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 Rice is a staple crop for world food security, but its yield is susceptible to several diseases. 

Timely recognition of rice leaf diseases (RLD) is critical to decrease yield losses. Recent 

studies offered improved solutions by harnessing deep networks to precisely diagnose and 

categorize RLDs. Conversely, due to extreme scale deviations, data redundancy, and the 

high-resolution multi-spectral nature of leaf images, the conventional deep-learning 

classifiers underperform in detecting rice diseases. Also, training deep learning models 

involves major challenges such as class imbalance, overfitting, and vanishing gradient 

problems. Nowadays, vision transformers are infiltrated into the field of image processing, 

in which the self-attention unit is employed to learn local and distant correlations among 

the pixels in an image. However, the processing and storage overheads of analyzing image 

patches are very high. In this context, we propose a new vision transformer-based RLD 

classifier, called Faster Hierarchical Vision Transformer (FHViT) which employs a Spatial 

Reduction Attention Mechanism (SRAM) to speed up the classification process. The 

SRAM module enables the transformer to estimate the significance of each pixel in image 

patches and optimize their effect on the result. We evaluate our model on an open-access 

Ade F. Rice Leaf Diseases (AFRLD) database and relate its performance with other 

advanced models in terms of performance indicators. Our model delivers 99.2% detection 

accuracy, 99.3% precision, 99.2% sensitivity, 99.1% specificity, 99.0% recall, and 99.0% 

F1 measure. The extensive experimentations demonstrate that the FHViT realizes a viable 

solution for RLD diagnosis. 
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1. INTRODUCTION 

 

The global population is anticipated to rise from 8.01 bn 

now (1st January 2024) to 8.5 bn in 2030, 9.7 bn in 2050, and 

11.2 bn in 2100 [1]. By 2050, it is unavoidable to increase 

global food security by about 70% to fulfil the caloric needs of 

the world population. Rice is a staple plant for food security 

and a primary nutrient source, being the second-most produced 

crop globally and an essential food for over half of the 

inhabitants around the world [2, 3]. India is the second-largest 

rice producer (135.76 million metric tons (Mt)) in the world 

after China (145.95 Mt), contributing 24% of production 

worldwide [4]. Also, world rice production is projected to rise 

by 11.4%, reaching 567 Mt by 2030 [5]. 

According to the International Rice Research Institute 

(IRRI), RLDs can decline rice production by around 80%, 

causing a drop in agricultural revenues, reduced food supply, 

and more costs for buyers [6]. Detection and classification of 

RLDs are very important since they directly affect the growth, 

development, and production of plants [7]. This further leads 

to the utilization of detrimental chemicals and insecticides, 

which can have adverse effects on human well-being and the 

environment [8]. Hence, efficient disease management in rice 

crops is critical for guaranteeing sustainable yield and 

sufficient food supply. Identifying the rigorousness of the rice 

disease is regularly characterized by the level and spread of the 

disease over the leaves area [9]. Traditionally, the pathology 

of rice plants mainly depends on manual techniques by 

capturing and analyzing rice leaf images through dedicated 

tools. However, these techniques are laborious, critical, and 

unproductive since the rice field images contain multifaceted 

background information, such as weeds, soil, and redundant 

parts of rice plants. Furthermore, detecting this RLD manually 

does not deliver timely recognition of RLDs, which can result 

in considerable production losses [10]. Farmers, agricultural 

experts, or plant pathologists need to visually examine large 

areas of rice fields, which can be extremely laborious. Manual 

classification is intrinsically prone to errors. Skilled 

agricultural workers might misidentify or overlook diseases, 

particularly when signs are subtle or not easily distinguishable 

from other conditions. Subjectivity is another issue; different 

experts may understand the signs differently, leading to 

inconsistencies in diagnosis. Manual classification methods 

are not scalable and some diseases may go unnoticed by 

human inspectors. 

Automatic and exact classification of RLDs is made feasible 

through Deep Learning (DL) algorithms. This causes an 

enhancement in crop yield and grade [11]. Convolutional 

Neural Networks (CNN) have demonstrated strong 

performance in recognizing and categorizing RLDs using 
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images captured from damaged leaves, stalks, and fruits of 

plants, providing early inferences to reduce production loss 

[12]. Related to manual methods, DL approaches fetch 

numerous advantages, including higher accuracy, speed, and 

the potential to process big data. Numerous research works 

prove this statement that DL approaches outstrip conventional 

techniques in detecting and diagnosing RLDs [13]. These 

approaches can efficiently identify RLDs at an initial stage, 

rendering them a more rapid and dependable method of 

identifying and classifying RLDs [10]. 

As neural networks evolve, their depth also increases. This 

leads to vanishing gradient problems and complex training 

errors. Besides, the performance of these networks mostly 

depends on large training databases. Vision transformers, with 

their outstanding capacity to extract significant attributes in 

images, have developed one of the most modern and 

prevailing networks that are being applied in the domain of 

vision-based applications [14]. Visual transformer is widely 

used for image processing tasks and it applies the self-attention 

mechanism to analyze images. In this research, we develop a 

novel RLD classification approach using a transformer, called 

FHViT which employs SRAM to speed up the processing 

speed. Besides, the SRAM module enables the transformer to 

estimate the significance of several pixels in input image 

patches and dynamically optimize their effect on the output. 

This article is arranged as mentioned below: In section II, we 

discuss some existing studies on RLD classification. In 

Section III, we explore the architecture and operation of basic 

transformers comprehensively. Section IV explores the 

implementation of our FHViT approach to identify and 

categorize RLDs from high-resolution pictures. Section V 

provides the empirical study and evaluation metrics employed 

in this work. To end, Section VI summarizes this work. 

 

 

2. LITERATURE SURVEY 

 

Timely identification of RLDs is of undue significance to 

ensuring food security and monitoring the spread of disease. 

A neural network-based approach classified RLDs by 

minimizing the model parameters [15]. Using a new database 

of 4199 rice plant photographs, the proposed model is trained 

to detect five different RLDs. The performance of this 

approach is assessed on a dataset with rice leaf images. The 

study [16] developed a MobileNetV2-based transfer learning 

framework. It is trained on the ImageNet database and uses an 

attention mechanism to increase the training efficiency of the 

feature engineering. A hybrid CNN and EfficientNet B7 deep 

architecture has been proposed for classifying four diseases in 

grape plants, such as leaf blight, black measles, and black rot 

[17]. This model employs a logistic regression method to 

down-sample the collected attributes. An ensemble approach 

with ResNet-50, DenseNet-121, and ResNeSt-50 has been 

developed in the study [18]. This model eliminates 

misperception among the diverse types of disease and reduces 

misclassification errors. By applying the concept of the 

ensemble approach, this approach identifies 6 different RLDs. 

The performance of four deep networks, including DenseNet-

121, VGG-16, Inception-V4, and ResNet-50, has been 

assessed for detecting and classifying RLDs [10]. From a 

comprehensive experimental study, the authors prove that the 

DenseNet-121 outdoes other models regarding detection 

accuracy.  

Leaf infection classification frameworks was introduced by 

integrating a support vector machine with CNNs employed to 

detect and classify particular rice crop infections like false 

smut, sheath rot, bacterial leaf blight, rice blast, and brown leaf 

spot [18]. Three CNN structures such as ResNet-18, ResNet-

34, and ResNet-50 recognize and categorize normal and 

unhealthy leaves including hispa, brown spot, and leaf blast 

[19]. The AlexNet model categorize RLDs like bacterial leaf 

blight, brown leaf spot, and false smut [20]. Two deep 

networks, DenseNet-169 and Xception models, classify rice 

crop diseases [21]. A compact vision transformer, called 

MobileViT, was developed for RLD detection on mobile 

devices [22]. This model substitutes the convolutional layer in 

MobileViT with a flipped residual configuration that uses a 

7×7 convolutional filter to capture global relationships among 

various pixels in rice field images efficiently. An encoding 

module excerpts diverse grades of attributes in a picture [23]. 

Likewise, to increase the capacity of the transformer encoding 

module to capture short-range statistics, inception modules 

have been introduced [24]. 

From this survey, we conclude that the transformer models 

with attention mechanisms have the potential to upturn the 

detection and classification accuracy of RLDs. The attention 

mechanism is used to define local and global relationships 

among the pixels within an image (local dependencies) and 

between patches (global dependencies). However, due to low 

resolution, high processing and storage overheads, and other 

reasons, it is not appropriate for dense pixel-level 

classification applications like RLD classification. To handle 

this issue, we develop a new transformer-based RLD 

classification model, called FHViT with a spatial reduction 

attention mechanism to speed up the classification process. 

Besides, the SRAM module enables the transformer to 

estimate the significance of several pixels in input image 

patches and dynamically optimize their effect on the output. 

Conventional deep networks severely rely on physically 

selected attributes. These attributes often fail to interpret the 

subtle and complex patterns intrinsic in plant diseases, limiting 

the model's accuracy. CNNs have high computational costs, 

mainly when processing high-resolution images. These 

models are often overfitted to the training database. Therefore, 

it needs a huge labeled database for training. When models are 

overfitted, their capacity to calculate precisely on new data 

reduces (i.e., limited generality). 

 

 

3. TRANSFORMERS IN IMAGE CLASSIFICATION 

 

The visual transformer is a pioneering network that 

reimagines how humans analyze and interpret images in 

numerous visual applications. The transformer consists of 

three important components: a linear embedding module, an 

encoder, and a final classification module. Figure 1 illustrates 

the general architecture of the visual transformer. Let 𝑃 =
{𝐶𝑖 , 𝑙𝑖}𝑖=1

𝑛  indicate 𝑛 set of rice leaf images, in which 𝐶𝑖 is an 

input image and 𝑙𝑖 are its equivalent class label. Initially, an 

input image 𝐶 is divided into fixed-size patches. Assume a rice 

leaf image 𝐶 with the size of 𝑤 × ℎ × 𝛿, in which ℎ is height, 

𝑤 is width, and 𝛿 denotes feature space size. To handle a 2D 

picture, the transformer splits every picture into blocks of 

width and length of size 𝛼 (i.e., the picture is converted into 

square blocks). Thus, we get small blocks 𝑞𝑖  with a size of 

𝛼 × 𝛼 × 𝛿  from the leaf images. This division converts the 

image 𝐶 ∈ ℝ ℎ×𝑤×𝛿  into a linearized heap of 2D blocks 𝑐 ∈

ℝ 𝑚×𝛼2𝛿, in which (ℎ × 𝑤) is the size of the original picture, 
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(𝛼 × 𝛼) is the dimension of every sub-image, and 𝑚 =
ℎ𝑤

𝛼2  is 

the number of image blocks extracted from the leaf picture. 

This generates a set of blocks (𝑞1, 𝑞2, 𝑞3, … 𝑞𝑚) of length 𝑚. 

In general, the patch dimension 𝛼 is designated as 32×32 or 

16×16, in which a smaller patch dimension leads to a lengthy 

stack. This network handles every block as a distinct patch. 

Therefore, every patch is linearized into a particular array by 

combining the feature maps of a picture element in a block and 

then directly mapping it to the designated dimension of input. 

It converts the linearized patches into sub-images with 

dimension 𝑠 through a trainable mapping element as explained 

in the subsequent sections of this article.   

 

 
 

Figure 1. General architecture of transformer [25] 

 

3.1 Patch embedding 

 

The input image given to the transformer is divided into 

blocks with a certain size and is embedded into a set of 

attribute values as a vector. These attribute vectors are then 

explicitly visualized in a latent feature space. Interpreting the 

attributes in the latent feature space is useful for detecting the 

sub-image blocks with analogous attributes. The offset among 

attributes can be calculated from the attributes vector to define 

the level of the relationship. Arbitrary values are originally 

given and appraised during the learning process within the 

embedding layer. In the learning process, related attributes 

become nearer to each other in the latent feature space. This is 

crucial to detect or excerpt related attributes. Conversely, 

finding the location of attributes makes it easy to calculate the 

correlation among them. Before encoding the stack of patches, 

it is linearly related into a matrix of the dimension 𝑠 using a 

trained embedding matrix 𝛽 . These embedding patterns are 

then integrated with a learnable token. These sub-images are 

significant in this work to achieve RLDs detection and 

classification.  

 

3.2 Positional embeddings  

 

The position encoding technique is used to restructure the 

image series in their original positions and encode attribute 

vectors to their correct location. The attribute map and position 

embedding values are included to create a new vector in the 

latent feature space. It enables the network to distinguish 

between various points in the image and compute spatial 

relationships. To keep the spatial arrangement of the blocks as 

in the original picture, the position statistics 𝛽𝑃𝐼  is computed 

and added to the block representations. The patches with the 

sub-image 𝜖0 are described by Eq. (1). 

 

𝜖0 = [𝑇𝑐  ; 𝑥1𝛽; 𝑥2𝛽; … . 𝑥𝑛𝛽] + 𝛽𝑃𝐼 , 𝛽 ∈ ℝ 𝜌
2𝑐×𝑠 ,

𝛽𝑃𝐼 ∈ ℝ (𝑛+1)×𝑠 
(1) 

 

3.2 Encoder in ViT 

 

The resulting array of embedded blocks 𝜖0  is sent to the 

encoder of the transformer network. This module contains two 

elements: (i) a Multi-head Self-Attention (MSA) module for 

creating attention vectors from particular embedded graphic 

patches. It allows the transformer to focus on the most 

significant areas in the input picture (e.g., brown spot); and (ii) 

a Multilayer Perceptron (MLP)—a classification module and 

comprises 2 dense modules with a Gaussian Error Linear Unit 

(GeLU). Figure 2 shows the structure of encoder module in the 

transformer network. In this study, we use 12 MSA modules 

in our transformer structure. The encoder employs residual 

skip connections and is preceded by a Layer Normalization 

Module (LNM). The LNM keeps the learning procedure on 

track and permits the network to adapt the eccentricities in the 

learned data. Eq. (2) gives the statistical representation of 

MSA. 

 

ϵl
′ = MSA(LNorm(ϵl − 1) + ϵl − 1,       l = 1,2 … L (2) 

 

The statistical representation of MLP operations is given in 

Eq. (3). 

 

ϵl = MLP(LNorm(ϵl
′) + ϵl

′,       l = 1,2 … L (3) 

 

 
 

Figure 2. Encoder module in transformer 

 

Then, the result from each self-attention module is 

transferred to an FFN network. An FFN network usually 

contains a fully connected module followed by an activation 

unit (e.g., Residual Linear Unit (ReLU)). It is used to add non-

linearity and enable the network to capture relationships 

among sub-image blocks. In the final layer of the encoder, we 

take the first element in the stack 𝐸𝐿
0 and send it to an external 

MLP module for defining the label 𝜓 as defined in Eq. (4). 

 

𝜓 = LNorm(𝐸𝐿
0) (4) 
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The multiple attention heads allow the model to capture 

local and global relationships and calculate the significance of 

a patch encoding. This module includes 4 layers as shown in 

Figure 3: (i) the primary projection module to relate the 

projected dimension of the image, (ii) the scaled scalar product 

attention component, (iii) the concatenate component to 

integrate learnable encoded patches with the other projections, 

and (iv) a component to get a patch mapping. 

 

 
 

Figure 3. Structure of MSA unit 

 

In vision-based applications, attention can be computed 

from the sum of weights of the picture series  𝜖 . The head 

assigns the scores by computing and compressing the scalar 

product of the query (𝑄), key (𝐾), and value (𝑉) as given in 

Figure 4. Eq. (5) provides the mathematical representation of 

this scalar product of each pixel and derived map 𝜒𝑄𝐾𝑉 . 

 

[𝑄, 𝐾, 𝑉] = 𝜖𝜒𝑄𝐾𝑉 ,      𝜒𝑄𝐾𝑉 ∈ ℝ 𝑠×3𝑆𝑘𝑒𝑦 (5) 

 

 
 

Figure 4. Scaled product attention 

 

The outcomes define the relative importance of patches in 

the heap. Next, these results are compressed and transferred to 

a classification module. The operation of this module is 

described by Eq. (6).  

 

Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑆𝑘

) ,     Α ∈ ℝ 𝑛×𝑛 (6) 

 

where, 𝑆𝑘is dimension of the key. Finally, the value of each 

vector of block projection is multiplied by the output of the 

classification module to determine the patch with the higher 

attention. The whole self-attention (𝜂)  mechanism is 

calculated using the following Eq. (7).   

 

𝜂(𝜖) = Α. 𝑉 (7) 

 

The MSA unit computes the scaled dot-product score for ℎ 

classifiers individually. Then, this network assimilates the 

outputs of every attention head and computes the final score 

using an FFN network with weighted parameters 𝑤  to the 

desired dimension. Eq. (8) defines this process. 

 

𝑀𝑆𝐴(𝜖) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝜂1(𝜖);    𝜂2(𝜖); … . 𝜂ℎ(𝜖))𝑤,

𝑤 ∈  ℝ ℎ𝑆𝑘𝑒𝑦×𝑆 
(8) 

 

 

4. FHVIT IN DETECTING RICE DISEASE 

 

In this work, we propose a hierarchical visual transformer 

to create multi-scale attribute vectors. Rice leaf images can 

have irregular lesion areas that may vary in shape, size, and 

location. These lesions may not follow any consistent pattern, 

making it challenging for RLD models to detect them. The 

attention mechanism allows FHViT to extract long-range 

correlations and complex spatial relations in a picture.  

 

 
 

Figure 5. Structure of FHVIT 

 

Additionally, FHViT uses a hierarchical structure that 

processes images at various degrees of granularity. The lower 

modules extract fine-grained details, whereas the upper 

modules emphasize high-level features. When the attention 

mechanism is combined with the hierarchical structure of 
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FHViT, the model benefits from both high-resolution 

processing and the ability to handle complex and irregular 

disease patterns, all while maintaining computational 

efficiency. Figure 5 illustrates the basic structure of FHViT. 

This model has 4 identical modules that create attribute vectors 

of various scales. Every stage contains a patch embedding unit 

and 𝐿𝑖 encoding module. In the initial stage, the input picture 

of dimension 𝑤 × ℎ × 𝛿 is divided into 
ℎ𝑤

𝛼2  image blocks, each 

of size 𝛼 × 𝛼 × 𝛿 . In this study, initially, we set 𝛼 = 4 and 

𝛿 = 3. Now, we give the flattened sub-image blocks to a linear 

mapping and get embedded image blocks of dimension 
ℎ𝑤

𝛼2 × 𝛿. 

Then, the embedded image blocks with a position embedding 

are transferred using an encoding module with 𝐿1 layers, and 

the result is reformed to an attribute vector 𝐹1  of 

dimension  
𝑤

𝛼
×

ℎ

𝛼
× 𝛿 . Similarly, using the attribute vector 

from the earlier stage as input, we find the following attribute 

vectors: F2, F3, and F4, whose strides are 8, 16, and 32 pixels 

in terms of the input image. With the attribute hierarchy {F1, 

F2, F3, F4}, FHViT can be easily implemented in most 

downstream applications. This model adapts an SRAM to 

accelerate the calculation of FHVIT.  

The SRAM performs a critical role in optimizing the 

efficiency of FHViT, where high-resolution images with 

irregular lesion patterns need to be processed efficiently. The 

key advantages of SRAM include faster processing, reduced 

memory usage, improved generalization, and robustness. By 

combining these strengths, SRAM allows FHViT to be applied 

more effectively in real-world applications such as rice disease 

detection, where timely, accurate, and efficient diagnosis is 

essential for maintaining healthy crops and ensuring 

agricultural sustainability. The proposed SRAM decreases the 

size of 𝐾  and 𝑉  matrices by a factor of 𝑅𝑖
2  as presented in 

Figure 6. Here, 𝑖 specify the stage index in the FHViT network. 

The spatial reduction is achieved in two steps including (i) 

adding adjacent tokens with a size 𝛿  in a non-overlapping 

window of size 𝑅𝑖
2  into a token of dimension 𝑅𝑖

2𝛿 , and (ii) 

mapping each of the added tokens to a token of dimension 𝛿 

linearly and implementing normalization procedure. The 

temporal and storage costs are reduced since the number of 

tokens is decreased through the process of spatial reduction.  

 

 
 

Figure 6. Attention mechanism (a) MSA (left), (b) SRAM 

(right) 

 

 

5. EXPERIMENTS AND RESULTS 

 

To assess the enactment of our FHViT network, it is realized 

using a processor called Google Tensor with 8 CPUs, 8 threads, 

12GB memory, and two memory channels at a maximum 

frequency of 2.80 GHz. The tests are conducted using 

MATLAB 2023/Computer Vision Toolbox. The proposed 

model is validated against cutting-edge rice leaf image 

classification models including simple CNN [15], 

MobileNetV2 [16], VGG-16 [10], ResNet-50 [10] Inception 

V4 [10], ResNet34 [19], AlexNet [20], and Mobile ViT [22].  

 

5.1 Image acquisition  

 

This research utilizes a high-quality AFRLD database for 

learning and validation of the proposed framework [26]. The 

database comprises a total of 2710 rice leaf images captured 

under diverse dimensions and settings. Each image is 

categorized as Narrow Brown Spot (NBS), Leaf Scald (LS), 

Leaf Blast (LB), Brown Spot (BS), Bacterial Leaf Blight 

(BLB), and healthy (HL). In a preprocessing step, each picture 

in the database was cropped square from the central point to 

retain the most imperative (diseased) part of the picture. The 

database comprises high-quality images with a balanced class 

distribution. Table 1 shows the statistics of the AFRLD dataset.  

 

Table 1. Statistics of the AFRLD dataset 

 

Type of 

Sample 

Number of 

Samples Used 

for Training/ 

Distribution 

Number of 

Samples Used 

for Testing/ 

Distribution 

Total 

Images/ 

Distribution 

HL 371 (13.69%) 93 (3.43%) 464 (17.12%) 

BLB 350 (12.91%) 88 (3.24%) 438 (16.16%) 

BS 373 (13.76%) 93 (3.43%) 466 (17.20%) 

LB 363 (13.39%) 91 (3.36%) 454 (16.75%) 

LS 358 (13.21%) 90 (3.32%) 448 (16.53%) 

NBS 352 (12.98%) 88 (3.24%) 440 (16.23%) 

Total 2167 (79.96%) 543 (20.03%) 2710 (100%) 

 

5.2 Preprocessing 

 

Once gathering the rice leaf images, we preprocess the 

images to improve the quality of each pixel using contrast 

enhancement and filtering methods [27]. The filtering 

technique is used to increase the picture quality by reducing 

artifacts and noise in the input picture. There are numerous 

methods found in the literature for image smoothing (e.g., 

Gaussian blur filter, median blur filter, etc.), to remove noise 

from the input picture [28]. For the removal of reflection, 

artifacts, and noises from the input images, we exploit a simple 

thresholding method. Contrast improvement is a significant 

procedure to increase the quality of the input picture. This is 

realized by increasing the contrast of features or dropping the 

indecision of every pixel. We apply a contrast improvement 

and filtering technique to improve the picture quality [29]. 

This method enhances the contrast of the region of interest and 

makes the input picture more appropriate for analyzing the 

input images further.  

 

5.3 RLD classification using FHViT 

 

Before processing the leaf pictures, it is split into a series of 

certain size blocks. These patches are then linearly embedded. 

A token is added to perform as a representative of the entire 

image, which can be used for predictions. FHViT also includes 

position encoding and transfers the output heap of vectors to 

an encoding module. As the configuration of the developed 

transformer is straightforward, we optimize the network using 
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the VitModel.from_pretrained() function. As the network 

considers each original image to be of identical size, we 

employ ViTImageProcessor to rescale the normalized images. 

In this study, we state the recovery points of the network as 

parameters. Each input picture is rescaled to a particular 

dimension (224 × 224 ) and normalized across the feature 

space with mean values of (0.5, 0.5, 0.5) and SD of (0.5, 0.5, 

0.5). Our framework is pre-trained on Google Tensor using the 

AFRLD database. To fine-tune higher-resolution pictures, we 

perform a 2D interpolation function of the pre-trained position 

encoding using their order in the original picture. We add a 

linear layer finally to carry out the classification task. 

 

5.4 Performance measures 

 

To assess the efficiency of the developed FHViT, we relate 

the enactment of our network with other prevailing models in 

terms of 5 significant measures including detection accuracy 

(ACC), specificity (SPE), sensitivity (SEN), precision (PRE), 

Recall (REC) and F1-measure (F1-M). These measures are 

required to be kept at greater value to increase the disease 

detection efficiency of the FHViT framework. The evaluation 

measures are calculated using Eqs. (9)-(14). 
 

ACC =
𝑇−+𝑇+

𝑇−+𝑇++𝐹−+𝐹+  (9) 

 

PRE =
𝑇+

𝑇++𝐹+  (10) 

SEN =
T+

T++F−  (11) 

 

SPE =
𝐹+

𝑇−+𝐹+   (12) 

 

REC =
𝑇+

𝑇++𝐹−  (13) 

 

F1 − M =
2×𝑃𝑅𝐸×𝑅𝐸𝐶

𝑃𝑅𝐸+𝑅𝐸𝐶
  (14) 

 

In the above equations, 𝑇+  (true positive) indicates the 

number of samples correctly designated as diseased images; 

𝐹− (false negative) is the number of diseased samples wrongly 

categorized as healthy ones. 𝑇− (True negative) is the number 

of samples correctly identified as normal, and 𝐹+  (false 

positive) signifies the number of normal samples wrongly 

categorized as diseased ones. 

 

5.5 Evaluation of FHViT 

 

The effectiveness of the developed FHViT network is 

assessed by relating the empirical outcomes with that of 8 

existing RLD recognition deep learning networks, including 

CNN [15], MobileNetV2 [16], VGG-16 [10], ResNet-50 [10] 

InceptionV4 [10], ResNet34 [19], AlexNet [20], and 

MobileViT [22].  

 

Table 2. Disease-wise classification performance of FHViT on the AFRLD dataset 
 

Type of Sample ACC PRE SEN SPE REC F1-M 

HL 0.999 0.998 0.986 0.997 0.995 0.996 

BLB 0.998 0.987 0.974 0.994 0.991 0.992 

BS 0.997 0.988 0.987 0.977 0.974 0.984 

LB 0.956 0.973 0.957 0.963 0.957 0.966 

LS 0.946 0.959 0.961 0.967 0.943 0.971 

NBS 0.985 0.982 0.984 0.987 0.986 0.976 

 

Table 3. Mean value of results obtained by various RLD detection models 
 

Algorithm ACC PRE SEN SPE REC F1-M 

VGG-16 0.783 0.815 0.881 0.880 0.851 0.878 

Inception-V4 0.886 0.919 0.908 0.905 0.888 0.912 

MobileViT 0.934 0.906 0.927 0.925 0.903 0.935 

ResNet-50 0.937 0.910 0.945 0.943 0.947 0.930 

AlexNet 0.965 0.919 0.948 0.949 0.954 0.949 

CNN 0.975 0.940 0.965 0.963 0.961 0.968 

MobileNet-V2 0.984 0.969 0.974 0.971 0.973 0.972 

ResNet-34 0.985 0.974 0.976 0.973 0.977 0.983 

FHViT 0.992 0.993 0.992 0.991 0.990 0.990 

 

Table 4. SD value of results obtained by various RLD detection models 
 

Algorithm ACC PRE SEN SPE REC F1-M 

VGG-16 0.034 0.043 0.027 0.027 0.060 0.021 

Inception-V4 0.038 0.043 0.028 0.031 0.053 0.043 

MobileViT 0.022 0.043 0.029 0.029 0.040 0.019 

ResNet-50 0.034 0.043 0.014 0.015 0.024 0.013 

AlexNet 0.007 0.043 0.031 0.031 0.014 0.048 

CNN 0.018 0.044 0.030 0.030 0.036 0.031 

MobileNet-V2 0.009 0.016 0.011 0.011 0.015 0.019 

ResNet-34 0.008 0.018 0.015 0.014 0.011 0.008 

FHViT 0.002 0.006 0.006 0.009 0.009 0.007 

To achieve a more accurate result, this study employs 10-

fold cross-validation (CV). In this approach, the entire dataset 

is fragmented into 10 portions. In every autonomous trial, one 

portion is used for testing and the other portions are pooled for 
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learning. Then, we calculate the mean value of outcomes 

across all 10 folds. Hence, all the outputs are specified on an 

average of 10 runs. To execute our intended approach, a total 

of 2710 images of the AFRLD database have been 

preprocessed by applying preprocessing techniques. The 

designated class tags are compared with the ground truth class 

tags. Table 2 lists the disease-wise evaluation measures 

obtained from the FHViT network. From this table, it is 

witnessed that the FHViT network realizes the optimum 

results on HL image samples with 99.9% accuracy, 99.8% 

precision, 98.6% sensitivity, 99.7% specificity, 99.5% recall, 

and 99.6% F1-M. Our FHViT model achieves classification 

accuracy of 99.8%, 99.7%, 95.6%, 94.6%, and 98.5% on BLB, 

BS, LB, LS, and NBS image samples, respectively.  

The results obtained by different models in detecting rice 

crop disease are listed in Tables 3 and 4. Figure 7 and Figure 

8 display the performance of the FHViT against other existing 

RLD models regarding evaluation measures. The models 

using the VGG-16 network use a two-stage learning process 

that realizes nominal performance in detecting RLDs. It shows 

78.3% ACC, 81.5% PRE, 88.1% SEN, 88.0% SPE, 85.1% 

REC, and 87.8% F1-M. However, this model provides 

unreliable results and reduced recognition accuracy.  

 

 
 

Figure 7. Performance measures of FHViT related to other 

models in terms of mean value 

 

 
 

Figure 8. Performance measures of FHViT related to other 

models regarding SD value 

 

By applying grid size reduction units and skip connections, 

the Inception-V4 model achieves better results than the CNN-

based model. The skip connections enable the model to 

capture residual mappings, which helps increase the 

classification performance and convergence speed. This 

model provides 88.6% ACC, 91.9% PRE, 90.8% SEN, 90.5% 

SPE, 88.8% Recall, and 91.2% F1-M. To realize effective 

classification, MobileViT assimilates the idea of MobileNets 

and ViT using their novel MobileViT-block that learns both 

short- and long-range relationships successfully. It generates 

improved outcomes than Inception-V4 and VGG-16 models 

regarding the performance indicators (93.4% ACC, 90.6% 

PRE, 92.7% SEN, 92.5% SPE, 90.3% REC, and 93.5% F1-M). 

ResNet-50 includes the convolution block attention unit which 

improves the attribute exacerbation ability by capturing both 

spatial position and channel data of the image. It can realize 

better results regarding the performance indicators including 

93.7% accuracy, 91.0% precision, 94.5% sensitivity, 94.3% 

specificity, 94.7% recall, and 93.0% F1 measure. The Alexnet 

exploits ReLU activation, dropout regularization, and data 

augmentation techniques to improve classification 

performance. This network provides better ACC (96.5%), 

PRE (91.9%), SEN (94.8%), SPE (94.9%), REC (95.4%), and 

F1-M (94.9%).  

The CNN-based RLD detection model considered in this 

study implements the concept of low-rank approximation, 

network pruning, feature extraction, and hyperparameter 

optimization. It shows improved performance, such as 

accuracy of 97.5%, precision of 94%, sensitivity of 96.5%, 

specificity of 96.3%, Recall of 96.1%, and F1 measure of 

96.8%. MobileNet incorporates several features such as 

inverted residuals, depthwise separable convolution, linear 

bottlenecks, and squeeze-and-excitation units. It shows 98.4% 

ACC, 96.9% PRE, 97.4% SEN, 97.1% SPE, 97.3% REC, and 

97.2% F1-M. The concept of skip connections in the ResNet-

34 model enables improved optimization and parameter flow, 

making the learning procedure easier and realizing enhanced 

enactment on standard databases. This model gains better 

performance measures such as classification ACC of 98.5%, 

PRE of 97.4%, SEN of 97.6%, SPE of 97.3%, recall of 97.71%, 

and F1-measure of 98.3%. 

Our FHViT network outdoes other classification models 

regarding all the evaluation metrics. This model realizes better 

results compared to other classifiers with 99.2% accuracy, 

99.3% precision, 99.2% sensitivity, 99.1% specificity, 99.0% 

recall, and 99.0% F1 measure. Also, it achieves improved SD 

values with 0.2% ACC, 0.6% PRE, 0.6% SEN, 0.9% SPE, 

0.9% REC, and 0.7% F1-M. The SD values of the proposed 

model are less as compared to all other classifiers about the 

performance indicators. Hence, the FHViT provides more 

dependable outputs for classifying RLDs. Thus, this empirical 

analysis demonstrates that the FHViT is the most feasible 

network for detecting rice plant diseases. 

 

 

6. CONCLUSION 

 

In this research, we propose a fast hierarchical visual 

transformer network for RLD classification using an SRAM to 

alleviate the inadequacies of the conventional CNNs and basic 

transformers. The SRAM allows the transformer to estimate 

the importance of each pixel in image patches and dynamically 

optimize their effect on the output. We evaluate our model on 

an open-access AFRLD database and relate its enactment with 

advanced methods regarding designated evaluation measures. 

The developed approach revealed better performance in the 

detection and diagnosis of 5 infections in terms of 99.2% 

accuracy, 99.3% precision, 99.2% sensitivity, 99.1% 

specificity, 99.0% recall, and 99.0% F1 measure. Besides, it 

realizes better SD value with 0.2% accuracy, 0.6% precision, 

0.6% sensitivity, 0.9% specificity, 0.9% recall, and 0.7% F1 

measure. The proposed model relies heavily on large, labeled 

datasets for training to avoid overfitting problems. Imbalanced 
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datasets are also an issue, where certain diseases are 

underrepresented, which may lead to model bias, affecting the 

capacity of the model to generalize to rare diseases or 

uncommon scenarios. To avoid this problem, we plan to apply 

a Generative adversarial network (GAN) to produce synthetic 

datasets for the learning process. The model helps farmers 

apply pesticides and other inputs only when necessary, based 

on disease detection, rather than applying them across the 

entire farm indiscriminately. Automating disease detection 

and monitoring with the ViT model reduces the necessity for 

physical examinations by farmers. This not only saves time but 

also cuts labor costs, especially in large-scale farming 

operations. 
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