

Improving Objects Detection in Video with a Proposed 1D CNN Model

Farah Hussein M. Jawad1,2* , May A. Salih1

1 Department of Software, College of Information Technology, University of Babylon, Babil 51001, Iraq
2 Department of Business Administration, College of Business and Economics, University of Babylon, Babil 51001, Iraq

Corresponding Author Email: Bus.farah.hus@uobabylon.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300312

ABSTRACT

Received: 4 November 2024

Revised: 24 February 2025

Accepted: 12 March 2025

Available online: 31 March 2025

 Object detection in video is one of the main tasks of computer vision, with applications

ranging from surveillance to autonomous driving. This research aims to enhance object

detection in video sequences using a convolutional neural network (CNN) model based on

the COCO dataset. The study introduces an innovative 1D CNN design that leverages

spatial and temporal information from successive frames to achieve accurate detection and

recognition of objects. The proposed system consists of three phases: the preprocessing

phase, the feature extraction phase by using two techniques: principal component analysis

(PCA), and local binary pattern histogram (LBPH), and the detection phase based on the

proposed object-CNN model. Experimental results indicate that the proposed model

achieves a detection accuracy of 99.74%, outperforming existing state-of-the-art methods.

This research significantly advances object detection capabilities in dynamic environments

such as enhancing real-time surveillance systems or improving autonomous vehicle

navigation.

Keywords:

object detection, COCO dataset,

convolutional neural network (CNN),

principal component analysis (PCA), local

binary pattern histogram (LBPH)

1. INTRODUCTION

Object detection is a fundamental computer vision problem,

can provide vital information for semantic comprehension of

pictures and videos, and is connected to numerous applications,

including image categorization, human behavior analysis, face

recognition, and autonomous driving [1]. Meanwhile,

advances in neural networks and associated learning systems

will lead to the development of neural network algorithms, as

well as significant influences on object identification

approaches that may be called learning systems [2]. However,

due to significant changes in perspectives, postures,

occlusions, and lighting conditions, it is challenging to achieve

a faultless object field that has received a great deal of interest

in recent years [3].

The ability to accurately identify and localize objects of

interest within video frames is fundamental for understanding

the visual content of videos and enabling intelligent decision-

making systems. The capability of CNN to learn hierarchical

features directly from raw pixel data makes them increasingly

popular in handling object detection tasks. Building on the

recent success of CNNs in video analysis [4], there is therefore

growing interest in the development of techniques that extend

such methods to video data where the temporal dimension

introduces further complexity and challenges.

This paper applies object detection utilizing the COCO

dataset. The COCO dataset is chosen for its diverse and

extensive collection of labeled images, providing

comprehensive coverage of various object categories in real-

world scenarios. Its rich annotations are ideal for training and

testing an object detection model, particularly in dense and

dynamic scenes [5].

The model architecture includes feature extraction

convolutional layers, spatial downsampling pooling layers,

and detection of fully connected layers. By evaluating our

model, we aim to demonstrate its effectiveness in detecting

objects in video sequences with varying complexities.

The main contributions of this study are the reduction of

detection time while enhancing the performance of object

detection technology in scenarios involving small objects and

dense scenes, thereby offering more precise and dependable

detection services across diverse application domains.

The structure of this paper is as follows: Section 2 provides

related works on object detection utilizing deep learning

techniques. Section 3 explains the methodology of the

proposed system. Section 4 provides experimental results and

discussion. Section 5 concludes the paper with key findings

and limitations.

2. RELATED WORKS

Thanks to the fast advances in deep learning over the past

decade, computer vision has significantly progressed,

particularly through the development of deep CNNs. CNN is

built using key components that work together to process and

analyze data, typically images. The Convolution Layer is the

core, using filters to extract features like edges or patterns from

the input. The Pooling Layer reduces the size of feature maps

for efficiency, with MaxPooling specifically selecting the

most important values. To introduce non-linearity, the

LeakyReLU activation function allows small gradients for

Ingénierie des Systèmes d’Information
Vol. 30, No. 3, March, 2025, pp. 675-686

Journal homepage: http://iieta.org/journals/isi

675

https://orcid.org/0009-0004-8318-7479
https://orcid.org/0000-0003-3670-263X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300312&domain=pdf

negative values, solving issues like "dying neurons." The

Flatten Layer reshapes the multi-dimensional data into a 1D

vector, preparing it for the Dense Layer, which performs high-

level reasoning (e.g., classification) by connecting all neurons.

Together, these components allow CNNs to effectively learn

and recognize patterns in data.

These networks have become the standard approach for

tackling the object detection problem, which involves both

object location and recognition. Within this domain, the most

advanced models are categorized into Two-Stage and Single-

Stage Detectors.

Each method has its merits and demerits in investigating

Two-Stage and Single-Stage Object Detectors, which are used

in each method. Two-stage detectors often have higher

accuracies, as seen by Cascade R-CNN and EfficientDet,

suitable for those applications where high accuracy is highly

valued. However, they often rely on the initial region

proposals' quality and higher computation might be a limiting

factor, especially in smaller datasets.

On the other hand, one-stage detectors represent the YOLO

family, where speed is its strong point. These models are quite

fast in processing images, but this also comes at the price of

accuracy. In difficult cases involving small or occluded objects,

performance usually suffers. As much as this model is pretty

good at quick inference, it may have very disparate

performance depending on the dataset or context.

Ultimately, the decision between using a Two-Stage or

Single-Stage Detector should be based on the specific needs of

the application whether that’s prioritizing accuracy or

requiring quick responses. Looking ahead, it will be important

for researchers to focus on improving the robustness of these

models, tackling their limitations, and considering innovative

approaches that combine the strengths of their architectures.

By doing so, we can continue to advance the capabilities of

object detection systems to meet the demands of diverse real-

world applications. Table 1 summarizes related works,

drawing on some of the most important approaches,

methodologies, and findings.

Table 1. Summary of related works

Ref. Year Technique Dataset Measures Advantages Disadvantages

Two-Stage Detectors

[6] 2019 ResNet-50 ImageNet

Accuracy 75%,

Precision 76%,

Recall 72%

Very deep network with residual

connections

A larger model size requires

substantial computation

[7] 2020 MobileNetV2 ImageNet

Accuracy 71.8%,

Precision 71.2%,

Recall 68.5%

Lightweight, suitable for mobile

deployment

Lower accuracy compared to

larger models

[8] 2023 Faster R-CNN COCO

Accuracy 87.7%,

Precision 84.5%,

Recall 85.0%

good accuracy for object

detection
Slower than one-stage models

[9] 2023 Cascade R-CNN COCO Accuracy 88.2%
Multi-stage detection pipeline

improves accuracy
Increased computational cost

[10] 2023 CNN CDnet Precision=90%

Good precision; suitable for

specific applications with limited

object types

This study couldn’t detect various

object types in different datasets;

the training process was also

complex

Single-Stage-Detectors

[11] 2024 YOLOv5

Real-world

object

detection

datasets

60.9% mAP Low detection accuracy

May require significant

computational resources;

performance might drop in real-

time applications

[12] 2020 EfficientDet-D7 COCO

Accuracy 89.5%,

Precision 84.0%,

Recall 82.0%

Balances accuracy and efficiency

The performance of EfficientDet

is sensitive to hyperparameter

choices and must be optimized for

specific contexts

[13] 2024 YOLOv8 COCO

Accuracy=94%,

Precision=93%,

Recall=94%,

F1 Score=0.93

Training complexity; requires

large datasets for effective

performance

High accuracy; improved

architecture over previous YOLO

versions; very efficient in real-

time applications

[14] 2023 YOLOv9 COCO

Accuracy=93.5%,

Precision=91.0%,

Recall=92.0%,

High precision in detection
Performance varies in cluttered

scenes

[15] 2024 YOLOv10 COCO

Accuracy=91.0%,

Precision=90.0%,

Recall=92.0%,

Advanced improvements over

prior YOLO versions

Still in ongoing evaluation for

real-world applications

Both of Two-Stage and Single-Stage

[16] 2019
YOLO, CNN,

Fast CNN

Various

object

detection

datasets

Comparison of detection

speeds and bounding

box accuracy

Fast processing; effective for

different applications; good

bounding box accuracy

Limited to simulated

environments

[17] 2020
R-CNN, YOLO

v3

Collected

dataset
Accuracy=79%

Combines strengths of R-CNN

and YOLO; effective for diverse

object detection tasks

It is not appropriate for real-time

applications due to its

considerable computing

capabilities, which necessitate

parallel computing

[18] 2022 YOLOv3, Bad weather YOLOv4: 72% mAP, Effective in challenging Only tested under specific weather

676

YOLOv4, Faster

R-CNN

and low-light

datasets

63% recall at 40,000

iterations

conditions; performs well in low-

light scenarios

conditions, limiting

generalizability

[19] 2024
YOLO, Fast-

RCNN

Object

detection

datasets

YOLO: 63.4 mAP, 300x

faster inference time

Fast inference; effective for real-

time applications; suitable for

general object detection tasks

Performance may vary based on

the dataset

[20] 2024
R-CNN, SSD,

YOLO
Chess Piece

Best accuracy for R-

CNN=78%

High accuracy for R-CNN; SSD

and YOLO provide speed

advantages; effective for specific

applications like chess piece

detection

The implementation bottleneck is

caused by the use of an

independent region generator

2.1 Studies of two-stage detectors

Region proposal and classification stages make up the two

stages of two-stage frameworks used in the detection process.

First, by employing reference boxes (anchors), these models

suggest several potential objects, or regions of interest (RoI).

Refined localization and classification of the ideas are the

outcomes of the second step.

This model excels in feature extraction, making it a popular

backbone for various applications [6]. Its architecture allows

for training very deep networks, which can capture complex

patterns in data, but this comes at the cost of increased

computational requirements.

MobileNetV2 was designed for efficiency, making it ideal

for mobile and embedded systems. Its architecture enables

faster inference times while maintaining reasonable accuracy,

though it sacrifices some performance compared to larger

models [7].

A two-stage detection process significantly enhances

accuracy, particularly in complex scenes. However, this comes

at the cost of speed, making it less suitable for real-time

applications compared to one-stage detectors [8].

Several multi-stage mechanisms were introduced to

improve accuracy from varied scale changes of objects in 2023

[9]. Although these mechanisms enhance the results, they may

imply increased computational burdens that are deterring

factors towards a limited-resource deployment platform.

A deep learning-based system for real-time object

identification was suggested in 2023 [10]. It focused on the

classification and detection of stationary and moving objects.

A CNN with a Softmax classifier was used, which showed an

average precision of 90% for three video sequences of the

CDnet database, proving its efficiency in real-time object

identification.

2.2 Studies of single-stage detectors

On the other hand, one-stage detectors rely on a single feed-

forward fully convolutional network that offers both object

categorization and bounding boxes. The Single Shot MultiBox

Detector (SSD) and YOLO (You Only Look Once) were

among the first to suggest a single, unified structure that does

not require per-proposal calculation.

The application of YOLOv5 in object detection was

investigated, focusing on its architectural enhancements,

functionalities, training process, and transfer learning

techniques [11]. The results indicate that YOLOv5 is an

essential technique in computer vision, with a mean Average

Precision of 60.9%. Its framework enhances mean average

accuracy, computational flexibility, and dependability,

making it suitable for real-world applications in computer

vision and video processing.

EfficientDet-D7 provides a good trade-off between

accuracy and computational efficiency, as it is an all-around

network across different platforms. However, its performance

varies in some applications and requires further tuning for

optimal results [12].

YOLOv4 was proposed in 2020, extending the YOLO

architecture with new features and upgrades, such as the

CSPDarknet53 backbone and PANet path aggregation. It

achieved up to 89.8% mAP on the COCO dataset, balancing

speed and accuracy effectively.

YOLOv8 was introduced in 2024 [13], achieving a mean

Average Precision of 95.4%, with an accuracy of 94%,

precision of 93%, recall of 94%, and an F1 score of 0.93. It

addresses both speed and accuracy, making it suitable for

applications requiring fast decision-making, such as

autonomous vehicles and surveillance systems. However,

training YOLOv8 is computationally intensive and requires

large datasets.

YOLOv9 was developed in 2024 to be suitable for fast and

accurate detection of distinct objects [14]. However, its

performance degrades in cluttered scenes and requires further

refinement for complex environments.

Further development related to the YOLO series was

introduced in 2024, incorporating more sophisticated features

to enhance detection performance. This version is still under

evaluation and requires additional benchmarking to prove its

efficiency in more general scenarios [15].

2.3 Studies used both single-stage and two-stage detectors

The YOLO technique was compared to other object

detection algorithms, revealing several advantages. Unlike

other methods, YOLO uses neural networks to identify

bounding boxes and class probabilities, allowing it to view the

entire image at once and thus detect objects much faster than

methods like CNN and Fast CNN [16].

Object detection approaches were analyzed using two

categories: one-stage detectors (e.g., YOLO v1, v2, v3, and

SSD) and two-stage detectors (e.g., RCNN, Fast RCNN, and

Faster R-CNN). One-stage detectors prioritize speed, while

two-stage detectors focus on high accuracy. The YOLO v3-

Tiny model achieved an accuracy rate of 79%, outperforming

previous approaches [17].

The performance of YOLOv3, YOLOv4, and Faster R-

CNN was compared for object detection in bad weather and

low light conditions [18]. YOLOv4 achieved the highest

results with 72% mAP and 63% recall at 40,000 iterations,

outperforming YOLOv3 and Faster R-CNN.

Object detector performance was evaluated based on

detection accuracy and inference time. Two-stage detectors

generally outperform single-stage detectors in terms of

accuracy, while single-stage detectors offer better inference

times. The YOLO architecture has significantly improved

detection accuracy, sometimes surpassing two-stage detectors.

For example, YOLO models achieve detection accuracies of

63.4% and 70% for YOLO and Fast-RCNN, respectively, with

677

YOLO having around 300 times faster inference time [19].

Three object detection techniques were implemented: Faster

R-CNN, R-CNN, and YOLO. The study aimed to find the

optimal trade-off between feature extraction and accuracy. In

this context, R-CNN achieved superior accuracy compared to

single-stage detectors like YOLO or SSD, with an accuracy

rate of 78% [20].

3. THE PROPOSED MODEL ARCHITECTURE

In this work, deep one-dimension CNN is integrated with

techniques of feature extraction, PCA, and LBPH to extend the

recognition ability of objects for detection tasks. COCO is

applied in this proposed approach for object detection in the

model, as well as captioning tasks on a given image. Its rich

annotations and diverse set of object categories make it an

ideal choice for training and evaluating the proposed

architecture. First, the dataset spilled into two sets training set

70% and testing set 30%. Then, the dataset is processed by

using some preprocessing methods (Converting RGB to Gray,

Gaussian blur, Histogram Equalization, and image resizing).

The second stage is the feature extraction techniques (PCA and

LBPH).

The third stage was the detection phase which was

accomplished by utilizing the suggested 1D-CNN model. This

model forms the backbone of the architecture for its

exceptional capability of automatically learning hierarchical

features from input data, particularly well-suited for image

processing tasks like object detection. Figure 1 presents the

suggested model architecture The next sections will explain

these phases in detail.

Figure 1. Diagram of the suggested model architecture

3.1 COCO dataset description

COCO is considered a benchmark standard in the computer

vision community; it allows for the evaluation of object

detection algorithms and their comparison. Headings, or heads,

Large-scale object recognition, segmentation, key-point

detection, and captioning are all comprised in the MS COCO

(Microsoft Common Objects in Context) dataset Figure 2

shows some samples of this dataset. There are 328K images in

the dataset 2014 saw the publication of the MS COCO

dataset’s first version. It has 164K images divided into sets for

testing (41K), validation (41K), and training (83K). A fresh

test set of 81K photographs, comprising 40K new images plus

all of the test images from prior releases, was made available

in 2015. In 2017, the training/validation split was restructured

from 83K/41K to 118K/5K depending on input from the

community. The annotations and images are the same in the

new split. The 2017 test set is a subset of the 41K images from

the 2015 test set. A new 123K image unannotated dataset is

also included in the 2017 version [5]. This dataset is available

at: (https://www.kaggle.com/datasets/sabahesaraki/2017-

2017).

Figure 2. Samples of MS COCO dataset

Category composition:

The COCO dataset covers a diverse set of 80 fully

differentiated object categories that represent a huge variety of

common objects and living beings that one might find in the

real world. Instances include forms of transportation, like cars,

bicycles, motorcycles, and airplanes, but also traffic-related

ones like traffic lights and stop signs.

Apart from vehicles, the dataset contains a wide array of

animals, including domesticated ones like cats and dogs, and

also farm and wild ones like cows, elephants, and giraffes.

Again, personal things and accessories also include items like

backpacks, handbags, frisbees, tennis rackets, and skis.

The dataset does not leave out food items, which include a

variety of fruits such as bananas and apples, and prepared

foods like pizzas, sandwiches, and cakes. Several household

and furniture items are included: chairs, tables, and electronic

devices such as TVs and laptops.

These categories extend to include everything in everyday

life, such as forks, knives, spoons, different containers,

household paraphernalia, bottles, and vases. With the

broadness of these categories, there is a great avenue for the

training of the model on how to conduct object detection and

recognition exercises to identify so many objects that come

about in real-world settings.

The dataset has annotations:

The COCO dataset is renowned for its high-quality

annotations. The key aspects of annotation quality are:

• Object detection: 80 object types are represented by

bounding boxes and per-instance segmentation masks;

captioning: natural language explanations of the images,

• Identification of key points: including more than 200,000

images and 250,000 human examples with 17 possible key

points (e.g., left eye, nose, right hip, right ankle); segmentation

of stuff photographs: 12 stuff categories (e.g., grass, wall, sky)

are segmented per pixel using segmentation masks.

678

• Panoptic: complete scene segmentation, comprising 12

stuff categories (grass, sky, road) and 80 object classes (person,

bicycle, elephant),

• Dense Pose: over 39,000 images and 56,000 human

instances have been annotated; each identified individual has

a mapping between their body-corresponding picture pixels

and a template 3D model, as well as an instance ID. We call

this a thick stance. The public can only view the annotations

for the training and validation images.

3.2 Dataset splitting

Data splitting is a technique utilized to validate models by

dividing a dataset into two sets: testing and training. The

testing set is utilized to validate the models fitted using the

training set, allowing for comparison without overfitting [21].

Random subsampling is a popular method for data splitting,

with a commonly used ratio of 80:20, which designates 80%

for training and 20% for testing. Other ratios like 70:30, 60:40,

and 50:50 are also used. The 80:20 split is based on the Pareto

principle, but it is a practitioner-only guideline. The best or

optimal ratio for a given dataset is not well defined, and the

Pareto theory serves as a foundation for this method [22]. In

this system, we used 70% as a training set and 30% as a testing

set. It is a regularly used ratio, the 70-30 split where 70% of

the data is employed for training and 30% for testing is not

rigid and can alter depending on various variables, including

the size of the dataset, the complexity of the model, and the

particular job at hand. Here is a discussion about why the 70-

30 split is commonly used:

• Sufficient Training Data: 70% of the data is used for

training and this is ample. It captures enough of the core

patterns and relationships in the data which gives a well-

trained model.

• Adequate Testing Data: 30% of the data is kept as testing

data to ensure there is enough data for unseen data testing.

Too little data in testing data leads to over-fitting

performances while too much may starve the training data,

therefore weakening the ability to learn.

• Balanced Training and Testing: the 70/30 split is

balanced in that one gets enough data for training, plus a

good evaluation of generalization performance. It allows

the model to learn from a substantial amount of data while

leaving a large enough chunk to evaluate how well the

model has learned to generalize from the examples.

• Statistical Significance: The 70/30 split often gives a

statistically significant evaluation of the model’s

performance. With adequate data in both the training and

testing sets, the resulting performance measures are likely

to be accurate indications of the model’s genuine

capabilities.

3.3 Data preprocessing

Data preparation is essential for accurate data processing.

Considering the inherent difficulty of operations for building

and data quality constraints, this step is crucial for developing

operational analysis methods [23]. Data preprocessing is a set

of procedures for improving raw data quality, including outlier

removal and imputation of missing values [24]. The

preprocessing step, which includes techniques for

segmentation, color conversion, image enhancement, and

scaling, aims to turn data into a format that can be handled

more rapidly and effectively. Figure 3 depicts these processes

in detail which are discussed in four steps:

Figure 3. Pre-processing phase

3.3.1 Converting RGB to gray

The input image undergoes a color transformation from

RGB to grayscale to reduce data usage as shown in Figure 4.

Greyscale images have only one channel, unlike RGB images

which require three channels [25]. This conversion increases

processing speed. The grayscale image intensity is recorded as

an 8-bit integer, resulting in 256 distinct grey spectrums

ranging from white to black. This process reduces the amount

of data used for image representation. The procedure of

grayscale image transformation is shown in Eq. (1):

Gray Image = (0.21 R + 0.72 G + 0.07 B) (1)

Because people see green the most, the luminosity equation

accommodates this by assigning green (G) the highest weight.

RGB to grayscale conversions in object detection models

simplify information because colors are perhaps not that

important for the detection of objects. Grayscale usually

focuses on structural and intensity details such as edges and

shapes, which are often the critical features for object

detection. By removing the complication of color from the

model, the processing of images becomes much faster with

less computational burden and is very necessary for video

sequences of real-world performance. It also contributes to a

reduction in noise due to color variances that are irrelevant in

object localization and detection [26].

Figure 4. From RGB to grayscale image

3.3.2 Image Blurring using Gaussian Blur

This blurring method produces a smooth blur that resembles

seeing a picture through a transparent screen. Gaussian

smoothing is frequently employed as a preprocessing step in

computer vision algorithms to improve visual structures of

various sizes. Figure 5 and Eq. (2) demonstrate that the sum of

two “one-dimensional (1D)” Gaussian functions equal the

two-dimensional (2D) Gaussian function:

𝐺(𝑥. 𝑦) =
1

2𝜋𝜎2
 𝑒

−
𝑥2+𝑦2

2𝜎2 (2)

where, σ is the standard deviation of this two-dimensional

679

Gaussian function, it can also be called Gaussian radius, and

its corresponding value range is [0.1~250]. σ 2 is the variance.

Gaussian smoothing can be used in the preprocessing step of a

computer vision algorithm to improve photos of various sizes.

The method of Gaussian smoothing of a picture combines the

image and normal distributions. In general, Gaussian picture

sliding technology is utilized at low frequencies, while high

frequencies are filtered. Gaussian smoothing's function is to

reduce noise while also achieving the smoothing effect [27].

Figure 5. Blur image using Gaussian blur

3.3.3 Apply histogram equalization

Since the cumulative histogram equalization method

performs well in histogram equalization, it is used when digital

images have low contrast values, such as non-formal image

brightening allocation or poor illumination. This way, after the

input-colored images are converted to greyscale, the contrast

of the greyscale image is improved [28]. The histogram was

created by utilizing Eq. (3) and the result shown in Figure 6 as

follows:

ℎ[𝑖]=∑ ∑ {
0 if 𝑓[𝑥. 𝑦] = 𝑖
1 otherwise

}𝑀
𝑦=1

𝑁
𝑥=1 (3)

The cumulative distributions are then determined utilizing

Eqs. (4) and (5) as follows:

𝑐𝑑𝑓(𝑋𝑖)=∑ 𝑝(𝑋𝑖)
𝑘
𝑖=0 (4)

𝑔[𝑥. 𝑦] =
𝐶𝐷𝐹[𝑓[𝑥. 𝑦] − 𝐶𝐷𝐹𝑚𝑖𝑛]

(𝑁 × 𝑀) − 𝐶𝐷𝐹𝑚𝑖𝑛

× (𝐿 − 1) (5)

where, (x, y) is a coordinated pixel value, and N, M is the

height and width of an input image [29].

Figure 6. Histogram equalization process

3.3.4 Image resize

The size of the images used in the database is different, so

it requires changing all the static and dynamic images in the

databases used in this work to a fixed size for all images. In

this study, Figure 7 shows the resizing 20×20 which is the best

among several experiments conducted, when the scale of the

image was lower the results and the features obtained were

better. The idea of the suggested method depends on detecting

more than one object in the image, this size was the best for

extracting the most relevant features. Resizing in object

detection would work much better when there are small

images to a much larger size since it puts the model at regular

inputs for processing. Smaller images have less information

than larger ones and require less computational power.

Resizing conserves feature recognition across different scales.

Besides, CNNs are robust against losing some information

after resizing. Proper resizing further allows the network to

focus on important features while avoiding noisy overfitting

and extra information. However, these results depend on the

expectation that the important object features are maintained

during resizing since our goal depends on computer vision and

not image processing [30].

Figure 7. Image resizes by 20×20

3.4 Feature extraction phase

Feature extraction is a key technique in machine learning

and signal processing that involves converting raw data into a

more acceptable format for analysis or input to algorithms [31].

In fields such as computer vision, natural language processing,

and signal processing, raw data often contains vast amounts of

information, much of which may be irrelevant or redundant for

specific tasks. The goal of feature extraction is to capture the

most relevant characteristics or patterns while discarding noise

[32].

Applying PCA and LBPH allows the model to focus on the

most discriminative elements, thereby improving efficiency

and accuracy. This synergy allows the object detection model

to retain significant texture information in a reduced feature

space, thus enabling more effective and faster object detection.

Most real-world data require multiple features to be used,

for instance, extracted through PCA and LBPH, due to

inherent complexity and variability. Different feature

extraction methods usually grasp different aspects of the data.

• Diverse Information: The model will be able to take

advantage of both the global structural information from

PCA and the local texture information provided by LBPH.

The dual perspective allows for better discrimination in

the feature set, thus enabling more robust recognition and

classification.

• Improved Robustness: Integration of features derived

from different methodologies will enhance the robustness

of the model against variations of the input data, be it

changes in lighting, pose, or even occlusion. This

becomes more important in applications related to face

recognition due to these varieties.

• Better Performance: Several empirical studies show that

most models developed based on feature combinations

680

tend to outperform those based on one feature extraction

method. This is explained by the fact that capturing a wide

range of characteristics from the data enables the model

to achieve better accuracy and generalization.

3.4.1 Feature extraction depending on (PCA)

Principle Component Analysis (PCA) is a statistical method

that employs a comprehensive approach to detecting patterns

in high-dimensional data. It derives from the information

theory method, which divides pictures into tiny groups of

distinctive feature images known as Eigens. This method is

crucial in recognition technology for identifying and verifying

features. The 2-dimensional image matrices are transformed

into a 1-dimensional vector, which can be either a row or

column vector [33]. The steps of PCA are as follows:

Raw data standardization: The raw data should have a unit

variance and a zero mean.

𝑋𝑗
𝑖 =

𝑥𝑗
𝑖 − �̅�𝑗

𝜎𝑗

∀𝑗 (6)

Compute the raw data’s covariance matrix as follows:

∑ =
1

𝑚
∑ (𝑋𝑖

𝑚
𝑖) (𝑋𝑖)

𝑇, ∑ ∈𝑅𝑛∗𝑛 (7)

Compute the covariance matrix’s eigenvector and

eigenvalue as presented in Eq. (8).

𝑢𝑇 ∑ =𝜇𝜆 (8)

𝑈 = [
|
𝑢1

|

|
𝑢2

|

|
𝑢3

|
] , 𝑢𝑖 ∈ 𝑅𝑛 (9)

where,
1

𝑚
 in this model equaled

1

20
 cause PCA here is used as

feature extraction, to work better, the image dimensions

should be equal.

The raw data must be transformed into a k-dimensional

space as follows: The covariance matrix’s top k eigenvectors

are chosen. These will be the new original foundation for the

data. The corresponding vector is calculated using Eq. (10).

𝑥𝑖
𝑛𝑒𝑤 =

[

𝑢1

𝑇 𝑥𝑖

𝑢2
𝑇 𝑥𝑖

⋯
⋯

𝑢𝑖
𝑇 𝑥𝑖]

 ∈ 𝑅𝑘 (10)

If the original data has n dimensions, it will be transformed

into a new k-dimensional representation [34].

3.4.2 Feature extraction depending on LBPH

The original LBP operator is a strong tool for texture

description [35]. The operator labels an image’s pixels by

thresholding the 3×3-neighborhood of each pixel with the

center value and viewing the result as a binary integer, as

illustrated in Eq. (11) illustrating the basic LBP operator [36].

𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑ 𝑆(𝑖𝑝

7

𝑃=0

− 𝑖𝑐)2
𝑃 (11)

where, 𝑖𝑝 and 𝑖𝑐 Are neighbors and central pixel values

respectively,

𝑆(𝑡) = {
1 𝑡 ≥ 0
0 𝑡 < 0

For neighbors equal to eight for each label, there are 256

possible combinations (28=256).

3.5 Detection phase based on proposed object-CNN

The proposed object-CNN architecture presents a

sophisticated and innovative approach to object detection and

recognition. It leverages a carefully crafted combination of

neural network layers designed to achieve superior

performance. At its core, the architecture integrates 1D CNNs,

a cornerstone of modern computer vision, with additional

layers specifically tailored for object detection tasks [37].

These layers include:

- Convolutional Layers: Responsible for feature extraction

from the input image.

- Pooling Layers: Used to down-sample and reduce

dimensionality, enhancing computational efficiency.

- Fully Connected Layers: Act as classifiers to interpret the

extracted features.

- Dense layers: connect every neuron from the previous

layer to every neuron in the current layer. They serve to

aggregate and combine the features extracted from

convolutional layers, allowing the model to learn complex

relationships and make final predictions.

- LeakyReLU: applied to the convolutional layers or dense

layers to enhance the model's ability to learn and represent the

object detection task more effectively.

- Flatten: it converts the multi-dimensional output from

convolutional operations into a flat 1D array, making it

possible to be processed by subsequent Dense layers.

- Outputting bounding box coordinates through regression,

using anchor boxes, and applying NMS to finalize the detected

bounding boxes. [38].

What sets the proposed object-CNN apart is the meticulous

placement and fine-tuning of these layers, allowing the model

to effectively utilize information in both space and time across

consecutive frames in video sequences. This design enables

accurate object detection and recognition over time. The

object-CNN boasts remarkable detection accuracy while

ensuring computational efficiency, making it a powerful tool

for a variety of real-world applications. One notable advantage

of 1D CNNs [39] is their low computational requirements,

making them suitable for real-time hardware implementation.

Their simple and compact configuration allows the 1D object-

CNN to perform only one-dimensional convolution operations

efficiently.

The detailed architecture of the proposed 1D object-CNN

model, which consists of twenty-eight layers, is presented in

Table 2:

• Nine convolution layers (Conv1D) with hyperparameter:

➢ filters (16, 32, 64, 64, 32,32,16,16 and 485)

➢ kernel size=3

➢ stride=1

➢ padding=valid

• Seven layers of Max-pooling 1D with

➢ pool size=1

➢ strides=1

• Eight Leaky-ReLU with

➢ lpha=0.3

681

• Three fully connected layers are represented by (Dense)

➢ Dense1 (128, activation=linear)

➢ Dense2 (512, activation=linear)

➢ Dense3 (92, activation=softmax)

• One flattened layer.

• optimizers.Adam(lr=0.001)

• epoch=100

Table 2. Summary of components for the proposed model’s

architecture

Layer No. Layer Type Output Shape #Param

1

Conv-1 (None, 398, 16) 64

MaxPooling-1 (None, 398, 16) 0

LeakyReLU-1 (None, 398, 16) 0

2

Conv-2 (None, 396, 32) 1568

MaxPooling-2 (None, 396, 32) 0

LeakyReLU-2 (None, 396, 32) 0

3

Conv-3 (None, 394, 64) 6208

MaxPooling-3 (None, 394, 64) 0

LeakyReLU-3 (None, 394, 64) 0

4

Conv-4 (None, 392, 64) 12352

MaxPooling-4 (None, 392, 64) 0

LeakyReLU-4 (None, 392, 64) 0

Dense-1 (None, 392, 128) 8320

5

Conv-5 (None, 390, 32) 12320

MaxPooling-5 (None, 390, 32) 0

LeakyReLU-5 (None, 390, 32) 0

6

Conv-6 (None, 388, 32) 3104

MaxPooling-6 (None, 388, 32) 0

LeakyReLU-6 (None, 388, 32) 0

Dense-2 (None, 388, 512) 16896

7
Conv-7 (None, 388, 16) 24592

LeakyReLU-7 (None, 388, 16) 0

8
Conv-8 (None, 388, 16) 784

LeakyReLU-8 (None, 388, 16) 0

9 Conv-9 (None, 388, 485) 23765

10 Flatten-1 (None, 188180) 11872

11 Dense-3 (None, 92) 17312652

Total Param: 17,422,625

Trainable Param: 17,422,625

Non-trainable Param: 0

The proposed model is made up of nine convolutional layers,

each followed by one pooling layer. The numbers of filters

used with the convolution layer are (16, 32, 64, 64, 32, 32,16,

16 and 485) respectively. These filters are applied stride of

these kernels used is one for each window. The usage of CNN

as a non-linear layer, most often with “leaky Rectified Linear

Units” (LeakyReLU) [40] is an activation function utilized for

all levels of the model and a sigmoid [41] for the last dense

layer," can be used to build a variety of functions (output layer)

[42]. This model uses the max-pooling function for the pooling

layers. These CNNs are formed by allocating the input

samples into non-overlapping one-dimensional areas, treating

each space as a cluster, and choosing the maximum value from

each space. The final layer is the fully connected layer also

called the output layer or decision-making layer which

contains three neurons and implements a sigmoid function to

provide the final class of the sequences. The model’s learning

ability is improved by including tiny convolution kernels. To

keep the model from overfitting, the original entire connection

layer is eliminated. The activation function is Leaky ReLU.

Here, is the explanation of the reason behind using these layers

in this order:

1) Increasing Depth with Filters

• Initial Layers: The first group of layers normally

contains fewer filters such as 16, and 32 because they try

to learn lower-level features from the input. On the

forefront of a network, the filters shall be designed to

identify just the edges or other minor temporal features

in the data.

• Middle Layers: Where most of the depth in the network

is often accompanied by an increase in the number of

filters, say to 64, to enable the model to capture more

complicated patterns and high-level representations.

Increased filter count helps scale its capacity to learn

intricate features from data.

2) Bottleneck Architecture

• Downsampling Filters: Beyond the peak filter count

of 64, the architecture downsamples by reducing the

number of filters down to 32 and then 16. There are

several reasons for this:

a) Dimensionality Reduction: This reduces the

number of filters, hence reducing computational

complexity, but retaining the most important

information. It may also serve as a form of

regularization to prevent overfitting.

b) Feature Combinations: The model combines

features learned from earlier layers through

training to help in the representation of data with

a lesser number of filters.

3) Final Layers and Output

• Transition to Output: Often the last few layers have

a lesser number of filters, 16, for example, that

summarize the features into a representation that is

manageable for the output layer. This helps transition

from feature maps to class probabilities or predictions.

• Special Case Filter (485): this would represent the

number of classes or unique outputs produced by the

model. In detection, the number of filters in the final

Dense layer corresponds to the number of classes.

4) Adaptive Design

The architecture we specified is adaptive to the problem at

hand. Suppose there are a lot of varying features in the dataset,

such as temporal and frequency; then, it would be better to

have a higher number initially to capture all possible variations

early in the network. These features then get refined into

essential features for prediction by later layers.

5) Empirical Results

We use convolutional layers; these layers apply one-

dimensional convolution to the input data, which is

particularly useful for sequence data. A kernel size of (3, 1)

means that each filter will extend over a length of 3 units in

the input data; this allows the model to capture local patterns

or features. The first dimension (None) represents the batch

size and hence can vary, which means the model can handle

any number of input samples. For each convolution layer, we

have one MaxPooling1D Layer; hence we are using seven

MaxPooling layers in all. This layer is used to reduce the

dimensionality of feature maps while still maintaining the

most critical information. It helps in overfitting reduction and

cost computation. After each pooling layer, we used seven

activation functions. The Leaky ReLU is an activation

function that allows a small gradient when the input is negative.

This goes into introducing nonlinearities in the model,

allowing.

4. RESULTS AND DISCUSSION

This work presents a carefully designed object-CNN model

682

that seamlessly integrates data preprocessing, where images

are optimized to enhance critical structural features while

suppressing irrelevant noise. Subsequently, the hybrid feature

extraction strategy-merging yields a robust 1D vector of 800

features (where PCA extracted 400 features, LBPH extracted

400 features) that effectively captures the essence of the input

images.

The proposed object-CNN model, which integrates a one-

dimension CNN with feature extraction techniques achieved

exceptional performance on the COCO dataset, with accuracy

[43], precision, recall, and F-measure [44] all reaching 99.74%,

as shown in Table 3. This achievement underscores the

model’s effectiveness and robustness, demonstrating its ability

to capture complex patterns within the dataset while

generalizing well to unseen instances (with an average of 28

seconds per epoch).

Two-stage detectors, like Faster R-CNN (87.7% accuracy,

84.5% precision, trained over an unspecified number of

epochs) [8] and Cascade R-CNN (88.2% accuracy, trained

over an unspecified number of epochs) [9], excel in accuracy

through their sophisticated region proposal mechanisms,

offering good detection capabilities at the cost of slower

performance unsuitable for real-time applications. In contrast,

single-stage detectors such as YOLOv9 (93.5% accuracy,

91.0% precision, trained on the COCO dataset) [14] and

EfficientDet-D7 (89.5% accuracy, Precision 84.0%, Recall

82.0%, trained over 300 epochs) [12] provide faster inference

speeds, making them ideal for real-time scenarios but

sometimes sacrificing accuracy in cluttered environments.

Object-CNN must demonstrate competitive accuracy, ideally

exceeding 88%, and maintain efficient inference times to

position itself as a viable alternative within this competitive

landscape. Additionally, the model's complexity, the number

of epochs for training, and resource requirements will play

crucial roles in its deployment potential, particularly in mobile

and embedded systems, where lightweight architectures like

MobileNetV2 (71.8% accuracy, trained over 100 epochs) [7]

have found success despite lower performance metrics. A

thorough empirical evaluation as in Figure 8 of Object-CNN

against these established benchmarks [6, 10, 11, 15, 16] is

imperative to ascertain its effectiveness and applicability in

practical scenarios, ensuring it offers distinctive advantages

over existing models.

The design of the loss function and the choice of

optimization method are critical in shaping a deep learning

model's learning efficiency and generalization capability. The

loss function quantifies the difference between predicted

outputs and actual target values, with options like cross-

entropy loss for classification tasks and mean squared error for

regression tasks serving distinct purposes. Sensitivity analysis

can evaluate the impact of different loss functions, identifying

the most suitable for specific applications and potentially

leading to improved performance, especially in imbalanced

datasets. Similarly, optimization methods such as Stochastic

Gradient Descent (SGD), Adam, and RMSProp influence how

model weights are updated based on gradients, affecting

convergence speed and stability. Conducting sensitivity

analysis on optimization strategies reveals their effects on

training dynamics, where adaptive learning rate methods like

Adam often yield faster convergence and better performance.

The interplay between loss function design and optimization

method is paramount, as their combined effect determines the

model's ability to avoid overfitting and underfitting, with

tailored loss functions including regularization terms further

mitigating such risks. Ultimately, evaluating performance

through metrics like accuracy, precision, recall, and F1-score

reflects the effectiveness of these strategies, illustrating how

robust models that leverage thoughtful loss and optimization

designs can excel across various tasks.

The suggested model’s accuracy, as shown in Figure 9,

demonstrates high initial values of 99.83% for training and

99.74% for testing, reflecting a steady improvement over

several epochs. The training accuracy consistently rises,

indicating the model's growing skill in predicting training data,

while validation accuracy closely matches, suggesting

effective generalization to unseen data.

In terms of loss, Figure 10 reveals a decrease from an initial

training loss of 0.1013 and a validation loss of 0.1647,

indicating the model is learning effectively. The consistent

reduction in both training and validation losses, alongside

increasing accuracy, signifies a well-balanced model

performance without signs of overfitting or underfitting [45].

This progressive improvement throughout the epochs

underscores the model’s capability to optimize parameters,

reduce errors, and enhance predictive accuracy, affirming its

robustness in both training and validation datasets.

Table 3. Experimental results of the proposed system

Model Accuracy Precision Recall F-Measure Time Per Epoch

Object-CNN-PCA-LBPH 99.74% 99.74% 99.74% 99.74% 28 sec.

Figure 8. Chart of evaluation results of the proposed model

Figure 9. Accuracy results of the proposed model

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Accuracy of the proposed model

ACC Val_ACC

683

Figure 10. Loss results of the proposed model

5. CONCLUSION

In this paper, we demonstrated and evaluated a deep

learning model designed to optimize accuracy and minimize

loss. The model achieved impressive accuracy rates of 99.83%

in training and 99.74% in testing, demonstrating effective

learning and robust generalization capabilities. Our analysis

revealed a consistent upward trend in accuracy and a

simultaneous decrease in both training and testing losses,

indicative of the model’s ability to optimize its parameters

over several epochs without exhibiting signs of overfitting or

underfitting. These results imply that the model not only fits

the training data well but also performs well on unknown data,

indicating its potential for use in real-world applications.

However, some limitations could be addressed in future

work, including the model’s complexity, which restricts it to

scenarios involving at least two classes, as the presence of

multiple classes is a fundamental requirement. Additionally,

while the model is capable of detecting and recognizing

objects, it does not extend to classifying them.

Overall, the findings affirm that thoughtful design choices

and continuous evaluation throughout the training process are

essential to developing deep learning models that achieve high

accuracy and effectively address complex tasks in various

domains. Future work will focus on further refining the

model’s architecture, exploring additional optimization

techniques, and enhancing its functionality to improve

performance and applicability in broader contexts.

REFERENCES

[1] Rahaman, M. (2023). The current trends of object

detection algorithms: A review.

https://doi.org/10.13140/RG.2.2.19067.49442

[2] Deng, Z., Li, A. (2024). Object detection algorithms

based on convolutional neural networks. Highlights in

Science. Engineering and Technology, 81: 243-251.

https://doi.org/10.54097/vyfg4e34

[3] Saleh, K., Szénási, S., Vámossy, Z. (2021). Occlusion

handling in generic object detection: A review. In 2021

IEEE 19th World Symposium on Applied Machine

Intelligence and Informatics (SAMI), Herl'any, Slovakia,

pp. 000477-000484.

https://doi.org/10.1109/SAMI50585.2021.9378657

[4] Srivastava, S., Divekar, A.V., Anilkumar, C., Naik, I.,

Kulkarni, V., Pattabiraman, V. (2021). Comparative

analysis of deep learning image detection algorithms.

Journal of Big Data, 8(1): 66.

https://doi.org/10.1186/s40537-021-00434-w

[5] Pardeshi, S., Wagh, N., Kharat, K., Pawar, V., Yannawar,

P. (2023). A novel approach for object detection using

optimized convolutional neural network to assist visually

impaired people. In First International Conference on

Advances in Computer Vision and Artificial Intelligence

Technologies (ACVAIT 2022). Atlantis Press, pp. 187-

207. https://doi.org/10.2991/978-94-6463-196-8_17

[6] He, K., Zhang, X., Ren, S., Sun, J. (2019). Identity

mappings in deep residual networks. arXiv preprint

arXiv:1603.05027.

https://doi.org/10.48550/arXiv.1603.05027

[7] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen,

L.C. (2018). Mobilenetv2: Inverted residuals and linear

bottlenecks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4510-

4520. https://doi.org/10.48550/arXiv.1801.04381

[8] Zhang, W., Zhu, Q., Li, Y., Li, H. (2023). MAM faster

R-CNN: Improved faster R-CNN based on malformed

attention module for object detection on X-ray security

inspection. Digital Signal Processing, 139: 104072.

https://doi.org/10.1016/j.dsp.2023.104072

[9] Moosmann, J., Giordano, M., Vogt, C., Magno, M.

(2023). TinyissimoYOLO: A quantized, low-memory

footprint, tinyml object detection network for low power

microcontrollers. In 2023 IEEE 5th International

Conference on Artificial Intelligence Circuits and

Systems (AICAS), Hangzhou, China, pp. 1-5.

https://doi.org/10.1109/AICAS57966.2023.10168657

[10] Krichen, M. (2023). Convolutional neural networks: A

survey. Computers, 12(8): 151.

https://doi.org/10.3390/computers12080151

[11] Alsuwaylimi, A.A., Alanazi, R., Alanazi, S.M., Alenezi,

S.M., Saidani, T., Ghodhbani, R. (2024). Improved and

efficient object detection algorithm based on yolov5.

Engineering, Technology & Applied Science Research,

14(3): 14380-14386. https://doi.org/10.48084/etasr.7386

[12] Tan, M., Pang, R., Le, Q.V. (2020). Efficientdet:

Scalable and efficient object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 10781-10790.

https://doi.org/10.48550/arXiv.1911.09070

[13] Afdhal, A., Saddami, K., Sugiarto, S., Fuadi, Z.,

Nasaruddin, N. (2023). Real-Time object detection

performance of yolov8 models for self-driving cars in a

mixed traffic environment. In 2023 2nd International

Conference on Computer System, Information

Technology, and Electrical Engineering (COSITE),

Banda Aceh, Indonesia, pp. 260-265.

https://doi.org/10.1109/COSITE60233.2023.1024952

[14] Santos Júnior, E.S.D., Paixão, T., Alvarez, A.B. (2025).

Comparative performance of YOLOv8, YOLOv9,

YOLOv10, and YOLOv11 for layout analysis of

historical documents images. Applied Sciences, 15(6):

3164. https://doi.org/10.3390/app15063164

[15] Sapkota, R., Meng, Z., Churuvija, M., Du, X., Ma, Z.,

Karkee, M. (2024). Comprehensive performance

evaluation of yolo11, yolov10, yolov9, and yolov8 on

detecting and counting fruitless in complex orchard

environments. arXiv Preprint arXiv: 2407.12040.

https://doi.org/10.48550/arXiv.2407.12040

[16] Pujara, A., Bhamare, M. (2022). DeepSORT: Real time

0

0.05

0.1

0.15

0.2
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Loss results of the proposed system

Loss Val_Loss

684

& multi-object detection and tracking with YOLO and

TensorFlow. In 2022 International Conference on

augmented intelligence and sustainable systems

(ICAISS), Trichy, India, pp. 456-460.

https://doi.org/10.1109/ICAISS55157.2022.10011018

[17] Adarsh, P., Rathi, P., Kumar, M. (2020). YOLO v3-Tiny:

Object detection and recognition using one stage

improved model. In 2020 6th International Conference

on Advanced Computing and Communication Systems

(ICACCS), Coimbatore, India, pp. 687-694.

https://doi.org/10.1109/ICACCS48705.2020.9074315

[18] ghani Abdulghani, A.M.A., Dalveren, G.G.M. (2022).

Moving object detection in video with algorithms YOLO

and faster R-CNN in different conditions. Avrupa Bilim

ve Teknoloji Dergisi, (33): 40-54.

https://doi.org/10.31590/ejosat.1013049

[19] Diwan, T., Anirudh, G., Tembhurne, J.V. (2023). Object

detection using YOLO: Challenges, architectural

successors, datasets and applications. Multimedia Tools

and Applications, 82(6): 9243-9275.
https://doi.org/10.1007/s11042-022-13644-y

[20] Yadav, S.P., Jindal, M., Rani, P., de Albuquerque,

V.H.C., dos Santos Nascimento, C., Kumar, M. (2024).

An improved deep learning-based optimal object

detection system from images. Multimedia Tools and

Applications, 83(10): 30045-30072.
https://doi.org/10.1007/s11042-023-16736-5

[21] Xu, Y., Goodacre, R. (2018). On splitting training and

validation set: A comparative study of cross-validation,

bootstrap and systematic sampling for estimating the

generalization performance of supervised learning.

Journal of Analysis and Testing, 2(3): 249-262.

https://doi.org/10.1007/s41664-018-0068-2

[22] Rácz, A., Bajusz, D., Héberger, K. (2021). Effect of

dataset size and train/test split ratios in QSAR/QSPR

multiclass classification. Molecules, 26(4): 1111.

https://doi.org/10.3390/molecules26041111

[23] Fan, C., Chen, M., Wang, X., Wang, J., Huang, B. (2021).

A review on data preprocessing techniques toward

efficient and reliable knowledge discovery from building

operational data. Frontiers in Energy Research, 9:

652801. https://doi.org/10.3389/fenrg.2021.652801

[24] Strasser, S., Klettke, M. (2024). Transparent data

preprocessing for machine learning. In Proceedings of

the 2024 Workshop on Human-In-the-Loop Data

Analytics, pp. 1-6.

https://doi.org/10.1145/3665939.3665960

[25] Baek, H.S., Kim, J., Jeong, C., Lee, J., Ha, J., Jo, K., Kim,

M.H., Sohn, T.S., Lee, I.S., Lee, J.M., Lim, D.J. (2024).

Deep learning analysis with gray scale and doppler

ultrasonography images to differentiate graves’ disease.

The Journal of Clinical Endocrinology & Metabolism,

109(11): 2872-2881.

https://doi.org/10.1210/clinem/dgae254

[26] Rathore, Y.K., Janghel, R.R., Swarup, C., Pandey, S.K.,

Kumar, A., Singh, K.U., Singh, T. (2023). Detection of

rice plant disease from RGB and grayscale images using

an LW17 deep learning model. Electronic Research

Archive, 31(5): 2813-2833.

https://doi.org/10.3934/era.2023142

[27] Xi, E., Li, M. (2022). Research on the enhancement

algorithm of defocused and blurred image base on non-

Local constraints. International Journal of Circuits,

Systems and Signal Processing, 16: 934-940.

https://doi.org/10.46300/9106.2022.16.114

[28] Mungra, D., Agrawal, A., Sharma, P., Tanwar, S.,

Obaidat, M.S. (2020). PRATIT: A CNN-based emotion

recognition system using histogram equalization and data

augmentation. Multimedia Tools and Applications, 79(3):

2285-2307. https://doi.org/10.1007/s11042-019-08397-0

[29] Chowdhury, J.H., Liu, Q., Ramanna, S. (2024). Simple

histogram equalization technique improves performance

of VGG models on facial emotion recognition datasets.

Algorithms, 17(6): 238.

https://doi.org/10.3390/a17060238

[30] Kumar, D., Rajaan, R., Choudhary, D., Sharma, D. A

comprehensive review and comparison of image super-

resolution techniques. International Journal of Advanced

Engineering, Management and Science, 10: 40-45.

https://doi.org/10.22161/ijaems.102.5

[31] Escobar-Linero, E., Luna-Perejon, F., Munoz-Saavedra,

L., Sevillano, J.L., Domínguez-Morales, M. (2022). On

the feature extraction process in machine learning. An

experimental study about guided versus non-Guided

process in falling detection systems. Engineering

Applications of Artificial Intelligence, 114: 105170.

https://doi.org/10.1016/j.engappai.2022.105170

[32] Jayalaxmi, P.L.S., Saha, R., Kumar, G., Kim, T.H.

(2022). Machine and deep learning amalgamation for

feature extraction in Industrial Internet-of-Things.

Computers & Electrical Engineering, 97: 107610.

https://doi.org/10.1016/j.compeleceng.2021.107610

[33] Choi, S.W., Kim, B.H. (2021). Applying PCA to deep

learning forecasting models for predicting PM2.5.

Sustainability, 13(7): 3726.

https://doi.org/10.3390/su13073726

[34] Wang, D., Su, J., Yu, H. (2020). Feature extraction and

analysis of natural language processing for deep learning

English language. IEEE Access, 8: 46335-46345.

https://doi.org/10.1109/ACCESS.2020.2974101

[35] Mubarak, A.S., Serte, S., Al‐Turjman, F., Ameen, Z.S.I.,

Ozsoz, M. (2022). Local binary pattern and deep learning

feature extraction fusion for COVID‐19 detection on

computed tomography images. Expert Systems, 39(3):

e12842. https://doi.org/10.1111/exsy.12842

[36] Deeba, F., Memon, H., Dharejo, F.A., Ahmed, A.,

Ghaffar, A. (2019). LBPH-based enhanced real-time face

recognition. International Journal of Advanced

Computer Science and Applications, 10(5).

https://doi.org/10.14569/IJACSA.2019.0100535

[37] Adjabi, I., Ouahabi, A., Benzaoui, A., Taleb-Ahmed, A.

(2020). Past, present, and future of face recognition: A

review. Electronics, 9(8): 1188.

https://doi.org/10.3390/electronics9081188

[38] Purwono, P., Ma'arif, A., Rahmaniar, W., Fathurrahman,

H.I.K., Frisky, A.Z.K., ul Haq, Q.M. (2022).

Understanding of convolutional neural network (CNN):

A review. International Journal of Robotics and Control

Systems, 2(4): 739-748.

https://doi.org/10.31763/ijrcs.v2i4.888

[39] Zhao, L., Zhang, Z. (2024). A improved pooling method

for convolutional neural networks. Scientific Reports,

14(1): 1589. https://doi.org/10.1038/s41598-024-51258-

6

[40] Goodwin, M., Halvorsen, K.T., Jiao, L., Knausgård, K.

M., Martin, A.H., Moyano, M., Oomen, R.A.,

Rasmussen, J.H., Sørdalen, T.K., Thorbjørnsen, S.H.

(2022). Unlocking the potential of deep learning for

685

marine ecology: Overview, applications, and outlook.

ICES Journal of Marine Science, 79(2): 319-336.

https://doi.org/10.1093/icesjms/fsab255

[41] Khan, H., Haq, I.U., Munsif, M., Mustaqeem, Khan, S.U.,

Lee, M.Y. (2022). Automated wheat diseases

classification framework using advanced machine

learning technique. Agriculture, 12(8): 1226.

https://doi.org/10.3390/agriculture12081226

[42] Hicks, S.A., Strümke, I., Thambawita, V., Hammou, M.,

Riegler, M.A., Halvorsen, P., Parasa, S. (2022). On

evaluation metrics for medical applications of artificial

intelligence. Scientific Reports, 12(1): 5979.

https://doi.org/10.1038/s41598-022-09954-8

[43] Joseph, V.R., Vakayil, A. (2022). SPlit: An optimal

method for data splitting. Technometrics, 64(2): 166-176.

https://doi.org/10.1080/00401706.2021.1921037

[44] Arumugam, S.R., Gowr, S., Abimala, Balakrishna,

Manoj, O. (2022). Performance evaluation of machine

learning and deep learning techniques: A comparative

analysis for house price prediction. Convergence of Deep

Learning in Cyber‐IoT Systems and Security, 21-65.

https://doi.org/10.1002/9781119857686.ch2

[45] Rainio, O., Teuho, J., Klén, R. (2024). Evaluation

metrics and statistical tests for machine learning.

Scientific Reports, 14(1): 6086.

https://doi.org/10.1038/s41598-024-56706-x

686

