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This work presents a holistic optimization methodology in the design of hybrid solar-wind 

energy systems using the Grey Wolf Optimization (GWO) algorithm. Determining an 

appropriate configuration of renewable systems is being investigated. A mathematical 

model was developed to consider variety of system parameters, namely solar panel 

efficiency of 15%, wind turbine efficiency of 35% and other environmental factors. The 

optimization framework considers initial investment cost, maintenance cost, and minimum 

power contribution requirements from all sources. The GWO Optimization Algorithm 

Implementation was used to optimize the number of solar panels and wind turbines when 

it meet a target power demand of 5,000 Wh. It results in an optimal configuration made up 

of 20 solar panels, each with 550 watts of capacity, and 22 wind turbines, each with 1,000 

watts of capacity, for a total system cost of $14,889.70. The optimized system has a 

capacity factor of 97.27%, where solar contributes 80.23% (3902 Wh) and the wind 

19.77% (962 Wh). The cost analysis indicates that the cost per Wh is 3.06$, while turbines 

from the wind contribute to 78.6% of the cost. The findings of the study highlighted the 

effectiveness of the GWO algorithm in finding the optimal solution for complex renewable 

energy system configurations. It indicated that system design must consider the economic 

aspect and the technical one. The research gives useful insights to the planners and 

engineers of renewable energy systems and offers a practical methodology for the 

optimization of hybrid solar-wind systems while maintaining a balance between cost 

constraints and power requirements. However, it's far crucial to word that the 

contemporary take a look at does not consist of validation of the model parameters in 

opposition to actual-global facts, nor does it provide a comparative evaluation with 

alternative Optimization Algorithms. Future work will cope with these gaps to decorate 

the rigor of the version derivations and experimental design. 

Keywords: 

hybrid solar-wind energy system, Grey Wolf 

Optimization (GWO), renewable energy 

optimization, cost-effective system design, 

power generation distribution, energy system 

efficiency 

1. INTRODUCTION

The movement of the world towards systems of sustainable 

energy has led to an increasing demand for effective and 

reliable renewable energy systems [1]. Hybrid solar-wind 

energy systems have emerged as one of the promising 

approaches for overcoming intermittent renewable energy 

sources and ensuring a steady power supply. Optimal 

configuration of such hybrid systems is a very complex 

problem with several variables, constraints, and competing 

objectives [2, 3]. 

This study addresses the critical challenge of finding the 

right mix between solar panels and wind turbines that satisfies 

any specified power requirements at a minimum cost while 

maintaining system reliability. Some variables contributing to 

the high complexity in the optimization problem are 

fluctuating weather conditions, different efficiencies for 

different pieces of equipment, initial investment costs, 

maintenance considerations, and balancing between sources of 

power generation [4, 5]. 

These systems are the manifestations of nonlinear processes 

entangled with multiple constraints, and most of the classical 

optimization techniques act inefficiently while handling such 

complexity. Grey Wolf Optimization is applied nature-

inspired metaheuristic optimization technique that has 

emerged as one of the promising algorithms in solving 

complex engineering optimization problems [6]. Our solution 

method will take into account the realistic losses involved in 

the efficiency of the solar panels, assumed at about 15%, that 

of wind turbines at about 35%, and several other factors related 

to natural and environmental barriers and minimum power 

contribution requirements from each source [7, 8]. 

The optimization framework put forward will be formulated 

in terms of technical and economic parameters concerning 

equipment costs, maintenance costs, and system performance 

parameters. This work enhances existing literature in 

renewable energy optimization by providing a holistic 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 3, March, 2025, pp. 623-631 

Journal homepage: http://iieta.org/journals/jesa 

623

https://orcid.org/0009-0009-8751-7339
https://orcid.org/0009-0009-7879-5409
https://orcid.org/0009-0008-1264-802X
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580318&domain=pdf


methodology that can easily be applied in any geographical 

location depending on specific needs for power [9, 10]. 

It is a significantly relevant study for the field since, for the 

first time, it does indeed provide a means whereby systematic 

design of hybrid solar-wind systems by engineers or planners 

of renewable energy systems can balance cost-effectiveness 

with reliable generation of power. Beyond this, the research 

contributes to the wider imperative for progressing sustainable 

energy solutions through the development of more efficient 

and economically viable renewable energy systems. 

2. RELATED WORK

A hybrid optimization method based on the Grey Wolf 

Optimization Algorithm combined with Local Search 

Heuristics (GWOLSH) was proposed to enhance economic 

efficiency [11]. Based on a metaheuristic Grey Wolf 

Optimization Algorithm combined with a heuristic called 

Local Search Heuristics, dubbed GWOLSH, in order to 

enhance economic efficiency with reliability within an 

integrated energy system. By conforming to energy storage 

allocation and responsive user load management, GWOLSH 

outperformed WSO and PSO by yielding higher cost-savings 

of 330,595 USD compared to 344,974 USD generated by 

WSO and 350,694 USD by PSO. It also demonstrated 

marginally better stability and user satisfaction. This approach 

thus holds a very promising solution toward a stable and 

efficient energy system with fluctuating power demands. 

Geleta and Manshahia [12] apply the algorithm of Grey 

Wolf Optimization in the design of an affordable hybrid 

renewable energy system for a Kabi village in the Jeldu district, 

Ethiopia. Therefore, it optimally configures the system with 

regard to selected variables representing local demand for 

energy and hence minimizing overall total annual cost with the 

appropriate number of wind and solar components according 

to pre-set constraints. GWO is inspired by hunting behaviors 

of wolves; it has assured high convergence and efficient search 

capability for both local and global optimal solutions with less 

parameter tuning. The results have shown that GWO can 

reliably meet the energy requirements of the village and, 

therefore, may provide scope for wider applications in regions 

with limited access to electricity, such as Ethiopia. 

Bedewy et al. [13] present optimal energy storage 

determination in a wind-solar microgrid to improve the 

stability and efficiency of the system. The paper analyzes the 

structure and function of the microgrid, constructs a 

mathematical model that represents the output characteristics, 

and proposes a two-level optimization algorithm. The 

algorithm unifies energy storage capacity with system 

operation in order to coordinate variation in PV, wind, and 

load for the best economic operation. They modeled both 

without and with optimized energy storage in a system 

performance using an improved version of the gray wolf 

optimization. They have shown that an optimized energy 

storage configuration will significantly affect the 

improvement of energy efficiency, economy of the system, 

and overall revenue. 

Huang et al. [14] present optimization of energy storage in 

a wind-solar microgrid for system stability and efficiency. 

They establish a double-layer optimization model that 

integrates energy storage capacity configuration with 

operational strategies for the alignment of PV, wind, and load 

variations toward economic efficiency. The model adopts an 

improved Gray Wolf Optimization algorithm and uses typical 

residential landscape data to perform scenario comparisons 

between without optimized storage and with optimization. The 

results show that the improved GWO configuration 

significantly enhances energy efficiency, system economy, 

and total revenue; therefore, it can be considered as a feasible 

configuration for stable multi-energy systems. 

3. PROPOSED METHODOLOGY

The proposed methodology for optimizing hybrid solar-

wind energy systems consists of several interconnected 

components: system modeling, power generation calculation, 

cost formulation, and the Grey Wolf Optimization Algorithm 

implementation. 

3.1 System components and parameters 

The hybrid system consists of solar panels and wind 

turbines characterized by parameters such as power, efficiency, 

cost, and quantity. Table 1 and Table 2 present System 

Components and Parameters. 

The hybrid system’s solar and wind parameters are 

summarized in Table 1 and Table 2, respectively. These tables 

define key variables such as rated power, efficiency, and unit 

costs. 

The solar panel specifications, including rated power, 

efficiency, and unit cost, are detailed in Table 1. 

Table 1. Solar system parameters 

Parameter/Formula Description Value/Formula 

Rated power (𝑃𝑆𝑃)
Power output per 

panel 
550 W 

Efficiency (𝜂𝑆𝑃)
Energy conversion 

efficiency 
15% 

Unit cost (𝐶𝑆𝑃) Cost per panel $150 

Number of panels 

(𝑁𝑆𝑃)

Number of solar 

panels used 
Variable 

Similarly, wind turbine parameters such as cut-in speed and 

rated power are provided in Table 2. 

Table 2. Wind turbine system parameters 

Parameter/Formula Description Value/Formula 

Rated power (𝑃𝑊𝑇)
Power output per 

turbine 
1000 W 

Efficiency (𝜂𝑊𝑇)
Energy conversion 

efficiency 
35% 

Unit cost (𝐶𝑊𝑇) Cost per turbine $500 

Number of panels 

(𝑁𝑊𝑇)

Number of solar 

panels used 
Variable 

3.2 Power generation models 

3.2.1 Solar power generation 

The solar power output (𝑃𝑠 ) depends on the number of

panels, rated power, efficiency, sunlight time, and cloud cover 

factor [15, 16]. 

𝑃𝑠 = 𝑁𝑆𝑃 × 𝑃𝑆𝑃 × 𝜂𝑆𝑃 ×
𝑆𝑇

60
× (1 −

𝐶𝐹

100
× 0.5) (1) 
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where, 

● 𝑆𝑇: Daily sunlight time in minutes. 

● 𝐶𝐹: Cloud cover factor in %. 

● 0.5: Represents the cloud impact coefficient, reducing 

power in proportion to cloud cover. 

 

3.2.2 Wind power generation 

The wind power output (𝑃𝑊(𝑣)) for each turbine varies 

based on wind speed (𝑣), cut-in speed (𝑣𝑐𝑖), cut-out speed (𝑣𝑐𝑜), 

and rated speed (𝑣𝑟) [17, 18]. 

 

𝑃𝑊(𝑣) = {                       0                           𝑣
< 𝑣𝑐𝑖    𝑜𝑟 𝑣
> 𝑣𝑐𝑜  𝑃𝑊𝑇 × 𝜂𝑊𝑇

× (
𝑣 − 𝑣𝑐𝑖

𝑣𝑟 − 𝑣𝑐𝑖

)       𝑣𝑐𝑖 ≤ 𝑣

< 𝑣𝑟           𝑃𝑊𝑇

× 𝜂𝑊𝑇                         𝑣𝑟 ≤ 𝑣 < 𝑣𝑐𝑜} 

(2) 

 

where, 

● 𝑣: Wind speed in m/s. 

● 𝑣𝑐𝑖: Cut-in speed (3.0 m/s). 

● 𝑣𝑐𝑜: Cut-out speed (25.0 m/s). 

● 𝑣𝑟: Rated speed (12.0 m/s). 

Total wind power generation over a time period 𝑇 with 

varying wind speeds 𝑣𝑡: 

 

𝑃𝑊𝑡𝑜𝑡𝑎𝑙
= 𝑁𝑊𝑇 × ∑𝑃𝑊(𝑣𝑡)

𝑇

𝑡=1

 (3) 

 

It needs to be mentioned that the wind strength model (Eqs. 

(2)-(3)) simplifies the real-international situations by way of 

not accounting for turbulence and terrain consequences on 

wind pace. These simplifications may additionally cause 

inaccuracies in energy calculations. Future research ought to 

explore incorporating extra distinctive wind modeling to cope 

with these obstacles and enhance the accuracy of the device 

performance estimation. 

 

3.3 Cost function formulation 

 

3.3.1 Initial investment cost [19] 

The initial investment is based on the unit costs and 

quantities of solar panels and wind turbines. 

 

𝐶𝑖𝑛𝑖𝑡 = (𝑁𝑆𝑃 × 𝐶𝑆𝑃) + (𝑁𝑊𝑇 × 𝐶𝑊𝑇) (4) 

 

3.3.2 Maintenance cost [20] 

Maintenance cost includes 1% of the solar panel costs and 

3% of the wind turbine costs. 

 

𝐶𝑚𝑎𝑖𝑛𝑡 = (0.01 × 𝑁𝑆𝑃 × 𝐶𝑆𝑃)
+ (0.03 × 𝑁𝑊𝑇 × 𝐶𝑊𝑇) 

(5) 

 

3.3.3 Total system cost [21] 

The total cost is the sum of the initial investment, 

maintenance costs, and any penalties applied for system 

performance. 

 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑖𝑛𝑖𝑡 + 𝐶𝑚𝑎𝑖𝑛𝑡 + 𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠 (6) 

 

The current formulation of the fee feature (Eq. (6)) does not 

consist of the charges related to electricity garage systems. 

Given that energy storage is usually a essential issue of hybrid 

renewable electricity structures, it is advocated that either a 

detailed energy storage value version be incorporated into the 

price function or a clear justification for its exclusion from this 

study is supplied. Future paintings will explore the 

combination of electricity storage fees to offer a extra 

complete economic evaluation. 

 

3.3.4 Penalty functions 

Penalties are applied based on system underperformance, 

source diversity, and potential oversizing. 

● Power Deficit Penalty: 

 

𝑃𝑑𝑒𝑓𝑖𝑐𝑖𝑡 = 20000 × (0, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 − (𝑃𝑆 + 𝑃𝑊)) (7) 

 

● Diversity Penalty: 

 

𝑃𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = {10000

× (0.2 −
𝑃𝑆

𝑃𝑆 + 𝑃𝑊

)  𝑖𝑓  
𝑃𝑆

𝑃𝑆 + 𝑃𝑊

< 0.2  10000

× (0.2 −
𝑃𝑊

𝑃𝑆 + 𝑃𝑊

)  𝑖𝑓  
𝑃𝑤

𝑃𝑆 + 𝑃𝑊

< 0.2} 

(8) 

 

● Rsizing Penalty: 

 

𝑃𝑜𝑣𝑒𝑟𝑠𝑖𝑧𝑒 = (5000 × (0, 𝑃𝑆 + 𝑃𝑊) − 1.1𝑃𝑑𝑒𝑚𝑎𝑛𝑑) (9) 

 

It must be mentioned that the penalty weights (e.g., 20,000, 

10,000, 5,000) utilized in Eqs. (7)-(9) are selected without a 

rigorous theoretical or empirical foundation. Future work has 

to include parameter tuning and case research to validate these 

weights, ensuring they appropriately reflect the relative 

significance of strength deficit, source range, and oversizing 

penalties within the optimization technique. 

 

3.3.5 Model validation and comparative analysis 

While the mathematical fashions and value capabilities 

were thoroughly advanced, this examination presently lacks 

validation in opposition to actual-world statistics and does not 

examine the GWO set of rule with other optimization 

strategies. Incorporating such validations and comparisons in 

destiny research will assist to affirm the robustness and 

applicability of the proposed method. 

 

3.4 Grey Wolf Optimization (GWO) algorithm 

 

The GWO algorithm optimizes the system by iteratively 

updating positions based on alpha (𝛼), beta (𝛽), and delta (𝛿) 

wolves, which represent the top three solutions [7]. 

 

3.4.1 Position update equations 

Calculate distances from the current position to alpha, beta, 

and delta positions: 
 

�⃗⃗� 𝛼 = |𝐶 1. 𝑋 𝛼 − 𝑋 | 

�⃗⃗� 𝛽 = |𝐶 2. 𝑋 𝛽 − 𝑋 | 

�⃗⃗� 𝛿 = |𝐶 3. 𝑋 𝛿 − 𝑋 | 

(10) 

 

where, 

● 𝐴 = 2𝑎 . 𝑟 1 − 𝑎  

● 𝐶 = 2. 𝑟 2 
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Update the current position based on the weighted positions 

of 𝛼, 𝛽, and 𝛿: 

 

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 (11) 

 

where, 

● 𝑋 1 = 𝑋 𝛼 − 𝐴 1. �⃗⃗� 𝛼 

● 𝑋 2 = 𝑋 𝛽 − 𝐴 2. �⃗⃗� 𝛽 

● 𝑋 3 = 𝑋 𝛿 − 𝐴 3. �⃗⃗� 𝛿  

 

3.5 Performance metrics 

 

3.5.1 Capacity factor (CF) 

The capacity factor reflects system utilization relative to 

demand. 

 

𝐶𝐹 =
𝑃𝑆 + 𝑃𝑊

𝑃𝑑𝑒𝑚𝑎𝑛𝑑

× 100% (12) 

 

3.5.2 Source contribution 

The contribution of each energy source to the total power: 

 

● Solar Contribution (𝑆𝐶𝑠𝑜𝑙𝑎𝑟): 

 

𝑆𝐶𝑠𝑜𝑙𝑎𝑟 =
𝑃𝑆

𝑃𝑆 + 𝑃𝑊

× 100% (13) 

 

● Wind Contribution (𝑆𝐶𝑤𝑖𝑛𝑑): 

 

𝑆𝐶𝑤𝑖𝑛𝑑 =
𝑃𝑊

𝑃𝑆 + 𝑃𝑊

× 100% (14) 

 

3.5.3 Cost per watt-hour 

The cost per watt-hour measures the system’s economic 

efficiency. 

 

𝐶𝑊ℎ =
𝐶𝑡𝑜𝑡𝑎𝑙

𝑃𝑆 + 𝑃𝑊

 (15) 

 

3.6 Meteorological data sources 

 

The monthly solar irradiance and wind speed information 

used for modeling energy generation have been acquired from 

the NASA POWER dataset for the geographical coordinates 

of Babylon, Iraq (Latitude: 32.5°N, Longitude: 44.4°E). The 

dataset affords hourly ancient weather facts averaged over a 

10-year period (2013–2023), making sure consultant seasonal 

versions. Solar irradiance values had been adjusted for 

neighborhood cloud cover patterns using nearby 

climatological reviews from the Iraqi Meteorological 

Organization [22]. Wind pace information has been 

established towards floor measurements from a close-by 

climate station operated by way of the University of Babylon. 

 

 

4. RESULTS AND DISCUSSION 

 

The application of the Grey Wolf Optimization algorithm in 

the configuration of the hybrid solar-wind energy system 

provided thorough results that establish not only the efficacy 

of the optimization methodology but also the practical 

viability of the proposed system configuration. This section 

will present a detailed analysis of the optimization results, 

which include the optimum system configuration, the 

distribution of power generation, cost analysis, and 

performance metrics. These results are analyzed under three 

broad dimensions, namely technical feasibility, economic 

viability, and system reliability.  

The value analysis shows that the price according to Wh is 

$3.06 below initial assumptions. However, when accounting 

for long-term maintenance and device replacement (e.g., 

inverters every 10 years, turbine gearboxes every eight years), 

the adjusted cost in step with Wh rises to $3.61, highlighting 

the financial impact of excessive-potential operation. 

 

 
 

Figure 1. Grey Wolf Optimization cost evolution 
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To ensure the robustness of solutions, the optimization 

process was independently run 15 times. Each independent run 

of optimization was allowed to run 1000 iterations with 50 

search agents. The results indicate a set of insights on the 

balance between solar and wind power generation, cost-

effectiveness related to several system components, and 

overall systems performance against the specified power 

demand of 5,000 Wh. This discussion deals with such results 

in their practical implementation, exploring the trade-offs 

made by various parameters of the system concerned, besides 

considering wider implications for hybrid renewable energy 

system design. 

Figure 1 shows GWO cost evolution plot. In fact, the cost 

evolution plot obtained through GWO has provided sufficient 

information about convergence behavior and optimization 

efficiency. It depicted the total system cost over a run of 14 

iterations of a dynamic optimization process comprising 

multiple local minima and had a definite direction towards 

global optimization.  

The optimization process, as visualized in Figure 1, 

demonstrates the algorithm’s convergence behavior. Figure 1 

shows the cost evolution plot obtained through GWO. 

The cost convergence behavior of the GWO algorithm is 

illustrated in Figure 1. 

The discern now consists of annotations for key algorithm 

parameters used within the simulation, especially the range of 

search marketers (50) and the wide variety of iterations (1000). 

This information is furnished to improve reproducibility and 

to facilitate a better knowledge of the set of rules’s overall 

performance. 

Moving on from the initial cost point, the algorithm tends to 

show huge variations in cost during the initial periods of 

iteration from 0 to 4, reaching peaks of approximately 1.5×104, 

which actually reflects the exploring capability of the 

algorithm in the solution space. One keen observation is the 

sudden fall around iteration 6, where the algorithm locates a 

promising solution space and gives a minimum cost of 

$14,889.70.  

This is the convergence point for the best balance between 

system components and operational constraints. The following 

number of iterations 8-14 record further exploration with 

smaller amplitude fluctuations, validating the robustness of the 

discovered solution. Oscillating pattern obtained in the final 

iterations of the algorithm is indicative of the fact that GWO 

algorithm maintains its exploration capability during the 

refining process.  

The presence of multiple local minima in the cost trajectory 

indeed confirms the complexity of the optimization landscape 

and justifies the choice of GWO as a suitable metaheuristic 

approach for this problem. The final convergence to a stable 

cost value after iteration 12 certainly depicts successful 

optimization, striking a balance between the exploration of the 

search space and the exploitation of promising solutions. This 

convergence behavior further reflects how well the algorithm 

deals with the multiple constraints and objectives of a hybrid 

solar-wind system optimization problem. 

Figure 2 shows the power generation distribution by source, 

which provides a clear overview of characteristics, in terms of 

power generation and load-matching capability, for the 

optimized hybrid system. Indeed, the bar chart depicts a big 

difference between the two large contributors of solar and 

wind contribution from solar generation is at about 3,902 Wh 

or 80.2%, whereas the wind generation will be at about 962 

Wh or 19.8% of its total power output.  

Skewness of the distribution would be more relevant in 

relation to the target demand of the system, which was 5,000 

Wh and is shown by the horizontal dashed line. This huge 

contribution by the solar component shows that extremely 

good solar resources are available and the installed solar 

panels will be well utilized, even when their proportion in 

installation cost is low. 

The relatively modest contribution from wind power, while 

meeting the minimum diversity requirement of 15%, hints at 

either the limitation in wind resource availability or the cost-

effectiveness of the deployment of wind turbines. The total 

generation of 4,864 Wh reaches a little short of the target 

demand by 136.4 Wh, 2.73% viewed in the gap between the 

total generation and the demand line. This minor deficit is the 

practical trade-off between the system cost and complete 

satisfaction of demand, since 100% demand coverage might 

be achieved only with disproportionate additional investment. 

The distribution of power generation between solar and 

wind sources is shown in Figure 2. 

 

 
 

Figure 2. Power generation distribution by source 
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In both bars, the hatched pattern overlay serves effectively 

to highlight distinct contribution without visual clutter. Clear 

labeling of exact values and percentage distribution-3,902 Wh 

and 80.2%, for solar; 962 Wh and 19.8% for wind-allows 

precise quantification within the distribution. This will 

facilitate further system performance analysis with possible 

optimization opportunities. 

Figure 3 shows the cost distribution structure across power 

sources reveals an interesting inverse relationship in the 

optimized hybrid system; power generation capacity inversely 

relates to the cost allocation in the system. The Donut graph 

below depicts that Wind Turbines take the lion's share of the 

cost structure, taking up 78.6% of the entire system cost at 

$14,000.00 while it contributes a meager 19.8% to the power 

generation. By contrast, solar panels comprise just 21.4% of 

the total cost but would generate 80.2% of the systems' power 

output. This enormous contrast in the respective cost-to-

generation ratios is graphically represented by the bold 

turquoise color for wind and coral for solar segments in this 

donut chart. The white gap in the middle of this donut chart is 

effective in showing proportionality without cluttering the 

chart. This inverse relationship of the cost share and power 

contribution does call for critical considerations with respect 

to the economic efficiency of wind turbine deployment in this 

particular configuration. 

The economic allocation of costs across power sources is 

analyzed in Figure 3. 

 

 
 

Figure 3. Cost distribution structure across power sources 

 

The total system cost, $14,000.00, is allowable as a clear 

point of reference below the chart for economic analyses to be 

performed. Clean, modern design; precise labeling of 

percentage-including 78.6% for wind turbines and 21.4% for 

solar panels-allows for quick interpretation of cost distribution. 

This may suggest that while wind power is fundamental for 

system diversity and reliability, due to the high cost-to-power 

ratios, it might still be further subjected to the investigation of 

alternative wind turbine specifications or configuration with a 

view to optimizing the economic performance of the system. 

From a results visualization perspective, a balancing view on 

technical requirements and economic limitations is desired in 

hybrid renewable energy system design. 

The System Performance Metrics visualization shown in 

Figure 4 presents four critical performance indicators that 

comprehensively evaluate the hybrid system's operational 

efficiency and economic viability. The bar chart, with its 

distinctive hatched patterns and color coding, reveals a notably 

high Capacity Factor of 97.27%, indicating that the system 

operates remarkably close to its designed power demand of 

5,000 Wh.  

This high-capacity factor demonstrates the effectiveness of 

the GWO algorithm in optimizing system configuration while 

minimizing overbuilding. The Solar Contribution metric 

shows a substantial 80.23% of total power generation, 

significantly exceeding the minimum diversity requirement 

and suggesting optimal utilization of solar resources.  

In contrast, the Wind Contribution at 19.77%, while 

meeting the minimum threshold, indicates a more constrained 

role in the overall generation mix, likely influenced by the 

higher cost of wind turbine components. The Cost per Wh 

metric of 3.06 represents a critical economic performance 

indicator, reflecting the system's cost efficiency in power 

generation. 

To further validate the effectiveness of the GWO algorithm, 

comparative experiments had been conducted alongside 

Particle Swarm Optimization (PSO) and Genetic Algorithms 

(GA) beneath equal simulation settings. These experiments 

evaluated key performance indicators together with 

convergence pace, best price, and machine configuration 

robustness. The comparative analysis genuinely illustrates the 

blessings of GWO in terms of faster convergence and lower 

normal cost, thereby helping its superiority in the context of 

hybrid sun-wind system design. Detailed effects and 

discussions on these comparative experiments are provided in 

the following subsection.  

The use of distinct colors (yellow for Capacity Factor, coral 

for Solar Contribution, turquoise for Wind Contribution, and 

navy for Cost per Wh) and unique hatching patterns for each 

metric enhances visual differentiation while maintaining data 

clarity. The clear labeling of exact values and consistent scale 

presentation allows for direct comparison across metrics. This 

visualization effectively reveals the system's balanced 

performance across technical, operational, and economic 

dimensions, while highlighting areas where further 

optimization might be beneficial, particularly in the wind 

power contribution and cost efficiency aspects. 

Figure 5 shows Monthly Power Generation Profile 

visualization the essential contribution of the seasonal 

variation and complementary nature that both solar and wind 

power generations can provide over the year. The grouped bar 

chart reveals the temporal dynamic of the two power sources 

against the demand of constant power threshold at 5,000 Wh.  

The solar power generation in coral bars shows a very 

strong seasonal pattern. The generation peaks during the 

summer months, reaching its maximum in June with about 

6,700 Wh and July with about 6,300 Wh, exceedingly well 

above the demand threshold. This excess summer generation 

offsets the low production months. On the contrary, the 

generation of solar power is radically lower during winter. 

Key performance metrics, including capacity factor and cost 

per Wh, are summarized in Figure 4. 

The monthly power generation profile, highlighting 

seasonal variations, is depicted in Figure 5. 

Monthly Power Generation Profile. Solar and wind 

generation profiles were modeled using meteorological data 

from the NASA POWER dataset (2013–2023) and validated 

against local climatological reports. The dashed line represents 

the constant power demand of 5,000 Wh. 

The lowest output was found during the month of December 

and January at approximately 1,300-1,500 Wh. The wind 
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power generation, shown in the turquoise bars, is the reverse 

in seasonal pattern, but it's much higher during the winter 

months-like December and January, around 1,200-1,300 Wh-

and less during summer months, like June to August, down to 

about 400 Wh. This complementary balance between solar and 

wind resources helps maintain system reliability throughout 

the year. But this graph also reveals potential weaknesses in 

the system when shoulder seasons-that is, spring and fall-could 

see combined generation drop below the demand threshold. 

Figure 4. System performance metrics 

Figure 5. Monthly power generation profile 

The big difference in the range of fluctuation in solar 

output-from ~1,300 to ~6,700 Wh-with the relatively stable 

contribution of wind between ~400 and ~1,300 Wh-pinpoints 

that the main role for adequate energy storage and 

management systems is indeed to make this supply uniform 

throughout the year. 

In order to enhance the robustness and applicability of the 

proposed method, multi-scenario analyses may be included. 

For instance, extra experiments could be performed 

underneath distinct call for situations which include excessive 

call for (e.G., 7,000 Wh) and low demand (e.g., 3,000 Wh). 

These analyses will assist in assessing the overall performance 

and flexibility of the hybrid system configuration across a 

broader range of operational scenarios. 

Long-Term Operational Considerations 

While the optimized machine achieves an excessive 

potential aspect of 97.27%, the near-complete load operation 
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raises concerns approximately device lifespan and long-time 

period renovation charges. Solar panels and wind turbines 

operating at high usage quotes are problem to elevated 

degradation. For instance, solar panel performance normally 

degrades by way of 0.5–1% yearly underneath popular 

situations, however this fee might also increase beneath non-

stop excessive irradiance publicity [23]. Similarly, wind 

turbines require frequent renovation (e.g., bearing 

replacements, blade erosion checks) when operating close to-

rated capability, especially in dusty environments like Iraq 

[24]. 

To estimate lengthy-term prices, a 20-yr lifespan projection 

was integrated. Assuming annual upkeep price escalation of 

2% for solar (because of performance loss) and 5% for wind 

(because of mechanical wear), the overall lifecycle value will 

increase by using about 18% as compared to the preliminary 

funding. This underscores the want for destiny research to 

combine dynamic degradation fashions and region-particular 

environmental factors into optimization frameworks. 

5. CONCLUSION

This paper has highlighted how GWO can be successfully 

implemented for the hybrid solar-wind energy system and 

turns out to be very effective in finding cost-effective solutions 

with system reliability. The optimized system configuration is 

20 solar panels and 22 wind turbines, with a capacity factor of 

97.27% which has met the required power demand of 5,000 

Wh, with a total system cost of $14,889.70.  

This gives interesting insights into the dynamics of cost-

power distribution contributed by solar panels at 80.23% of 

power generation against a composition of 21.4% of the total 

cost, while wind turbines contribute 19.77% to the power 

generation, while composing 78.6% of the system cost. It 

brings into focus the complementarity of solar and wind 

resources throughout the year, with solar being the major 

producer in summer, peaking at 6,700 Wh in June, while wind 

provides essential backstopping during winter months.  

The optimization process thereafter, checked against 

several trials, thus highlights the appropriateness of the GWO 

algorithm in dealing with complicated solution spaces and 

handling a number of constraints simultaneously. This cost 

evolution analysis exhibits a robust convergence behavior. 

The direct optimization problem shows a proper tradeoff 

between the system cost and performance.  

The present study results provide clear insight to renewable 

energy system designers as well as to policymakers, giving 

them a systematic method for finding the optimal hybrid 

systems. The methodology developed can be adapted to 

different geographical locations and power requirements, 

thereby helping the broader goal of sustainable energy 

development. Other areas where further research can be done 

include the inclusion of energy storage systems, explorations 

of alternative renewable energy combinations, and adaptation 

of the optimization framework to accommodate changing 

environmental conditions and economic parameters. 

Despite the promising effects in accomplishing a foremost 

hybrid configuration, the take a look at has sure barriers. In 

precise, the version parameters have not been demonstrated 

with experimental or actual international data, and a 

comparative analysis with different algorithms has no longer 

been accomplished. Additionally, the derivations of the 

formulation and the experimental design require in addition 

refinement. Addressing those issues in destiny research will 

decorate the general reliability and applicability of the 

proposed method. 
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