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This paper aims to enhance the signal separation accuracy of phase-sensitive optical time-

domain reflectometry (Φ-OTDR) under thermo-mechanical coupling (TMC). For this purpose, 

the Φ-OTDR signal was firstly separated by genetic algorithm-empirical mode decomposition-

nonnegative matrix factorization (GA-EMD-NMF). Then, the Kalman-proportional-integral-

derivative (PID) method was introduced to further separate the data. Taking the TMC as the 

input, a feedback model was constructed by the genetic algorithm-radial basis function (GA-

RBF) to decouple the TMC. To tackle the 3D Φ-OTDR data, a 3D speeded up robust features 

(SURF) method was developed to reconstruct the box filter and Gaussian pyramid based on 

the features of the 3D data, thereby enhancing the positioning accuracy of Φ-OTDR signal. 

Later, several experiments were carried out in a semi-anechoic room, which proved that the 

proposed method outperforms the traditional methods. The research findings shed new light 

on signal separation of Φ-OTDR. 
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1. INTRODUCTION

1.1 Phase-sensitive optical time-domain reflectometry (Φ-

OTDR) 

Proposed by Taylor and Lee in 1993, Φ-OTDR is a typical 

monitoring technique for distributed vibrations. Capable of 

positioning continuous and distributed signals, this technique 

has been widely applied to health monitoring of large 

buildings [2], perimeter security of important places [3], and 

so on. However, we hope to grasp its monitoring state more 

accuracy, understand its vibration mode better and enhance 

monitoring efficiency. Therefore, it is of great significant for 

a standard time-domain analytic expression of the Φ-OTDR 

data. The Φ-OTDR data is a distributed vibration signal. Many 

scholars have explored the signal extraction and enhanced the 

signal separation of Φ-OTDR [4, 5], yet failing to consider the 

impacts of temperature, stress and thermo-mechanical 

coupling (TMC) on the vibration mode and data purity. The 

presence of these influencing factors may disturb the 

monitoring of the target signals and lead to serious positioning 

errors [6, 7]. These problems must be solved urgently to ensure 

the effect of Φ-OTDR signal separation. 

1.2 TMC 

TMC is a common phenomenon in the vibration of new 

materials (e.g. carbon nanotube, functionally graded materials, 

magnetorheological elastomers, macro fibre composite and 

ceramic matrix composite) [8~14], electro-mechanical 

equipment (e.g. microelectromechanical system oscillators 

and surface-mounted assembly isolators) [15, 16] and actual 

facilities (e.g. flexible wicked heat pipes, largescale welded 

walls and sandwich microplates) [17~19]. Despite the absence 

of optical fibres-related techniques, all these objects exhibit 

TMC during the vibration process. This phenomenon also 

exists in Φ-OTDR applications. However, there is no report on 

the relationship between TMC and vibration mode. 

1.3 Data matching 

The data matching methods mainly fall into 1D matching 

and 2D matching. 1D matching is usually employed to process 

speech signals. Typical 1D matching approaches include 

dynamic time warping, hidden Markov method and vector 

quantization [20~25]. 2D matching mainly targets the 

grayscale and features of image signals. Popular methods for 

grayscale matching include mean absolute deviation, sum of 

absolute differences, sum of squared differences, mean square 

differences, normalized cross correlation, sequential similarity 

detection algorithm and sum of absolute transformed 

difference [26~32], while those for feature matching involves 

generalized Hough transform, speeded up robust features 

(SURF), scale invariant feature transform (SIFT) and deep 

learning [33~37]. In general, the above strategies are 

applicable to 1D or 2D data matching problems, but not the 3D 

data of Φ-OTDR (the 3D refers to time, length and TMC). 

1.4 Thesis statement 

This paper aims to enhance the signal separation accuracy 

of Φ-OTDR under TMC. For this purpose, the Φ-OTDR signal 

was firstly separated by genetic algorithm-empirical mode 

decomposition-nonnegative matrix factorization (GA-EMD-

NMF) [4]. Then, the Kalman-proportional-integral-derivative 

(PID) method was introduced to further separate the data. 

Taking the TMC as the input, a feedback model was 

constructed by the genetic algorithm-radial basis function 

(GA-RBF) to decouple the TMC. To tackle the 3D Φ-OTDR 

data, a 3D SURF method was developed to reconstruct the box 
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filter and Gaussian pyramid based on the features of the 3D 

data, thereby enhancing the positioning accuracy of Φ-OTDR 

signal. Later, several experiments were carried out in a semi-

anechoic room, which proved that the proposed method 

outperforms the traditional methods. 

 

 

2. Φ-OTDR SIGNAL SEPRARTION UNDER TMC 

 

As mentioned before, the data stored in Φ-OTDR contains 

three types of information: time, length and TMC. The 

previous research [4] has shown that signal separation is the 

first step in the extraction and processing of Φ-OTDR data. 

 

2.1 Signal separation by GA-EMD-NMF 

 

Since the Φ-OTDR data conform to the law of damping 

vibration and the law of Spalart-Allmaras (SA) turbulence, a 

damping vibration model was established in the time-TMC 

plane (Equation (1)) and an SA model was created in the 

length-TMC plane (Equation (2)) by the EMD method. 
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The two models can be superimposed into Equation (3). 

 

1 2( , ) ( ) ( )F t l f t f l= 
                                                      (3) 

 

Following the NMF algorithm, a nonnegative matrix X+ was 

determined and decomposed into two nonnegative matrices 

(W+ and H+). 

 

X W H+ + + 
                                                                   (4) 

 

where, the subscript + is the nonnegative constraint. 

To solve Equation (4), the product of matrices W and H can 

be approached by the original matrix X. 
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where, the Euclidean distance is the error between WH and X. 

This error is minimized when Equation (5) reaches the 

minimum. The iterative rules of the above equation are as 

follows: 
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Let d be a low spatial dimension that can roughly describe 

the original data. Then, d must satisfy (m+n)d≤mn. The 

matrices X, W and H are all nonnegative. 

Then, the objective function was redefined by the GA as 

follows: 
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where, J is fitness. 

For better convergence, the rotation matrix was defined as 

a quaternion: 
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The above equation can be rewritten as: 
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Note that the variation convergence steps of △f(t), △f(l) and 

△F(t,l) are 0.01, the convergence steps of q0, q1, q2 and q3 are 

0.1, and Q=q0+q1·i+q2·j+q3·k. 

 

2.2 Signal separation by Kalman PID 

 

Considering the high noise level of Φ-OTDR data, Kalman 

PID was introduced to further separate the data. The original 

signal of Φ-OTDR can be expressed as a matrix of m rows 

(time i) and n column (length j). Φ-OTDR vibration signal are 

about displacement. The velocity and acceleration can be 

obtained by subtracting the data from the adjacent position on 

the timeline: 
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where, dataij is the original data; MIij is TMC; MPij is velocity; 

MDij is acceleration. The above equation can be extended as 

follows: 
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These three length functions cannot directly derive the 

results from the mean number or the median number. Thus, the 

two numbers were obtained by the following equation. 

 

2 2 2 2

2 2 2 2

( ) [ ( ) ( ) ( )] / 3

( ) [ ( ), ( ), ( )]

mean P I D
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f l f l f l f l
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= + +


=                        (15) 

 

Then, the Kalman filter was introduced to process the 

results. The five classical equations of the filter are listed 

below. 

(1) State prediction equation: 

 

( | 1) ( 1| 1) ( )k k k k U k − =   − − + 
                       (16) 

 

(2) Covariance prediction equation: 

 
T( | 1) ( | 1)P k k k k Q− = −  +                        (17) 

 

(3) Covariance estimation equation: 

 
( | ) ( | 1) ( ) ( ( ) ( | 1))k k k k Kg k k H k k  = − +   −  −          (18) 

 

(4) Kalman gain matrix equation: 

 
T 1( ) ( | 1) [ ( | 1) +R]Kg k P k k H H P k k H −= −    −           (19) 

 

(5) State estimation equation: 

 

( | ) ( ( ) ) ( | 1)P k k E kg k H P k k= −   −
                       (20) 

 

where, k is the number of frames of successive images. 

Through Kalman filtering, the positions of the previous and 

next frames can be obtained, laying the basis for vibration 

convergence. 

According to Equation (18), the covariance matrices can be 

obtained for the time, length and TMC curves. Then, these 

matrices can be co-calculated by the following equation: 

 

min( , , )P I D   =
                                                    (21) 

 

2.3 Feedback model 

 

The Φ-OTDR vibration signals are affected by the 

temperature and stress on the fibre. Since the Φ-OTDR device 

must use a single mode fibre, it is improper to decompose the 

signals by Brillouin optical time-domain reflectometer 

(BOTDR), a popular fibre optic strain and temperature 

distributed sensing system. Here, Brillouin central frequency 

shift is combined with Rayleigh frequency shift to separate the 

information of temperature and strain [38]: 
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where, k1, k2, k3 and k4 were defined in advance. 

For the given temperature and strain, a series of feedback 

models can be established [39]: 
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where, K1 and K2 are nonnegative diagonal matrices: 
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The other form of the feedback device can be obtained by 

the state equation: 

 

4( , ) ( , )T T   =   
                                                    (25) 

 

The stability of the feedback device can be proved by the 

Lyapunov-based decision equation [40]: 
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where, P=I such that the former is a positive definite matrix. 

Taking the derivative of Equation (25), we have: 
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Hence, 
𝑑

𝑑𝑡
𝑉1,2,3,4,5,6(∆𝑇, ∆𝜀) ≤ 0 , revealing that the 

feedback devices are all stable. 

The feedback effect differs from device to device. Besides, 

the same device may output different feedbacks in the 
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decompositions of P, I and D. Then, a 6×3 weight matrix was 

constructed, and the objective function was set up as follows 

[41]: 
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The weight matrix was traversed or optimized to satisfy the 

minimum condition of the objective function. 

 

2.4 TMC 

 

TMC is an objective phenomenon arising from the 

temperature-induced stress changes. In Φ-OTDR, the effect of 

this phenomenon on vibration cannot be identified accurately 

with the existing methods. Therefore, the RBF network was 

adopted to overcome the problem. 

As a feedforward network, the RBF network usually 

consists of three layers. The first layer is an input layer 

containing the source nodes. The number of these nodes is 

determined by the dimension of the input signal. The second 

layer is a hidden layer, whose number of nodes depends on the 

specific problem. The transformation function of hidden layer 

nodes is a nonnegative and nonlinear RBF symmetric and 

attenuated for the centre point. The data of the hidden layer are 

a set of RBFs derived from the input data, each of which can 

be solved by the Gaussian basis function. The third layer is an 

output layer that responds to the input layer mode. The data 

output of the hidden and output layers both follow the 

principle of weighted superposition. The transformation is 

linear from the hidden layer to the output layer, but that from 

the input layer to the hidden layer is nonlinear. The topology 

of the RBF network is illustrated in Figure 1. 

 

 
 

Figure 1. Topology of the RBF network 

 

In this paper, the RBF network is designed as a 

regularization network. The number of input, hidden and 

output layer nodes was respectively set as N1=2, N2=2 and 

N3=n with n being the number of points on the time axis of the 

Φ-OTDR data. Let [q1, q2]T be the input of the network. Then, 

the output of the j-th hidden layer node can be expressed as: 

 
2

2

2
( ) exp ,

2
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where, �̃� is the sample data centre, a 2D vector of the Gaussian 

basis function; σ is the sample variance of the Gaussian basis 

function. Following the linear output principle, the output 

layer data can be obtained by the linear combination from the 

output to the hidden layer. 

The convergence of the RBF network can be described as: 
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2

r

P


                                                                  (30) 

 

where, P is the number of samples. 

According to the least mean squares algorithm, the weight 

of the formula can be adjusted as: 

 

max= ( )jk jw r W  − 
                                                    (31) 

 

where, W is the weight matrix from hidden layer to output 

layer; η is the learning speed; φ is a vector of hidden nodes. 

The output of each output layer node can be determined as: 
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k jk j

j

a w 
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where, wjk are the connection weights between hidden and 

output layer nodes, i.e. an N2×N3 matrix. 

Next, the GA was selected to calculate the weight matrix 

from the hidden layer to the output layer [42]. Inspired by 

natural selection and genetic mechanism, the GA can converge 

to the global optimal solution by fitness function with the 

probability of 1, without requiring derivative or other 

information. Based on the data samples in the RBF network, 

the said weight matrix can be calculated in the following steps: 

(1) Generate a set of random weights from the hidden layer 

to the output layer, treat each row in the N2×N3 matrix as a 

population, and regard each element as an independent entity 

in the population. 

(2) Encode each element with a number between 0 and 1 

with the step size of 0.1 and ensure that the sum of n elements 

in each line is 1. 

(3) Establish the fitness function according to the sample 

input: 

 

f Q W A=  −
                                                                  (33) 

 

where, f is fitness; Q is the input vector; W is the weight matrix; 

�̅� is the expected output. 

Perform continuous iterations and mutations according to 

the fitness function. Adopt the result of genetic coding when 

the fitness is reduced; otherwise, change that result. 

 

 

3. SIGNAL MATCHING UNDER DATA DEVIATION 

 

In Φ-OTDR, the TMC varies with the Rayleigh scattering 

of the light in optical fibre. The variation is intensified by the 

high level of noises. Even the same vibration source may 

generate different signals, owing to the difference in noise, 

time, length and TMC. In view of these, this section screens 

the errors in Φ-OTDR data through fuzzy c-means (FCM) 

clustering before matching the data with 3D SURF. 
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3.1 Signal matching based on 3D SURF 

 

Compared with the SIFT, the 3D SURF is a simple and fast 

algorithm to extract interest points and describe eigenvectors. 

The traditional SURF method contains five steps, namely, 

constructing Hessian matrix, calculating eigenvalue, 

constructing Gaussian pyramid, determining the principal 

direction of feature point, locating feature points and 

constructing feature descriptors. However, the traditional 

method only applies to 2D data like images. In 3D SURF, the 

applicable scope is extended to 3D data. The specific steps of 

3D SURF are introduced below. 

First, the Hessian matrix was built as a 3D model with time, 

length and TMC as the x, y and z axes, respectively: 
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Then, the Hessian matrix was filtered by Gaussian function: 
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After that, the discriminant of the Hessian matrix was 

calculated as follows: 
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=

= + +
         (36) 

 

The discriminant reflects the local maximum value, and 

determines if the current point is brighter or darker than the 

adjacent points, laying the basis for eigenvalue positioning. 

The derivation formulas of the discrete data can be expressed 

as: 

 

( , , ) ( 1, , ) ( , , )

( , , ) ( 1, , ) ( , , )

( , , ) ( 1, , ) ( , , )

Dx x y z f x y z f x y z

Dxx x y z Dx x y z Dx x y z

Dxxx x y z Dxx x y z Dxx x y z

= + −

= + −

= + −
         (37) 

 

where, the first derivative is the TMC difference between the 

two adjacent points; the second derivative is the difference 

between the two adjacent points of the first derivative; the 

third derivative is the difference between the two adjacent 

points of the second derivative. 

 

 
 

Figure 2. A typical 3D box filter 

 

In the traditional SURF, the Gaussian pyramid is 

constructed on a template using different box filters. For 3D 

SURF, the box filters were extended from 2D to 3D (Figure 2). 

The box filters are of different scales, ranging from 5×5×5 to 

21×21×21. Together, these box filters form a 3D Gaussian 

pyramid (Figure 3). 

 

 
 

Figure 3. 3D Gaussian pyramid 

 

All data points were processed through the Hessian matrix 

and Gaussian pyramid. Each data point was compared with 26 

points in the neighborhood of the scale space in Figure 4, 

where the feature points are shown in green. To identify the 

stable feature points, the feature points with weak energy and 

location error were filtered out by a pre-set threshold. 

 

 
 

Figure 4. Feature points 

 

Figure 5 shows the Haar-like features in the spherical 

neighborhood of a feature point. In the 3D neighborhood, the 

Haar-like features of all the feature points within the 60° 

pyramid were counted. Then, the neighborhood was scanned 

with 0.2 radians. The conical direction with the maximum 

value is the main direction of the feature point. 

 

 
 

Figure 5. Principal direction 
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A 4×4×4 area around the feature point was selected in the 

3D SURF algorithm, with the principal direction of the feature 

point as the direction of this area. Six Haar features of the 25 

data points were counted in each sub-area: 

 

.1 .2

.3 .4

.5 .6

,

,

,

No No

No No

No No

feature dx feature dx

feature dy feature dy

feature dz feature dz

→ →

→ →

→ →

 

 

           (38) 

 

Therefore, there were 4×4×4×6=384 descriptors. The 

Euclidean distance between two feature points was regarded 

as the matching degree. The Hessian discriminants of both 

points must be positive or negative at the same time. 

 

3.2 FCM screening of matching points 

 

In traditional SURF, the matching points are mainly 

screened by thresholding and detection of sampling 

consistency. The screening effect can be further improved by 

unsupervised clustering in machine learning. To separate 

correct and wrong data, unsupervised clustering first allocates 

datasets into different classes by similarity. The most popular 

clustering methods are k-means clustering, hierarchical 

clustering, self-organizing map and FCM clustering. 

Among them, k-means and FCM boast relatively short 

runtime and high accuracy. However, k-means has unstable 

and random initial points, which may destabilize the clustering 

results, while FCM is prone to local optimum trap due to the 

manual determination of the number of clusters. The FCM was 

adopted for the screening of matching points in 3D SURF, 

because the only object is to separate correct clusters from 

wrong clusters. The specific steps of FCM are introduced as 

follows: 

(1) Standardize the data matrix with the Euclidean distance 

between the descriptors of two matching points as the source 

data; 

(2) Establish the fuzzy similarity matrix and initialize the 

membership matrix; 

(3) Start the iteration until the target function converges to 

the minimum; 

(4) Determine the class of the data by the final membership 

matrix according to the iterative results. 

 

 

4. EXPERIMENTS 

 

 
 

Figure 6. Φ-OTDR instrument 

 

In our experiments, the Φ-OTDR instrument is an NBX-

S3000 device manufactured by the Japanese company Nebrex 

(Figure 6). The parameters of the instrument are as follows: 

sampling rate=4,000Hz, recording time=10s, recording 

distance=100m and spatial resolution=0.1m. 

The experiments were carried out in an anechoic room to 

minimize the environmental noises and ensure the vibration 

effect. The environment is shown in Figures 7 and 8. Note that 

the fibre in Figure 7 clings to the ground, and the instrument 

in Figure 8 is placed on a damping table. 

 

 
 

Figure 7. Layout of optical fibre 

 

 
 

Figure 8. Anechoic room 

 

During the experiments, the temperature and strain were 

adjusted manually. Specifically, the optical fibre was placed in 

a thermostat to regulate the temperature and the strain was 

controlled by changing the tension on the fibre. The fibre 

temperature and strain were measured by the BOTDR. 

 

4.1 Precepted distance on the length axis at different 

temperatures and strains 

 

The signals of Φ-OTDR vary with time and length. Figure 

9 presents the effect of single point knocking on the optical 

fibre. It can be seen that the peak vibration occurred at the 

vertical intersection point between the vibration source and the 

optical fibre. Besides, the signal gradually weakened from the 

intersection to each end and eventually disappeared at the end. 

Figure 10 provides the waterfall plots of four different Φ-

OTDR signals emitted from the same vibration source at 

different conditions. Note that the x axis is length and the y 

axis is time. As shown in the figure, the band width and 

brightness are positively correlated with the strain and 

negatively with the environmental temperature. 
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Figure 9. Perception model in length axis 

 

 
 

Figure 10. Waterfall plots of four Φ-OTDR signals 

 

The ranges of the Φ-OTDR signals were collected at 

different temperatures and strains. The data points and their 

residuals are recorded in Figure 11. Discrete data points were 

fitted into a curve. The value on the curve was the expected 

output. 
 

 

 
 

Figure 11. Data points and their residuals at different temperatures and strains 
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As shown in Figure 11, the signal range is positively 

correlated with the strain and negatively with the temperature, 

and the data points basically obeyed the exponential 

distribution. Moreover, the residuals between the fitted curves 

and the actual data fluctuated around the zero point, indicating 

that these curves are effective and in need of further 

improvement.  

Next, 1,000 groups of experiments were conducted with 

another vibration source to verify the above result. The 

experimental results are shown in Figure 12, where effective 

points are in black and invalid ones are in white. It can be seen 

that the RBF method achieved an accuracy as high as 99.233%. 

 

 
 

Figure 12. Results of validation experiments 

 

4.2 Precepted distance on the time axis at different 

temperatures and strains 

 

A standard 5-hammer vibration device was taken as the 

vibration source (Figures 13 and 14). The five percussion 

hammers were equally distributed on the knocker. The 

distance between two strikes was 10cm. As shown in Figure 

15, the five vibration signals were not the same on the time 

axis and should be separated. 

 
 

Figure 13. 5 percussion hammers 

 

 
 

Figure 14. Vibration source 

 

 
 

Figure 15. Vibration signals of the five hammers 

 

4.2.1 Advantage of kalman PID 

 

 
 

Figure 16. Experimental results of the six signal separation methods 

 

The four gaps, each of which is 10cm, between the five 

striking points were solved by the following six signal 

separation methods: the proportional (P) method, the integral 

(I) method, the derivative (D) method, the Kalman PID, the 
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mean PID and the median PID. As suggested by the name, the 

mean PID refers to the mean value of the P, I and D and the 

median PID refers to the median value of the P, I and D. Each 

of the six methods was trained 1,000 times in four spaces and 

subjected to 1,000 groups of experiments. The experimental 

results are displayed in Figure 16. 

As shown in Figure 16, the P, I and D methods achieved 

similar positioning effects, with the mean error and error range 

falling in 0.5~0.7cm and -0.55~0.55cm, respectively. The 

mean PID and median PID slightly outperformed the P, I and 

D methods, with the mean error and error range falling in 

0.5~0.65cm and -0.52~0.52cm, respectively. The Kalman PID 

boasted the best positioning effect, with the mean error and 

error range falling in 0.35~0.45cm and -0.45~0.45cm, 

respectively. Overall, the Kalman PID improved the 

positioning accuracy by 1% and reduced the error range by 10% 

in the four spaces. This is because the Kalman PID adopts the 

minimum variance matrix of the P, I and D methods and the 

step-wise filtering. 

 

4.2.2 Advantage of combined feedback model 

The six feedback models in Equation (23) were trained 

1,000 times in the four spaces and subjected to 1,000 groups 

of experiments, with Kalman PID as the signal separation 

method. The experimental results of these models are shown 

in Figure 17. 

 

 

 

Figure 17. Experimental results of different feedback models 

 

As can be seen from Figure 17, the first and second 

feedback models boasted the most accurate positioning effects 

among the six models, and their mean errors were between 

0.35cm and 0.4cm. The six feedback models had similar error 

ranges. 

 

 

 

Figure 18. Experimental results of the combined feedback model 
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For better accuracy, the first feedback model (linear) and 

second feedback model (nonlinear) were combined into a 

model that considers both linear and nonlinear features. Then, 

the combined model was applied to 1,000 groups of 

experiments, with Kalman PID as the signal separation method. 

The experimental results of the combined model are compared 

with those of the first feedback model, the second feedback 

model and the no feedback scenario (Figure 18). It is clear that 

the combined feedback model outshined both linear and 

nonlinear models, with the mean error and error range falling 

in 0.2~0.4cm and -0.4~0.4cm, respectively. 

 

 

4.2.3 Advantage of the proposed TMC method 

In Φ-OTDR technology, the effects of temperature and 

strain are much more complex than what is described by linear 

and nonlinear feedback models. In the 1,000 groups of 

experiments, the expected output was set to 10cm, 10cm, 

10cm and 10cm. Then, 700 groups of experiments were 

randomly selected as training samples and the remaining 300 

groups of experiments were adopted as testing samples. The 

RBF method and the GA-RBF method were trained by the 

training samples. The results of the testing samples of 

combined feedback model, RBF and GA-RBF are shown in 

Figure 19. 

 

 
Figure 19. Experimental results of TMC methods 

 

It can be seen from Figure 19 that both the RBF and GA-

RBF had better results than the combined feedback model. In 

addition, the GA-RBF, with a mean error of 0.2cm and error 

range of -0.3~0.3cm, outperformed than the RBF. These 

results show that RBF and GA-RBF are both useful TMC 

methods. 

To further verify the effect of these algorithms, several 

experiments were carried out using these TMC methods under 

60 different temperatures and 50 different strains. The 

experimental results are presented in Figure 20, where the 

effective points are in black and the invalid ones are in white. 

 

 

Figure 20. Experimental results of different TMC methods 

 

As shown in Figure 20, the effective rate of RBF was 99.233% 

and that of GA-RBF was 99.7%. This means GA has 

effectively improved the performance of RBF. 

 

4.3 Results of 3D SURF 

 

Based on Kalman PID and the proposed TMC, the 

positioning accuracy should be further enhanced by signal 
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matching. Here, 1,000 groups of experiments are conducted by 

the traditional SURF, 3D SURF and no matching method. The 

experimental results are shown in Figure 21. 

As shown in Figure 21, 3D SURF and SURF both 

outperformed the no matching method. Besides, 3D SURF, 

with mean error and error range of 0.1cm and -0.25~0.25cm, 

respectively, achieved better results than SURF. Hence, both 

3D SURF and SURF are desirable feature matching 

approaches.  

To further verify the effect of these algorithms, several 

experiments were carried out using these TMC methods under 

60 different temperatures and 50 different strains. The 

experimental results are presented in Figure 22, where the 

effective points are in black and the invalid ones are in white. 

 

 

Figure 21. Experimental results of different data matching methods 

 

 

Figure 22. Experimental results of different data matching methods 

 

As shown in Figure 22, the effective rate of SURF was 99% 

and that of 3D SURF was 99.633%. Obviously, 3D SURF 

enjoys better results than the traditional SURF. 

 

 

5. CONCLUSION 

 

This paper proposes a novel signal separation method for Φ-

OTDR to enhance the positioning accuracy. By this method, 

the signals were divided into P, I and D, and screened by 

Kalman filter, respectively. The Kalman PID can achieve good 

separation effect and positioning accuracy. During signal 

separation, the TMC was considered and solved by different 

feedback models, combined feedback model and GA-RBF. 

Meanwhile, the data deviation was also considered and solved. 

To process the 3D information, 3D SURF was developed from 

the traditional SURF. Through a number of experiments, it is 

proved that the Kalman PID separation method, GA-RBF 

TMC method and 3D SURF data matching method can 

improve the signal separation and enhance positioning 

accuracy. The research findings shed new light on signal 

separation of Φ-OTDR. In future research, the application 

range of the proposed methods will be expanded from 

mechanical damping vibration signals to non-damped 

vibration signals like leakage signals. 
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