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 Object detection in video is one of the main tasks of computer vision, with applications 

ranging from surveillance to autonomous driving. This research aims to enhance object 

detection in video sequences using a convolutional neural network (CNN) model based on 

the COCO dataset. The study introduces an innovative 1D CNN design that leverages 

spatial and temporal information from successive frames to achieve accurate detection and 

recognition of objects. The proposed system consists of three phases: the preprocessing 

phase, the feature extraction phase by using two techniques: principal component analysis 

(PCA), and local binary pattern histogram (LBPH), and the detection phase based on the 

proposed object-CNN model. Experimental results indicate that the proposed model 

achieves a detection accuracy of 99.74%, outperforming existing state-of-the-art methods. 

This research significantly advances object detection capabilities in dynamic environments 

such as enhancing real-time surveillance systems or improving autonomous vehicle 

navigation. 
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1. INTRODUCTION 

 

Object detection is a fundamental computer vision problem, 

can provide vital information for semantic comprehension of 

pictures and videos, and is connected to numerous applications, 

including image categorization, human behavior analysis, face 

recognition, and autonomous driving [1]. Meanwhile, 

advances in neural networks and associated learning systems 

will lead to the development of neural network algorithms, as 

well as significant influences on object identification 

approaches that may be called learning systems [2]. However, 

due to significant changes in perspectives, postures, 

occlusions, and lighting conditions, it is challenging to achieve 

a faultless object field that has received a great deal of interest 

in recent years [3]. 

The ability to accurately identify and localize objects of 

interest within video frames is fundamental for understanding 

the visual content of videos and enabling intelligent decision-

making systems. The capability of CNN to learn hierarchical 

features directly from raw pixel data makes them increasingly 

popular in handling object detection tasks. Building on the 

recent success of CNNs in video analysis [4], there is therefore 

growing interest in the development of techniques that extend 

such methods to video data where the temporal dimension 

introduces further complexity and challenges. 

This paper applies object detection utilizing the COCO 

dataset. The COCO dataset is chosen for its diverse and 

extensive collection of labeled images, providing 

comprehensive coverage of various object categories in real-

world scenarios. Its rich annotations are ideal for training and 

testing an object detection model, particularly in dense and 

dynamic scenes [5]. 

The model architecture includes feature extraction 

convolutional layers, spatial downsampling pooling layers, 

and detection of fully connected layers. By evaluating our 

model, we aim to demonstrate its effectiveness in detecting 

objects in video sequences with varying complexities. 

The main contributions of this study are the reduction of 

detection time while enhancing the performance of object 

detection technology in scenarios involving small objects and 

dense scenes, thereby offering more precise and dependable 

detection services across diverse application domains. 

The structure of this paper is as follows: Section 2 provides 

related works on object detection utilizing deep learning 

techniques. Section 3 explains the methodology of the 

proposed system. Section 4 provides experimental results and 

discussion. Section 5 concludes the paper with key findings 

and limitations. 

 

 

2. RELATED WORKS 

 

Thanks to the fast advances in deep learning over the past 

decade, computer vision has significantly progressed, 

particularly through the development of deep CNNs. CNN is 

built using key components that work together to process and 

analyze data, typically images. The Convolution Layer is the 

core, using filters to extract features like edges or patterns from 

the input. The Pooling Layer reduces the size of feature maps 

for efficiency, with MaxPooling specifically selecting the 

most important values. To introduce non-linearity, the 

LeakyReLU activation function allows small gradients for 
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negative values, solving issues like "dying neurons." The 

Flatten Layer reshapes the multi-dimensional data into a 1D 

vector, preparing it for the Dense Layer, which performs high-

level reasoning (e.g., classification) by connecting all neurons. 

Together, these components allow CNNs to effectively learn 

and recognize patterns in data. 

These networks have become the standard approach for 

tackling the object detection problem, which involves both 

object location and recognition. Within this domain, the most 

advanced models are categorized into Two-Stage and Single-

Stage Detectors. 

Each method has its merits and demerits in investigating 

Two-Stage and Single-Stage Object Detectors, which are used 

in each method. Two-stage detectors often have higher 

accuracies, as seen by Cascade R-CNN and EfficientDet, 

suitable for those applications where high accuracy is highly 

valued. However, they often rely on the initial region 

proposals' quality and higher computation might be a limiting 

factor, especially in smaller datasets. 

On the other hand, one-stage detectors represent the YOLO 

family, where speed is its strong point. These models are quite 

fast in processing images, but this also comes at the price of 

accuracy. In difficult cases involving small or occluded objects, 

performance usually suffers. As much as this model is pretty 

good at quick inference, it may have very disparate 

performance depending on the dataset or context. 

Ultimately, the decision between using a Two-Stage or 

Single-Stage Detector should be based on the specific needs of 

the application whether that’s prioritizing accuracy or 

requiring quick responses. Looking ahead, it will be important 

for researchers to focus on improving the robustness of these 

models, tackling their limitations, and considering innovative 

approaches that combine the strengths of their architectures. 

By doing so, we can continue to advance the capabilities of 

object detection systems to meet the demands of diverse real-

world applications. Table 1 summarizes related works, 

drawing on some of the most important approaches, 

methodologies, and findings. 

 

Table 1. Summary of related works 

 
Ref. Year Technique Dataset Measures Advantages Disadvantages 

Two-Stage Detectors 

[6] 2019 ResNet-50 ImageNet 

Accuracy 75%, 

Precision 76%, 

Recall 72% 

Very deep network with residual 

connections 

A larger model size requires 

substantial computation 

[7] 2020 MobileNetV2 ImageNet 

Accuracy 71.8%, 

Precision 71.2%, 

Recall 68.5% 

Lightweight, suitable for mobile 

deployment 

Lower accuracy compared to 

larger models 

[8] 2023 Faster R-CNN COCO 

Accuracy 87.7%, 

Precision 84.5%, 

Recall 85.0% 

good accuracy for object 

detection 
Slower than one-stage models 

[9] 2023 Cascade R-CNN COCO Accuracy 88.2% 
Multi-stage detection pipeline 

improves accuracy 
Increased computational cost 

[10] 2023 CNN CDnet Precision=90% 

Good precision; suitable for 

specific applications with limited 

object types 

This study couldn’t detect various 

object types in different datasets; 

the training process was also 

complex 

Single-Stage-Detectors 

[11]  2024 YOLOv5 

Real-world 

object 

detection 

datasets 

60.9% mAP Low detection accuracy 

May require significant 

computational resources; 

performance might drop in real-

time applications 

[12] 2020 EfficientDet-D7 COCO 

Accuracy 89.5%, 

Precision 84.0%, 

Recall 82.0% 

Balances accuracy and efficiency 

The performance of EfficientDet 

is sensitive to hyperparameter 

choices and must be optimized for 

specific contexts 

[13] 2024 YOLOv8 COCO 

Accuracy=94%, 

Precision=93%, 

Recall=94%, 

F1 Score=0.93 

Training complexity; requires 

large datasets for effective 

performance 

High accuracy; improved 

architecture over previous YOLO 

versions; very efficient in real-

time applications 

[14] 2023 YOLOv9 COCO 

Accuracy=93.5%, 

Precision=91.0%, 

Recall=92.0%,  

High precision in detection 
Performance varies in cluttered 

scenes 

[15] 2024 YOLOv10 COCO 

Accuracy=91.0%, 

Precision=90.0%, 

Recall=92.0%, 

Advanced improvements over 

prior YOLO versions 

Still in ongoing evaluation for 

real-world applications 

Both of Two-Stage and Single-Stage 

[16] 2019 
YOLO, CNN, 

Fast CNN 

Various 

object 

detection 

datasets 

Comparison of detection 

speeds and bounding 

box accuracy 

Fast processing; effective for 

different applications; good 

bounding box accuracy 

Limited to simulated 

environments 

[17] 2020 
R-CNN, YOLO 

v3 

Collected 

dataset 
Accuracy=79% 

Combines strengths of R-CNN 

and YOLO; effective for diverse 

object detection tasks 

It is not appropriate for real-time 

applications due to its 

considerable computing 

capabilities, which necessitate 

parallel computing 

[18] 2022 YOLOv3, Bad weather YOLOv4: 72% mAP, Effective in challenging Only tested under specific weather 
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YOLOv4, Faster 

R-CNN 

and low-light 

datasets 

63% recall at 40,000 

iterations 

conditions; performs well in low-

light scenarios 

conditions, limiting 

generalizability 

[19] 2024 
YOLO, Fast-

RCNN 

Object 

detection 

datasets 

YOLO: 63.4 mAP, 300x 

faster inference time 

Fast inference; effective for real-

time applications; suitable for 

general object detection tasks 

Performance may vary based on 

the dataset 

[20] 2024 
R-CNN, SSD, 

YOLO 
Chess Piece 

Best accuracy for R-

CNN=78% 

High accuracy for R-CNN; SSD 

and YOLO provide speed 

advantages; effective for specific 

applications like chess piece 

detection 

The implementation bottleneck is 

caused by the use of an 

independent region generator 

 

2.1 Studies of two-stage detectors 

 

Region proposal and classification stages make up the two 

stages of two-stage frameworks used in the detection process. 

First, by employing reference boxes (anchors), these models 

suggest several potential objects, or regions of interest (RoI). 

Refined localization and classification of the ideas are the 

outcomes of the second step. 

This model excels in feature extraction, making it a popular 

backbone for various applications [6]. Its architecture allows 

for training very deep networks, which can capture complex 

patterns in data, but this comes at the cost of increased 

computational requirements. 

MobileNetV2 was designed for efficiency, making it ideal 

for mobile and embedded systems. Its architecture enables 

faster inference times while maintaining reasonable accuracy, 

though it sacrifices some performance compared to larger 

models [7]. 

A two-stage detection process significantly enhances 

accuracy, particularly in complex scenes. However, this comes 

at the cost of speed, making it less suitable for real-time 

applications compared to one-stage detectors [8]. 

Several multi-stage mechanisms were introduced to 

improve accuracy from varied scale changes of objects in 2023 

[9]. Although these mechanisms enhance the results, they may 

imply increased computational burdens that are deterring 

factors towards a limited-resource deployment platform. 

A deep learning-based system for real-time object 

identification was suggested in 2023 [10]. It focused on the 

classification and detection of stationary and moving objects. 

A CNN with a Softmax classifier was used, which showed an 

average precision of 90% for three video sequences of the 

CDnet database, proving its efficiency in real-time object 

identification. 

 

2.2 Studies of single-stage detectors 

 

On the other hand, one-stage detectors rely on a single feed-

forward fully convolutional network that offers both object 

categorization and bounding boxes. The Single Shot MultiBox 

Detector (SSD) and YOLO (You Only Look Once) were 

among the first to suggest a single, unified structure that does 

not require per-proposal calculation. 

The application of YOLOv5 in object detection was 

investigated, focusing on its architectural enhancements, 

functionalities, training process, and transfer learning 

techniques [11]. The results indicate that YOLOv5 is an 

essential technique in computer vision, with a mean Average 

Precision of 60.9%. Its framework enhances mean average 

accuracy, computational flexibility, and dependability, 

making it suitable for real-world applications in computer 

vision and video processing. 

EfficientDet-D7 provides a good trade-off between 

accuracy and computational efficiency, as it is an all-around 

network across different platforms. However, its performance 

varies in some applications and requires further tuning for 

optimal results [12]. 

YOLOv4 was proposed in 2020, extending the YOLO 

architecture with new features and upgrades, such as the 

CSPDarknet53 backbone and PANet path aggregation. It 

achieved up to 89.8% mAP on the COCO dataset, balancing 

speed and accuracy effectively. 

YOLOv8 was introduced in 2024 [13], achieving a mean 

Average Precision of 95.4%, with an accuracy of 94%, 

precision of 93%, recall of 94%, and an F1 score of 0.93. It 

addresses both speed and accuracy, making it suitable for 

applications requiring fast decision-making, such as 

autonomous vehicles and surveillance systems. However, 

training YOLOv8 is computationally intensive and requires 

large datasets. 

YOLOv9 was developed in 2024 to be suitable for fast and 

accurate detection of distinct objects [14]. However, its 

performance degrades in cluttered scenes and requires further 

refinement for complex environments. 

Further development related to the YOLO series was 

introduced in 2024, incorporating more sophisticated features 

to enhance detection performance. This version is still under 

evaluation and requires additional benchmarking to prove its 

efficiency in more general scenarios [15]. 

 

2.3 Studies used both single-stage and two-stage detectors 

 

The YOLO technique was compared to other object 

detection algorithms, revealing several advantages. Unlike 

other methods, YOLO uses neural networks to identify 

bounding boxes and class probabilities, allowing it to view the 

entire image at once and thus detect objects much faster than 

methods like CNN and Fast CNN [16]. 

Object detection approaches were analyzed using two 

categories: one-stage detectors (e.g., YOLO v1, v2, v3, and 

SSD) and two-stage detectors (e.g., RCNN, Fast RCNN, and 

Faster R-CNN). One-stage detectors prioritize speed, while 

two-stage detectors focus on high accuracy. The YOLO v3-

Tiny model achieved an accuracy rate of 79%, outperforming 

previous approaches [17]. 

The performance of YOLOv3, YOLOv4, and Faster R-

CNN was compared for object detection in bad weather and 

low light conditions [18]. YOLOv4 achieved the highest 

results with 72% mAP and 63% recall at 40,000 iterations, 

outperforming YOLOv3 and Faster R-CNN. 

Object detector performance was evaluated based on 

detection accuracy and inference time. Two-stage detectors 

generally outperform single-stage detectors in terms of 

accuracy, while single-stage detectors offer better inference 

times. The YOLO architecture has significantly improved 

detection accuracy, sometimes surpassing two-stage detectors. 

For example, YOLO models achieve detection accuracies of 

63.4% and 70% for YOLO and Fast-RCNN, respectively, with 
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YOLO having around 300 times faster inference time [19]. 

Three object detection techniques were implemented: Faster 

R-CNN, R-CNN, and YOLO. The study aimed to find the 

optimal trade-off between feature extraction and accuracy. In 

this context, R-CNN achieved superior accuracy compared to 

single-stage detectors like YOLO or SSD, with an accuracy 

rate of 78% [20]. 

 

 

3. THE PROPOSED MODEL ARCHITECTURE 

 

In this work, deep one-dimension CNN is integrated with 

techniques of feature extraction, PCA, and LBPH to extend the 

recognition ability of objects for detection tasks. COCO is 

applied in this proposed approach for object detection in the 

model, as well as captioning tasks on a given image. Its rich 

annotations and diverse set of object categories make it an 

ideal choice for training and evaluating the proposed 

architecture. First, the dataset spilled into two sets training set 

70% and testing set 30%. Then, the dataset is processed by 

using some preprocessing methods (Converting RGB to Gray, 

Gaussian blur, Histogram Equalization, and image resizing). 

The second stage is the feature extraction techniques (PCA and 

LBPH). 

The third stage was the detection phase which was 

accomplished by utilizing the suggested 1D-CNN model. This 

model forms the backbone of the architecture for its 

exceptional capability of automatically learning hierarchical 

features from input data, particularly well-suited for image 

processing tasks like object detection. Figure 1 presents the 

suggested model architecture The next sections will explain 

these phases in detail. 

 

 
 

Figure 1. Diagram of the suggested model architecture 

 

3.1 COCO dataset description 

 

COCO is considered a benchmark standard in the computer 

vision community; it allows for the evaluation of object 

detection algorithms and their comparison. Headings, or heads, 

Large-scale object recognition, segmentation, key-point 

detection, and captioning are all comprised in the MS COCO 

(Microsoft Common Objects in Context) dataset Figure 2 

shows some samples of this dataset. There are 328K images in 

the dataset 2014 saw the publication of the MS COCO 

dataset’s first version. It has 164K images divided into sets for 

testing (41K), validation (41K), and training (83K). A fresh 

test set of 81K photographs, comprising 40K new images plus 

all of the test images from prior releases, was made available 

in 2015. In 2017, the training/validation split was restructured 

from 83K/41K to 118K/5K depending on input from the 

community. The annotations and images are the same in the 

new split. The 2017 test set is a subset of the 41K images from 

the 2015 test set. A new 123K image unannotated dataset is 

also included in the 2017 version [5]. This dataset is available 

at: (https://www.kaggle.com/datasets/sabahesaraki/2017-

2017). 

 

 
 

Figure 2. Samples of MS COCO dataset 

 

Category composition: 

The COCO dataset covers a diverse set of 80 fully 

differentiated object categories that represent a huge variety of 

common objects and living beings that one might find in the 

real world. Instances include forms of transportation, like cars, 

bicycles, motorcycles, and airplanes, but also traffic-related 

ones like traffic lights and stop signs. 

Apart from vehicles, the dataset contains a wide array of 

animals, including domesticated ones like cats and dogs, and 

also farm and wild ones like cows, elephants, and giraffes. 

Again, personal things and accessories also include items like 

backpacks, handbags, frisbees, tennis rackets, and skis. 

The dataset does not leave out food items, which include a 

variety of fruits such as bananas and apples, and prepared 

foods like pizzas, sandwiches, and cakes. Several household 

and furniture items are included: chairs, tables, and electronic 

devices such as TVs and laptops. 

These categories extend to include everything in everyday 

life, such as forks, knives, spoons, different containers, 

household paraphernalia, bottles, and vases. With the 

broadness of these categories, there is a great avenue for the 

training of the model on how to conduct object detection and 

recognition exercises to identify so many objects that come 

about in real-world settings. 

The dataset has annotations: 

The COCO dataset is renowned for its high-quality 

annotations. The key aspects of annotation quality are: 

• Object detection: 80 object types are represented by 

bounding boxes and per-instance segmentation masks; 

captioning: natural language explanations of the images, 

• Identification of key points: including more than 200,000 

images and 250,000 human examples with 17 possible key 

points (e.g., left eye, nose, right hip, right ankle); segmentation 

of stuff photographs: 12 stuff categories (e.g., grass, wall, sky) 

are segmented per pixel using segmentation masks. 
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• Panoptic: complete scene segmentation, comprising 12 

stuff categories (grass, sky, road) and 80 object classes (person, 

bicycle, elephant), 

• Dense Pose: over 39,000 images and 56,000 human 

instances have been annotated; each identified individual has 

a mapping between their body-corresponding picture pixels 

and a template 3D model, as well as an instance ID. We call 

this a thick stance. The public can only view the annotations 

for the training and validation images. 

 

3.2 Dataset splitting 

 

Data splitting is a technique utilized to validate models by 

dividing a dataset into two sets: testing and training. The 

testing set is utilized to validate the models fitted using the 

training set, allowing for comparison without overfitting [21]. 

Random subsampling is a popular method for data splitting, 

with a commonly used ratio of 80:20, which designates 80% 

for training and 20% for testing. Other ratios like 70:30, 60:40, 

and 50:50 are also used. The 80:20 split is based on the Pareto 

principle, but it is a practitioner-only guideline. The best or 

optimal ratio for a given dataset is not well defined, and the 

Pareto theory serves as a foundation for this method [22]. In 

this system, we used 70% as a training set and 30% as a testing 

set. It is a regularly used ratio, the 70-30 split where 70% of 

the data is employed for training and 30% for testing is not 

rigid and can alter depending on various variables, including 

the size of the dataset, the complexity of the model, and the 

particular job at hand. Here is a discussion about why the 70-

30 split is commonly used: 

 

• Sufficient Training Data: 70% of the data is used for 

training and this is ample. It captures enough of the core 

patterns and relationships in the data which gives a well-

trained model. 

• Adequate Testing Data: 30% of the data is kept as testing 

data to ensure there is enough data for unseen data testing. 

Too little data in testing data leads to over-fitting 

performances while too much may starve the training data, 

therefore weakening the ability to learn. 

• Balanced Training and Testing: the 70/30 split is 

balanced in that one gets enough data for training, plus a 

good evaluation of generalization performance. It allows 

the model to learn from a substantial amount of data while 

leaving a large enough chunk to evaluate how well the 

model has learned to generalize from the examples. 

• Statistical Significance: The 70/30 split often gives a 

statistically significant evaluation of the model’s 

performance. With adequate data in both the training and 

testing sets, the resulting performance measures are likely 

to be accurate indications of the model’s genuine 

capabilities. 

 

3.3 Data preprocessing 

 

Data preparation is essential for accurate data processing. 

Considering the inherent difficulty of operations for building 

and data quality constraints, this step is crucial for developing 

operational analysis methods [23]. Data preprocessing is a set 

of procedures for improving raw data quality, including outlier 

removal and imputation of missing values [24]. The 

preprocessing step, which includes techniques for 

segmentation, color conversion, image enhancement, and 

scaling, aims to turn data into a format that can be handled 

more rapidly and effectively. Figure 3 depicts these processes 

in detail which are discussed in four steps: 

 

 
 

Figure 3. Pre-processing phase 

 

3.3.1 Converting RGB to gray 

The input image undergoes a color transformation from 

RGB to grayscale to reduce data usage as shown in Figure 4. 

Greyscale images have only one channel, unlike RGB images 

which require three channels [25]. This conversion increases 

processing speed. The grayscale image intensity is recorded as 

an 8-bit integer, resulting in 256 distinct grey spectrums 

ranging from white to black. This process reduces the amount 

of data used for image representation. The procedure of 

grayscale image transformation is shown in Eq. (1): 

 

Gray Image = (0.21 R + 0.72 G + 0.07 B) (1) 

 

Because people see green the most, the luminosity equation 

accommodates this by assigning green (G) the highest weight. 

RGB to grayscale conversions in object detection models 

simplify information because colors are perhaps not that 

important for the detection of objects. Grayscale usually 

focuses on structural and intensity details such as edges and 

shapes, which are often the critical features for object 

detection. By removing the complication of color from the 

model, the processing of images becomes much faster with 

less computational burden and is very necessary for video 

sequences of real-world performance. It also contributes to a 

reduction in noise due to color variances that are irrelevant in 

object localization and detection [26]. 

 

 
 

Figure 4. From RGB to grayscale image 

 

3.3.2 Image Blurring using Gaussian Blur 

This blurring method produces a smooth blur that resembles 

seeing a picture through a transparent screen. Gaussian 

smoothing is frequently employed as a preprocessing step in 

computer vision algorithms to improve visual structures of 

various sizes. Figure 5 and Eq. (2) demonstrate that the sum of 

two “one-dimensional (1D)” Gaussian functions equal the 

two-dimensional (2D) Gaussian function: 

 

𝐺(𝑥. 𝑦) =  
1

2𝜋𝜎2
 𝑒

−
𝑥2+𝑦2

2𝜎2  (2) 

 

where, σ is the standard deviation of this two-dimensional 
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Gaussian function, it can also be called Gaussian radius, and 

its corresponding value range is [0.1~250]. σ 2 is the variance. 

Gaussian smoothing can be used in the preprocessing step of a 

computer vision algorithm to improve photos of various sizes. 

The method of Gaussian smoothing of a picture combines the 

image and normal distributions. In general, Gaussian picture 

sliding technology is utilized at low frequencies, while high 

frequencies are filtered. Gaussian smoothing's function is to 

reduce noise while also achieving the smoothing effect [27]. 

 

 
 

Figure 5. Blur image using Gaussian blur 

 

3.3.3 Apply histogram equalization 

Since the cumulative histogram equalization method 

performs well in histogram equalization, it is used when digital 

images have low contrast values, such as non-formal image 

brightening allocation or poor illumination. This way, after the 

input-colored images are converted to greyscale, the contrast 

of the greyscale image is improved [28]. The histogram was 

created by utilizing Eq. (3) and the result shown in Figure 6 as 

follows: 

 

ℎ[𝑖]=∑ ∑ {
0    if 𝑓[𝑥. 𝑦] = 𝑖
1       otherwise

}𝑀
𝑦=1

𝑁
𝑥=1  (3) 

 

The cumulative distributions are then determined utilizing 

Eqs. (4) and (5) as follows: 

 

𝑐𝑑𝑓(𝑋𝑖)=∑ 𝑝(𝑋𝑖)
𝑘
𝑖=0  (4) 

 

𝑔[𝑥. 𝑦] =
𝐶𝐷𝐹[𝑓[𝑥. 𝑦] − 𝐶𝐷𝐹𝑚𝑖𝑛]

(𝑁 × 𝑀) − 𝐶𝐷𝐹𝑚𝑖𝑛

× (𝐿 − 1) (5) 

 

where, (x, y) is a coordinated pixel value, and N, M is the 

height and width of an input image [29]. 

 

 
 

Figure 6. Histogram equalization process 

 

3.3.4 Image resize 

The size of the images used in the database is different, so 

it requires changing all the static and dynamic images in the 

databases used in this work to a fixed size for all images. In 

this study, Figure 7 shows the resizing 20×20 which is the best 

among several experiments conducted, when the scale of the 

image was lower the results and the features obtained were 

better. The idea of the suggested method depends on detecting 

more than one object in the image, this size was the best for 

extracting the most relevant features.  Resizing in object 

detection would work much better when there are small 

images to a much larger size since it puts the model at regular 

inputs for processing. Smaller images have less information 

than larger ones and require less computational power. 

Resizing conserves feature recognition across different scales. 

Besides, CNNs are robust against losing some information 

after resizing. Proper resizing further allows the network to 

focus on important features while avoiding noisy overfitting 

and extra information. However, these results depend on the 

expectation that the important object features are maintained 

during resizing since our goal depends on computer vision and 

not image processing [30].  

 

 
 

Figure 7. Image resizes by 20×20 

 

3.4 Feature extraction phase 

 

Feature extraction is a key technique in machine learning 

and signal processing that involves converting raw data into a 

more acceptable format for analysis or input to algorithms [31]. 

In fields such as computer vision, natural language processing, 

and signal processing, raw data often contains vast amounts of 

information, much of which may be irrelevant or redundant for 

specific tasks. The goal of feature extraction is to capture the 

most relevant characteristics or patterns while discarding noise 

[32]. 

Applying PCA and LBPH allows the model to focus on the 

most discriminative elements, thereby improving efficiency 

and accuracy. This synergy allows the object detection model 

to retain significant texture information in a reduced feature 

space, thus enabling more effective and faster object detection. 

Most real-world data require multiple features to be used, 

for instance, extracted through PCA and LBPH, due to 

inherent complexity and variability. Different feature 

extraction methods usually grasp different aspects of the data. 

• Diverse Information: The model will be able to take 

advantage of both the global structural information from 

PCA and the local texture information provided by LBPH. 

The dual perspective allows for better discrimination in 

the feature set, thus enabling more robust recognition and 

classification. 

• Improved Robustness: Integration of features derived 

from different methodologies will enhance the robustness 

of the model against variations of the input data, be it 

changes in lighting, pose, or even occlusion. This 

becomes more important in applications related to face 

recognition due to these varieties. 

• Better Performance: Several empirical studies show that 

most models developed based on feature combinations 
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tend to outperform those based on one feature extraction 

method. This is explained by the fact that capturing a wide 

range of characteristics from the data enables the model 

to achieve better accuracy and generalization. 

 

3.4.1 Feature extraction depending on (PCA) 

Principle Component Analysis (PCA) is a statistical method 

that employs a comprehensive approach to detecting patterns 

in high-dimensional data. It derives from the information 

theory method, which divides pictures into tiny groups of 

distinctive feature images known as Eigens. This method is 

crucial in recognition technology for identifying and verifying 

features. The 2-dimensional image matrices are transformed 

into a 1-dimensional vector, which can be either a row or 

column vector [33]. The steps of PCA are as follows: 

 

Raw data standardization: The raw data should have a unit 

variance and a zero mean. 

 

𝑋𝑗
𝑖 =

𝑥𝑗
𝑖 − �̅�𝑗

𝜎𝑗

∀𝑗 (6) 

 

Compute the raw data’s covariance matrix as follows: 

 

∑ =
1

𝑚
∑ (𝑋𝑖

𝑚
𝑖 ) (𝑋𝑖)

𝑇, ∑ ∈𝑅𝑛∗𝑛 (7) 

 

Compute the covariance matrix’s eigenvector and 

eigenvalue as presented in Eq. (8). 

 

𝑢𝑇 ∑ =𝜇𝜆 (8) 

 

𝑈 = [
|
𝑢1

|

|
𝑢2

|

|
𝑢3

|
] , 𝑢𝑖 ∈ 𝑅𝑛 (9) 

 

where, 
1

𝑚
 in this model equaled 

1

20
 cause PCA here is used as 

feature extraction, to work better, the image dimensions 

should be equal. 

The raw data must be transformed into a k-dimensional 

space as follows: The covariance matrix’s top k eigenvectors 

are chosen. These will be the new original foundation for the 

data. The corresponding vector is calculated using Eq. (10). 

 

𝑥𝑖
𝑛𝑒𝑤 = 

[
 
 
 
 
𝑢1

𝑇 𝑥𝑖

𝑢2
𝑇 𝑥𝑖

⋯
⋯

𝑢𝑖
𝑇 𝑥𝑖]

 
 
 
 

 ∈  𝑅𝑘 (10) 

 

If the original data has n dimensions, it will be transformed 

into a new k-dimensional representation [34]. 

 

3.4.2 Feature extraction depending on LBPH 

The original LBP operator is a strong tool for texture 

description [35]. The operator labels an image’s pixels by 

thresholding the 3×3-neighborhood of each pixel with the 

center value and viewing the result as a binary integer, as 

illustrated in Eq. (11) illustrating the basic LBP operator [36]. 

 

𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑ 𝑆(𝑖𝑝

7

𝑃=0

− 𝑖𝑐)2
𝑃 (11) 

where, 𝑖𝑝  and 𝑖𝑐 Are neighbors and central pixel values 

respectively, 

𝑆(𝑡) = {
1  𝑡 ≥ 0
0  𝑡 < 0

 

 

For neighbors equal to eight for each label, there are 256 

possible combinations (28=256). 

 

3.5 Detection phase based on proposed object-CNN 

 

The proposed object-CNN architecture presents a 

sophisticated and innovative approach to object detection and 

recognition. It leverages a carefully crafted combination of 

neural network layers designed to achieve superior 

performance. At its core, the architecture integrates 1D CNNs, 

a cornerstone of modern computer vision, with additional 

layers specifically tailored for object detection tasks [37]. 

These layers include: 

- Convolutional Layers: Responsible for feature extraction 

from the input image. 

- Pooling Layers: Used to down-sample and reduce 

dimensionality, enhancing computational efficiency. 

- Fully Connected Layers: Act as classifiers to interpret the 

extracted features. 

- Dense layers: connect every neuron from the previous 

layer to every neuron in the current layer. They serve to 

aggregate and combine the features extracted from 

convolutional layers, allowing the model to learn complex 

relationships and make final predictions. 

- LeakyReLU: applied to the convolutional layers or dense 

layers to enhance the model's ability to learn and represent the 

object detection task more effectively. 

- Flatten: it converts the multi-dimensional output from 

convolutional operations into a flat 1D array, making it 

possible to be processed by subsequent Dense layers. 

- Outputting bounding box coordinates through regression, 

using anchor boxes, and applying NMS to finalize the detected 

bounding boxes. [38]. 

What sets the proposed object-CNN apart is the meticulous 

placement and fine-tuning of these layers, allowing the model 

to effectively utilize information in both space and time across 

consecutive frames in video sequences. This design enables 

accurate object detection and recognition over time. The 

object-CNN boasts remarkable detection accuracy while 

ensuring computational efficiency, making it a powerful tool 

for a variety of real-world applications. One notable advantage 

of 1D CNNs [39] is their low computational requirements, 

making them suitable for real-time hardware implementation. 

Their simple and compact configuration allows the 1D object-

CNN to perform only one-dimensional convolution operations 

efficiently. 

The detailed architecture of the proposed 1D object-CNN 

model, which consists of twenty-eight layers, is presented in 

Table 2: 

• Nine convolution layers (Conv1D) with hyperparameter: 

➢ filters (16, 32, 64, 64, 32,32,16,16 and 485) 

➢ kernel size=3 

➢ stride=1 

➢ padding=valid 

• Seven layers of Max-pooling 1D with 

➢ pool size=1 

➢ strides=1 

• Eight Leaky-ReLU with 

➢ lpha=0.3 
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• Three fully connected layers are represented by (Dense) 

➢ Dense1 (128, activation=linear) 

➢ Dense2 (512, activation=linear) 

➢ Dense3 (92, activation=softmax) 

• One flattened layer. 

• optimizers.Adam(lr=0.001) 

• epoch=100 

 

Table 2. Summary of components for the proposed model’s 

architecture 

 
Layer No. Layer Type Output Shape #Param 

1 

Conv-1 (None, 398, 16) 64 

MaxPooling-1 (None, 398, 16) 0 

LeakyReLU-1 (None, 398, 16) 0 

2 

Conv-2 (None, 396, 32) 1568 

MaxPooling-2 (None, 396, 32) 0 

LeakyReLU-2 (None, 396, 32) 0 

3 

 

Conv-3 (None, 394, 64) 6208 

MaxPooling-3 (None, 394, 64) 0 

LeakyReLU-3 (None, 394, 64) 0 

4 

Conv-4 (None, 392, 64) 12352 

MaxPooling-4 (None, 392, 64) 0 

LeakyReLU-4 (None, 392, 64) 0 

Dense-1 (None, 392, 128) 8320 

5 

Conv-5 (None, 390, 32) 12320 

MaxPooling-5 (None, 390, 32) 0 

LeakyReLU-5 (None, 390, 32) 0 

6 

Conv-6 (None, 388, 32) 3104 

MaxPooling-6 (None, 388, 32) 0 

LeakyReLU-6 (None, 388, 32) 0 

Dense-2 (None, 388, 512) 16896 

7 
Conv-7 (None, 388, 16) 24592 

LeakyReLU-7 (None, 388, 16) 0 

8 
Conv-8 (None, 388, 16) 784 

LeakyReLU-8 (None, 388, 16) 0 

9 Conv-9 (None, 388, 485) 23765 

10 Flatten-1 (None, 188180) 11872 

11 Dense-3 (None, 92) 17312652 

Total Param: 17,422,625 

Trainable Param: 17,422,625 

Non-trainable Param: 0 

 

The proposed model is made up of nine convolutional layers, 

each followed by one pooling layer. The numbers of filters 

used with the convolution layer are (16, 32, 64, 64, 32, 32,16, 

16 and 485) respectively. These filters are applied stride of 

these kernels used is one for each window. The usage of CNN 

as a non-linear layer, most often with “leaky Rectified Linear 

Units” (LeakyReLU) [40] is an activation function utilized for 

all levels of the model and a sigmoid [41] for the last dense 

layer," can be used to build a variety of functions (output layer) 

[42]. This model uses the max-pooling function for the pooling 

layers. These CNNs are formed by allocating the input 

samples into non-overlapping one-dimensional areas, treating 

each space as a cluster, and choosing the maximum value from 

each space. The final layer is the fully connected layer also 

called the output layer or decision-making layer which 

contains three neurons and implements a sigmoid function to 

provide the final class of the sequences. The model’s learning 

ability is improved by including tiny convolution kernels. To 

keep the model from overfitting, the original entire connection 

layer is eliminated. The activation function is Leaky ReLU. 

Here, is the explanation of the reason behind using these layers 

in this order: 

1) Increasing Depth with Filters 

• Initial Layers: The first group of layers normally 

contains fewer filters such as 16, and 32 because they try 

to learn lower-level features from the input. On the 

forefront of a network, the filters shall be designed to 

identify just the edges or other minor temporal features 

in the data. 

• Middle Layers: Where most of the depth in the network 

is often accompanied by an increase in the number of 

filters, say to 64, to enable the model to capture more 

complicated patterns and high-level representations. 

Increased filter count helps scale its capacity to learn 

intricate features from data. 

2) Bottleneck Architecture 

• Downsampling Filters: Beyond the peak filter count 

of 64, the architecture downsamples by reducing the 

number of filters down to 32 and then 16. There are 

several reasons for this: 

a) Dimensionality Reduction: This reduces the 

number of filters, hence reducing computational 

complexity, but retaining the most important 

information. It may also serve as a form of 

regularization to prevent overfitting. 

b) Feature Combinations: The model combines 

features learned from earlier layers through 

training to help in the representation of data with 

a lesser number of filters. 

3) Final Layers and Output 

• Transition to Output: Often the last few layers have 

a lesser number of filters, 16, for example, that 

summarize the features into a representation that is 

manageable for the output layer. This helps transition 

from feature maps to class probabilities or predictions. 

• Special Case Filter (485): this would represent the 

number of classes or unique outputs produced by the 

model. In detection, the number of filters in the final 

Dense layer corresponds to the number of classes. 

4) Adaptive Design 

The architecture we specified is adaptive to the problem at 

hand. Suppose there are a lot of varying features in the dataset, 

such as temporal and frequency; then, it would be better to 

have a higher number initially to capture all possible variations 

early in the network. These features then get refined into 

essential features for prediction by later layers. 

5) Empirical Results 

We use convolutional layers; these layers apply one-

dimensional convolution to the input data, which is 

particularly useful for sequence data. A kernel size of (3, 1) 

means that each filter will extend over a length of 3 units in 

the input data; this allows the model to capture local patterns 

or features. The first dimension (None) represents the batch 

size and hence can vary, which means the model can handle 

any number of input samples. For each convolution layer, we 

have one MaxPooling1D Layer; hence we are using seven 

MaxPooling layers in all. This layer is used to reduce the 

dimensionality of feature maps while still maintaining the 

most critical information. It helps in overfitting reduction and 

cost computation. After each pooling layer, we used seven 

activation functions. The Leaky ReLU is an activation 

function that allows a small gradient when the input is negative. 

This goes into introducing nonlinearities in the model, 

allowing. 
 

 

4. RESULTS AND DISCUSSION 
 

This work presents a carefully designed object-CNN model 
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that seamlessly integrates data preprocessing, where images 

are optimized to enhance critical structural features while 

suppressing irrelevant noise. Subsequently, the hybrid feature 

extraction strategy-merging yields a robust 1D vector of 800 

features (where PCA extracted 400 features, LBPH extracted 

400 features) that effectively captures the essence of the input 

images. 

The proposed object-CNN model, which integrates a one-

dimension CNN with feature extraction techniques achieved 

exceptional performance on the COCO dataset, with accuracy 

[43], precision, recall, and F-measure [44] all reaching 99.74%, 

as shown in Table 3. This achievement underscores the 

model’s effectiveness and robustness, demonstrating its ability 

to capture complex patterns within the dataset while 

generalizing well to unseen instances (with an average of 28 

seconds per epoch). 

Two-stage detectors, like Faster R-CNN (87.7% accuracy, 

84.5% precision, trained over an unspecified number of 

epochs) [8] and Cascade R-CNN (88.2% accuracy, trained 

over an unspecified number of epochs) [9], excel in accuracy 

through their sophisticated region proposal mechanisms, 

offering good detection capabilities at the cost of slower 

performance unsuitable for real-time applications. In contrast, 

single-stage detectors such as YOLOv9 (93.5% accuracy, 

91.0% precision, trained on the COCO dataset) [14] and 

EfficientDet-D7 (89.5% accuracy, Precision 84.0%, Recall 

82.0%, trained over 300 epochs) [12] provide faster inference 

speeds, making them ideal for real-time scenarios but 

sometimes sacrificing accuracy in cluttered environments. 

Object-CNN must demonstrate competitive accuracy, ideally 

exceeding 88%, and maintain efficient inference times to 

position itself as a viable alternative within this competitive 

landscape. Additionally, the model's complexity, the number 

of epochs for training, and resource requirements will play 

crucial roles in its deployment potential, particularly in mobile 

and embedded systems, where lightweight architectures like 

MobileNetV2 (71.8% accuracy, trained over 100 epochs) [7] 

have found success despite lower performance metrics. A 

thorough empirical evaluation as in Figure 8 of Object-CNN 

against these established benchmarks [6, 10, 11, 15, 16] is 

imperative to ascertain its effectiveness and applicability in 

practical scenarios, ensuring it offers distinctive advantages 

over existing models. 

The design of the loss function and the choice of 

optimization method are critical in shaping a deep learning 

model's learning efficiency and generalization capability. The 

loss function quantifies the difference between predicted 

outputs and actual target values, with options like cross-

entropy loss for classification tasks and mean squared error for 

regression tasks serving distinct purposes. Sensitivity analysis 

can evaluate the impact of different loss functions, identifying 

the most suitable for specific applications and potentially 

leading to improved performance, especially in imbalanced 

datasets. Similarly, optimization methods such as Stochastic 

Gradient Descent (SGD), Adam, and RMSProp influence how 

model weights are updated based on gradients, affecting 

convergence speed and stability. Conducting sensitivity 

analysis on optimization strategies reveals their effects on 

training dynamics, where adaptive learning rate methods like 

Adam often yield faster convergence and better performance. 

The interplay between loss function design and optimization 

method is paramount, as their combined effect determines the 

model's ability to avoid overfitting and underfitting, with 

tailored loss functions including regularization terms further 

mitigating such risks. Ultimately, evaluating performance 

through metrics like accuracy, precision, recall, and F1-score 

reflects the effectiveness of these strategies, illustrating how 

robust models that leverage thoughtful loss and optimization 

designs can excel across various tasks. 

The suggested model’s accuracy, as shown in Figure 9, 

demonstrates high initial values of 99.83% for training and 

99.74% for testing, reflecting a steady improvement over 

several epochs. The training accuracy consistently rises, 

indicating the model's growing skill in predicting training data, 

while validation accuracy closely matches, suggesting 

effective generalization to unseen data. 

In terms of loss, Figure 10 reveals a decrease from an initial 

training loss of 0.1013 and a validation loss of 0.1647, 

indicating the model is learning effectively. The consistent 

reduction in both training and validation losses, alongside 

increasing accuracy, signifies a well-balanced model 

performance without signs of overfitting or underfitting [45]. 

This progressive improvement throughout the epochs 

underscores the model’s capability to optimize parameters, 

reduce errors, and enhance predictive accuracy, affirming its 

robustness in both training and validation datasets. 

 

Table 3. Experimental results of the proposed system 

 
Model  Accuracy Precision Recall F-Measure Time Per Epoch 

Object-CNN-PCA-LBPH 99.74% 99.74% 99.74% 99.74% 28 sec. 

 
 

Figure 8. Chart of evaluation results of the proposed model 

 
 

Figure 9. Accuracy results of the proposed model 
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Figure 10. Loss results of the proposed model 

 

 

5. CONCLUSION 

 

In this paper, we demonstrated and evaluated a deep 

learning model designed to optimize accuracy and minimize 

loss. The model achieved impressive accuracy rates of 99.83% 

in training and 99.74% in testing, demonstrating effective 

learning and robust generalization capabilities. Our analysis 

revealed a consistent upward trend in accuracy and a 

simultaneous decrease in both training and testing losses, 

indicative of the model’s ability to optimize its parameters 

over several epochs without exhibiting signs of overfitting or 

underfitting. These results imply that the model not only fits 

the training data well but also performs well on unknown data, 

indicating its potential for use in real-world applications. 

However, some limitations could be addressed in future 

work, including the model’s complexity, which restricts it to 

scenarios involving at least two classes, as the presence of 

multiple classes is a fundamental requirement. Additionally, 

while the model is capable of detecting and recognizing 

objects, it does not extend to classifying them. 

Overall, the findings affirm that thoughtful design choices 

and continuous evaluation throughout the training process are 

essential to developing deep learning models that achieve high 

accuracy and effectively address complex tasks in various 

domains. Future work will focus on further refining the 

model’s architecture, exploring additional optimization 

techniques, and enhancing its functionality to improve 

performance and applicability in broader contexts. 
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