methods, particularly GB and RF, are more robust 

for handling complex hydroponic datasets. 

Beyond model evaluation, the study's findings have 

practical applications in precision agriculture and smart 

hydroponic farming. The predictive models developed can be 

integrated into automated hydroponic monitoring systems, 

enabling farmers to optimize nutrient delivery, adjust 

environmental conditions, and improve crop yield predictions. 

Due to its superior performance, the GB model can be used in 

real-time hydroponic systems to detect early signs of 

suboptimal growth conditions, reducing waste and improving 

farming efficiency. Furthermore, understanding the 

relationships between nutrient levels and plant growth allows 

for more sustainable and cost-effective hydroponic practices. 

Nevertheless, this study has certain limitations. The dataset 

was gathered from a single location with three nutrient 

patterns, which may restrict its generalizability. Future 

research should consider incorporating larger and more 

diverse datasets to enhance the robustness and applicability of 

the model. Additional features, such as CO₂ levels, root 

oxygenation, and nutrient uptake rates, could enhance 

prediction accuracy. Moreover, deep learning techniques like 

LSTM and CNNs could be explored for time-series 

forecasting, and real-world implementation through IoT-based 

monitoring systems would allow for continuous model 

refinement. Moving forward, integrating larger datasets, deep 

learning models, and real-time deployment strategies will be 

key to advancing machine learning applications in precision 

hydroponics. 
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TP true positives 

TN true negatives 

FP false positives 

FN false negatives 
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